

Windows

PowerShell ™

2.0

William R. Stanek

 Author and Series Editor

Administrator’s

Pocket Consultant

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation

One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 2009 by William Stanek

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any means without the written permission of the publisher.

Library of Congress Control Number: 2009927478

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 QWE 4 3 2 1 0 9

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further infor mation about international editions, contact your local Microsoft Corporation office or

contact Microsoft Press International directly at fax (425) 936-7329. Visit our Web site at

www.microsoft.com/mspress. Send comments to mspinput@microsoft.com.

Microsoft, Microsoft Press, DirectX, Halo, Halo Wars, MS, MSDN, Visual C#, Visual Studio,

Windows, Windows Live, Windows Media, Windows Vista, Xbox, Xbox 360, Xbox LIVE, XNA

and Zune are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries. Other product and company names mentioned herein may be the

trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos,

people, places, and events depicted herein are fictitious. No association with any real company, organization, product, domain name, e-mail address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or distributors will be held liable for any damages caused or alleged to be caused either directly or indirectly by this book.

Acquisitions Editor: Martin DelRe

Developmental Editor: Karen Szall

Project Editor: Denise Bankaitis

Editorial Production: Macmillan Publishing Solutions

Technical Reviewer: Technical Reviewer: LJ Zacker; Technical Review services provided by Content Master, a member of CM Group, Ltd.

Cover: Tom Draper Design

Body Part No. X15-58129

Contents at a Glance

 Introduction xiii

CHAPTER 1

Introducing Windows PowerShell

1

CHAPTER 2

Getting the Most from Windows PowerShell

25

CHAPTER 3

Managing Your Windows PowerShell Environment

53

CHAPTER 4

Using Sessions, Jobs, and Remoting

85

CHAPTER 5

Navigating Core Windows PowerShell Structures

109

CHAPTER 6

Mastering Aliases, Functions, and Objects

167

CHAPTER 7

Managing Computers with Commands and Scripts

213

CHAPTER 8

Managing Roles, Role Services, and Features

237

CHAPTER 9

Inventorying and Evaluating Windows Systems

253

CHAPTER 10

Managing File Systems, Security, and Auditing

281

CHAPTER 11

Managing Shares, Printers, and TCP/IP Networking

309

CHAPTER 12

Managing and Securing the Registry

335

CHAPTER 13

Monitoring and Optimizing Windows Systems

361

CHAPTER 14

Fine-Tuning System Performance 409

 Index 445

Contents

 Introduction xiii

Chapter 1

Introducing Windows PowerShell

1

Getting Started with Windows PowerShell . 2

Running Windows PowerShell . 3

Using the Windows PowerShell Console

3

Using the Windows PowerShell ISE

5

Configuring Windows PowerShell Console Properties

7

Working with the Command History

8

Working with Cmdlets and Scripts . 9

Using Cmdlets

9

Using Cmdlet Parameters

14

Using External Commands

16

Using Scripts

17

Chapter 2

Getting the Most from Windows PowerShell

25

Initializing the Environment . 26

Passing Startup Parameters

26

Invoking Windows PowerShell

28

Using –Command to Run Commands

28

Using –File to Run Scripts

30

Using Nested Consoles

30

Understanding Command Input, Parsing, and Output 31

Basic Line Editing

31

How Parsing Works

33

Parsing Assigned Values

34

Parsing Exceptions

36

Output from Parsing

37

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our

books and learning resources for you. To participate in a brief online survey, please visit: microsoft.com/learning/booksurvey

v

Writing and Formatting Output . 37

Using Formatting Cmdlets

38

Writing to Output Streams

45

Rendering and Finalizing the Output

49

More on Redirecting Input, Output, and Error

51

Chapter 3

Managing Your Windows PowerShell

Environment 53

Using Profiles . 53

Creating Profiles

55

Understanding Execution Order

56

Working with the Command Path

57

Navigating Windows PowerShell Extensions 60

Working with Windows PowerShell Extensions

60

Using Snap-ins

62

Using Providers

64

Navigating and Using Provider Drives

72

Using Modules

77

PowerShell Extensions for Exchange Server

and SQL Server

82

Chapter 4

Using Sessions, Jobs, and Remoting

85

Enabling Remote Commands . 85

Executing Remote Commands . 87

Understanding Remote Execution

88

Commands for Remoting

88

Invoking Remote Commands

92

Establishing Remote Sessions . 94

Invoking Sessions

94

Understanding Remote Execution and Object

Serialization

96

Establishing Remote Background Jobs . 97

Using Background Jobs

97

Starting Jobs in Interactive Sessions

100

Running Jobs Noninteractively

104

Working Remotely Without WinRM . 107

vi

Contents

Chapter 5

Navigating Core Windows PowerShell

Structures 109

Working with Expressions and Operators 109

Arithmetic, Grouping, and Assignment Operators

110

Comparison Operators

113

Other Operators

121

Working with Variables and Values . 122

Variable Essentials

123

Assigning and Converting Data Types

128

Managing Variable Scopes

135

Automatic, Preference, and Environment Variables

138

Working with Strings . 148

Single-Quoted and Double-Quoted Strings

148

Escape Codes and Wildcards

150

Multiline Strings

152

String Operators

154

Working with Arrays and Collections . 159

Creating and Using One-Dimensional Arrays

160

Using the Cast Array Structure

162

Assigning and Removing Values

163

Using Strict Types in Arrays

164

Using Multidimensional Arrays

165

Chapter 6

Mastering Aliases, Functions, and Objects

167

Creating and Using Aliases . 168

Using the Built-In Aliases

168

Creating Aliases

172

Importing and Exporting Aliases

174

Creating and Using Functions . 175

Creating Functions

175

Using Extended Functions

177

Using Filter Functions

178

Digging Deeper into Functions

179

Examining Function Definitions

181

Using the Built-In Functions

181

Contents

vii

Working with Objects . 185

Object Essentials

185

Object Methods and Properties

188

Object Types

190

Digging Deeper into Objects

194

Working with COM and .NET Framework Objects 197

Creating and Using COM Objects

197

Working with .NET Framework Classes and Objects

202

Working with WMI Objects and Queries . 206

Chapter 7

Managing Computers with Commands

and Scripts

213

Getting More from Your Scripts and Profiles 213

Creating Transcripts . 216

Creating Transactions . 217

Understanding Transactions

217

Using Transactions

220

Common Elements in Scripts . 222

Using Comments and Initializing Statements

222

Using Conditional Statements

225

Using Control Loops

231

Chapter 8

Managing Roles, Role Services, and Features

237

Server Manager Essentials . 238

Server Manager Commands

238

Available Roles and Role Services

239

Available Features

242

Checking Installed Roles, Role Services, and Features 245

Installing Roles, Role Services, and Features 247

Adding Roles, Role Services, and Features

247

Handling Configuration Errors and Other Issues

249

Uninstalling Roles, Role Services, and Features 250

Removing Roles, Role Services, and Features

250

Handling Removal Errors and Other Issues

252

viii

Contents

Chapter 9

Inventorying and Evaluating Windows

Systems 253

Getting Basic System Information . 253

Determining the Current User, Domain,

and Computer Name

254

Determining and Setting the Date and Time

255

Specifying Authentication Credentials

257

Examining the System Configuration and

the Working Environment. 257

Determining Windows Updates and Service Packs

258

Obtaining Detailed System Information

261

Determining Available Users and Groups

265

Evaluating System Hardware . 267

Checking Firmware Versions and Status

267

Checking Physical Memory and Processors

269

Checking Hard Disks and Partitions

271

Checking and Managing Device Drivers

275

Digging In Even More

279

Chapter 10 Managing File Systems, Security, and Auditing

281

Managing PowerShell Drives, Directories, and Files 281

Adding and Removing PowerShell Drives

282

Creating and Managing Directories and Files

283

Working with File Contents . 286

Commands for Managing File Contents

286

Reading and Writing File Content

288

Accessing Security Descriptors . 289

Commands for Working with Security Descriptors

289

Getting and Setting Security Descriptors

289

Working with Access Rules

293

Configuring File and Directory Permissions 296

Setting Basic Permissions

296

Setting Special Permissions

300

Taking Ownership

304

Configuring File and Directory Auditing . 305

Contents

ix

Chapter 11 Managing Shares, Printers, and TCP/IP

Networking 309

Managing Network Shares . 309

Getting Information About Shares

310

Changing Share Settings

311

Creating Shares

313

Deleting Shares

314

Managing Printers . 314

Getting Information About Printers

315

Checking Printer Drivers

317

Managing Printer Connections

318

Managing TCP/IP Networking . 319

Getting Information About Network Adapters

319

Configuring Static IP Addressing

323

Configuring Dynamic IP Addressing

326

Configuring Windows Firewall . 328

Viewing and Managing Windows Firewall Settings

328

Adding and Removing Firewall Ports

333

Chapter 12 Managing and Securing the Registry

335

Understanding Registry Keys and Values. 336

Navigating the Registry . 338

Managing Registry Keys and Values . 341

Creating Registry Keys and Values

342

Copying Registry Keys and Values

343

Moving Registry Keys and Values

344

Renaming Registry Keys and Values

344

Deleting Registry Keys and Values

345

Comparing Registry Keys . 346

Viewing and Managing Registry Security Settings 347

Getting and Setting Registry Security Descriptors

348

Working with Registry Access Rules

350

Configuring Registry Permissions

351

Taking Ownership of Registry Keys

356

Auditing the Registry . 357

x

Contents

Chapter 13 Monitoring and Optimizing Windows Systems

361

Managing Windows Events and Logs . 361

Working with Event Logs

362

Viewing and Filtering Event Logs

366

Setting Log Options

369

Archiving and Clearing Event Logs

370

Writing Custom Events to the Event Logs

371

Creating and Using Saved Queries

374

Managing System Services . 375

Viewing Configured Services

378

Starting, Stopping, and Pausing Services

380

Configuring Service Startup

382

Managing Service Logon and Recovery Modes

383

Digging Deeper into Service Management

388

Managing Computers . 395

Commands for Managing Computers

395

Renaming Computer Accounts

398

Joining Computers to a Domain

398

Adding Computers to a Workgroup

400

Removing Computers from Domains

and Workgroups

401

Managing the Restart and Shutdown

of Computers

402

Creating and Using System Restore Checkpoints 403

Commands for Configuring System Restore

404

Enabling and Disabling System Restore

406

Creating and Using Checkpoints

406

Recovering from Restore Points

408

Chapter 14 Fine-Tuning System Performance 409

Managing Applications, Processes, and Performance 409

Understanding System and User Processes

411

Examining Running Processes

412

Filtering Process Output

418

Viewing the Relationship Between Running

Processes and Services

420

Contents

xi

Viewing Lists of DLLs Being Used by Processes

421

Stopping Processes

424

Digging Deeper into Processes

425

Performance Monitoring . 430

Understanding Performance Monitoring Commands

430

Tracking Performance Data

431

Detecting and Resolving Performance Issues Through

Monitoring . 436

Monitoring System Resource Usage and Processes

436

Monitoring Memory Paging and Paging to Disk

438

Monitoring Memory Usage and the Working

Memory Set for Individual Processe

440

 Index 445

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our

books and learning resources for you. To participate in a brief online survey, please visit: microsoft.com/learning/booksurvey

xii

Contents

Introduction

 Windows PowerShell 2.0 Administrator’s Pocket Consultant is designed to be

a concise and compulsively usable resource for Windows administrators,

developers, and programmers, and for anyone else who wants to use Windows

PowerShell Version 2.0 to control and configure computers. This is the readable

resource guide that you’ll want on your desk or in your pocket at all times. The

book discusses everything you need to perform the core administrative tasks

using Windows PowerShell. Because the focus is directed to providing you with the

maximum value in a pocket-sized guide, you don’t have to wade through hundreds

of pages of extraneous information to find what you’re looking for. Instead, you’ll

find exactly what you need to get the job done.

In short, the book is designed to be the one resource you consult whenever you

have questions regarding administration of computers using Windows PowerShell.

To this end, the book concentrates on daily administration procedures, frequently

used tasks, documented examples, and options that are representative but not

necessarily inclusive. One of the goals is to keep the content so concise that the

book remains compact and easy to navigate while ensuring that the book is packed

with as much information as possible—making it a valuable resource. Thus, instead

of a hefty 1,000-page tome or a lightweight 100-page quick reference, you get a

valuable resource guide that can help you quickly and easily perform common tasks,

solve problems, and implement such advanced administration areas as automated

monitoring, performance tracking, network troubleshooting, security management,

and remote configuration.

Who Is This Book For?

 Windows PowerShell 2.0 Administrator’s Pocket Consultant covers Windows

PowerShell Version 2.0. The book is designed for:

N Current Windows administrators

N Support staff who maintain Windows systems

N Accomplished users who have some administrator responsibilities

N Administrators upgrading to Windows PowerShell 2.0 from previous versions

To pack in as much information as possible, I had to assume that you have

basic networking skills and a basic understanding of Windows, and that Windows

PowerShell is already installed on your systems. With this in mind, I don’t devote

entire chapters to understanding Windows architecture or installing Windows

PowerShell. I do, however, cover using PowerShell to modify security descriptors,

xiii

manage domain membership, create restore checkpoints, configure event logging,

and much more.

I also assume that you are fairly familiar with Windows commands and

procedures as well as the Windows command line. If you need help learning the

Windows basics, you should read the Windows documentation.

How Is This Book Organized?

 Windows PowerShell 2.0 Administrator’s Pocket Consultant is designed to be used in

the daily administration of Windows computers, and as such, the book is organized

by job-related tasks rather than by Windows features. Speed and ease of reference is

an essential part of this hands-on guide. The book has an expanded table of contents

and an extensive index for finding answers to problems quickly. Many other quick-

reference features have been added as well. These features include quick step-by-step

instructions, lists, tables with fast facts, and extensive cross-references.

Chapter 1 provides an overview of PowerShell administration tools, techniques,

and concepts. You’ll learn about the graphical interface for PowerShell as well as

the command-line interface. Chapter 2 is designed to help you get the most out

of PowerShell. It details techniques for starting up the PowerShell console using

parameters, how to run scripts, what formatting options are available, and how to

use multiple commands in sequences.

Windows provides many PowerShell commands to help in the management of

daily operations. Chapter 3 explores profiles and how the working environment

is loaded. You’ll also learn about techniques for extending PowerShell, including

snap-ins that add providers to the working environment and module extensions that

must be imported prior to use. Chapter 4 discusses remote execution of commands,

remote sessions, and remote background jobs. When you work remotely, you type

commands in Windows PowerShell on your computer but execute the commands on

one or more remote computers. Chapter 5 examines the core structures you’ll use

to put PowerShell to work. You’ll learn how to set variables, work with expressions,

and manage strings, arrays, and collections. Chapter 6, focuses on aliases, functions,

and objects. Whenever you work with PowerShell, you’ll use aliases, functions, and

objects to help you do more with less and to help you use PowerShell to perform any

conceivable administrative task.

Chapter 7 tells you how to get more from your scripts, profiles, and commands.

You’ll learn how to create transcripts and transactions. You’ll also learn about con-

trol loops and conditional statements. Chapter 8 discusses how to manage server

roles, role services, and features of Windows using PowerShell. Chapter 9 examines

techniques you can use to inventory your computers and evaluate hardware configu-

rations. You’ll also learn how to determine whether there are issues that need your

attention. In Chapter 10, you learn techniques for managing file systems, security,

and auditing. Because you are working with PowerShell, it’s just as easy to manipulate

multiple directories and files as it is to work with individual directories and files.

xiv

Introduction

Chapter 11 explores how you can control and configure network shares, printers, and TCP/IP networking. Chapter 12 discusses managing and securing the registry.

You’ll learn how to read and write registry values, how to view and set the access

control lists, and how to configure registry auditing. In Chapter 13, you’ll learn

about tools and techniques for monitoring computers and optimizing performance.

Finally, Chapter 14 details how to fine-tune system performance. You’ll also learn

techniques that can help you identify and correct system problems.

Conventions Used in This Book

I’ve used a variety of elements to help keep the text clear and easy to follow. You’ll

find code terms and listings in monospace type, except when I tell you to actually

type a command. In that case, the command appears in bold type. When I introduce

and define a new term, I put it in italics.

Other conventions include:

N Best

Practices To examine the best technique to use when working with

advanced configuration and administration concepts

N Cautions To warn you when there are potential problems you should look

out for

N Notes To provide details on a point that needs emphasis

N More

Info To provide more information on the subject

N Real

World To provide real-world advice when discussing advanced topics

N Security

Alerts To point out important security issues

N Tips To offer helpful hints or additional information

I truly hope you find that Windows PowerShell2.0 Administrator’s Pocket

 Consultant provides everything that you need to perform essential administrative

tasks as quickly and efficiently as possible. You’re welcome to send your thoughts to

me at williamstanek@aol.com. Thank you.

Find Additional Content Online

As new or updated material becomes available that complements this book, it

will be posted online on the Microsoft Press Online Windows Server and Client

Web site. The type of material you might find includes updates to book content,

articles, links to companion content, errata, sample chapters, and more. This Web

site is available at http://microsoftpresssrv.libredigital.com/serverclient/ and is

updated periodically. You’ll also find discussion about the book on my Web site,

 www.williamstanek.com, and you can follow me on Twitter at WilliamStanek.

Introduction

xv

Support

Every effort has been made to ensure the accuracy of this book. Microsoft Press

provides corrections for books through the World Wide Web at the following

address:

 http://www.microsoft.com/mspress/support

If you have comments, questions, or ideas about this book, please send them to

Microsoft Press using either of the following methods:

Postal Mail:

Microsoft Press

Attn: Editor, Windows PowerShell 2.0 Administrator’s Pocket Consultant

One Microsoft Way

Redmond, WA 98052-6399

E-mail:

mspinput@microsoft.com

Please note that product support isn’t offered through these mail addresses. For

support information, visit Microsoft’s Web site at http://support.microsoft.com/.

xvi

Introduction

C H A P T E R 1

Introducing Windows

PowerShell

N

Getting Started with Windows PowerShell 2

N

Running Windows PowerShell 3

N

Working with Cmdlets and Scripts 9

Chances are that if you’re an IT professional you’ve heard of Windows

Power Shell. You may even have read other books about PowerShell and

put Power Shell to work. However, you probably still have many questions about

PowerShell, or you may simply be curious about what Windows PowerShell

version 2.0 (PowerShell V2) has to offer that its predecessor, Windows PowerShell

Version 1.0 (PowerShell V1), didn’t. After all, the title of this book is Windows

 PowerShell 2.0 Administrator’s Pocket Consultant.

Every version of Windows has had a built-in command line that is used to run

built-in commands, utilities, and scripts. Windows PowerShell extends the command

line in new and exciting ways, opening the operating system in ways that were

previously possible only with extensive programming. Whether you are an admin-

istrator, developer, programmer, or other IT professional, you can use PowerShell

to control and configure computers running Windows-based operating systems,

and that’s what I’ll teach you in this book.

This chapter focuses on Windows PowerShell essentials. You’ll learn how to use

PowerShell, how to run commands, and how to work with related features. For

proficient Windows administrators, skilled support staff, and committed power

users, Windows PowerShell will become increasingly indispensible. Knowing how

to use PowerShell properly can save you time and effort and can mean the dif-

ference between smooth-running operations and frequent problems. Moreover,

if you’re responsible for multiple computers, learning the timesaving strategies

1

that PowerShell offers is not just important, it’s essential for sustaining day-to-day operations.

 REAL WORLD In general, you can use techniques that you learn in this book on all

versions of Windows on which you can install Windows PowerShell V2. However, some

features, like remoting and background jobs, don’t work on all platforms. For this reason,

when you are working across operating systems, you should always test commands,

options, and scripts in a development or test environment, where the computers with

which you are working are isolated from the rest of the network, before using them in

live production environments.

Getting Started with Windows PowerShell

Anyone with a background in UNIX is probably familiar with the concept of a

command shell. Most UNIX -based operating systems have several full-featured

command shells available, including Korn Shell (KSH), C Shell (CSH), and Bourne

Shell (SH). Although Windows operating systems have always had a command-line

environment, they’ve lacked a full-featured command shell, and this is where

Windows PowerShell comes into the picture.

Not unlike the less sophisticated Windows command prompt, the UNIX com-

mand shells operate by executing built-in commands, external commands, and

command-line utilities and then returning the results in an output stream as text.

The output stream can be manipulated in various ways, including redirecting it so

that it can be used as input for another command. The process of redirecting one

command’s output to another command’s input is called piping, and it is a widely

used shell-scripting technique.

The C Shell is one of the more sophisticated UNIX shells. In many respects, C Shell

is a marriage of some of the best features of the C programming language and a

full-featured UNIX shell environment. Windows PowerShell takes the idea of a full-

featured command shell built on a programming language a step further. It does

this by implementing a scripting language based on C# and an object model based

on the Microsoft .NET Framework.

Basing the scripting language for Windows PowerShell on C# ensures that the

scripting language can be easily understood by current C# developers and also

allows new developers to advance to C#. Using an object model based on the

.NET Framework allows Windows PowerShell to pass complete objects and all their

properties as output from one command to another. The ability to redirect objects

is extremely powerful and allows for a much more dynamic manipulation of result

sets. For example, you can get not only the name of a particular user but also the

entire related user object. You can then manipulate the properties of this user object

by referring to the properties you want to work with by name.

2

 CHAPTER 1 Introducing Windows PowerShell

Running Windows PowerShell

Windows PowerShell V2 is an enhanced and extended edition of the original

implementation of PowerShell. The changes are dramatic, and they improve both

the performance capabilities of PowerShell and its versatility. You can do things

with PowerShell V2 that you simply could not do with PowerShell V1, and you can

perform standard tasks in much more efficient ways than before. The discussion

that follows explores PowerShell options and configurations and also provides tips

for using the command history.

Using the Windows PowerShell Console

Windows PowerShell Version 2.0 (PowerShell V2) is built into Windows 7, Windows

Server 2008 Release 2, and later releases of the Windows operating system. Also,

you can install PowerShell V2 on computers running Windows XP, Windows Server

2003, Windows Vista, and Windows Server 2008. Different builds are available for

each version of Windows, in 32-bit and 64-bit editions, at the Microsoft Download

Center (http://download.microsoft.com).

Windows PowerShell V2 has both a command-line environment and a

graphical environment for running commands and scripts. The PowerShell

console (powershell.exe) is a 32-bit or 64-bit environment for working with

PowerShell at the command line. On 32-bit versions of Windows, you’ll find the

32-bit executable in the %SystemRoot%\System32\WindowsPowerShell\v1.0

directory. On 64-bit versions of Windows, you’ll find the 32-bit executable in the

%SystemRoot%\SysWow64\WindowsPowerShell\v1.0 directory and the 64-bit

executable in the %SystemRoot%\System32\WindowsPowerShell\v1.0 directory.

 NOTE %SystemRoot% refers to the SystemRoot environment variable. The Windows

operating system has many environment variables, which are used to refer to user-

specific and system-specific values. I’ll often refer to environment variables using the

standard Windows syntax %VariableName%.

 REAL WORLD Windows PowerShell V2 depends on the .NET Framework. Your

computers need to run at least .NET Framework 2.0 to use core PowerShell features.

Only computers running Windows Vista and later support the advanced features in

PowerShell V2, and they need to be running .NET Framework 3.5.1 or later to do so.

You can start the PowerShell console by using the Search box on the Start menu.

Click Start, type powershell in the Search box, and then press Enter. Or, you can

click Start, point to All Programs, point to Accessories, Windows PowerShell, and

then choose Windows PowerShell V2. On 64-bit systems, the 64-bit version of

Power Shell is started by default. If you want to use the 32-bit PowerShell console on

a 64-bit system, you must select the Windows PowerShell V2 (x86) option.

Introducing Windows PowerShell CHAPTER 1

3

You can start Windows PowerShell from a Windows command shell (cmd.exe) by

entering the following:

powershell

powershell

Figure 1-1 shows a PowerShell window. By default, the window is 120 characters

wide and displays 50 lines of text. When additional text is to be displayed in the

window or you enter commands and the PowerShell console’s window is full, the

current text is displayed in the window, and prior text is scrolled up. If you want

to pause the display temporarily when a command is writing output, press Ctrl+S.

Afterward, press Ctrl+S to resume or Ctrl+C to terminate execution.

FIGURE 1-1 When you work with PowerShell, you’ll frequently use the command-line environment.

In this fi gure from Windows 7, the display text is:

Windows PowerShell V2

Windows PowerShell V2

Copyright (c) 2008 Microsoft Corporation. All rights reserved.

Copyright (c) 2008 Microsoft Corporation. All rights reserved.

PS C:\Users\wrstanek>

PS C:\Users\wrstanek>

Here, the command prompt for the PowerShell shows the current working direc-

tory preceded by PS, which by default is %UserProfi le%, meaning the user profi le

directory for the current user. A blinking cursor following the command prompt

indicates that PowerShell is in interactive processing mode. In interactive mode, you

can type commands directly after the prompt and press Enter to execute them. For

example, type get-childitem and then press Enter to get a listing of the current

directory.

Windows PowerShell also has a noninteractive processing mode, which is used

when executing a series of commands. In noninteractive processing mode, Power-

Shell reads and executes commands one by one but doesn’t present a prompt to the

user. Typically, commands are read from a script fi le, but you can start the Power-

Shell console in noninteractive processing mode.

To exit PowerShell, type exit. If you started PowerShell from a command prompt,

typing exit will return you to the command prompt. If you want to run a separate

instance of PowerShell from within PowerShell, you also can type powershell at the

4

CHAPTER 1 Introducing Windows PowerShell

PowerShell prompt. Invoking PowerShell in this way allows you to use a separate session and initialize PowerShell with specifi c parameters.

Using the Windows PowerShell ISE

The offi cial name of the graphical environment for Windows PowerShell is the

Windows PowerShell Integrated Scripting Environment (ISE). Using the PowerShell

application (powershell_ise.exe), you can run commands and write, run, and debug

scripts in a single integrated interface. There are 32-bit and 64-bit graphical envi-

ronments for working with PowerShell, and you’ll fi nd the related executables in the

same location as the PowerShell console.

You can start the PowerShell application by using the Search box on the Start

menu. Click Start, type powershell in the Search box, and then click the version

of the PowerShell application you want to run. Or, you can click Start, point to All

Programs, point to Accessories, Windows PowerShell, and then choose Windows

PowerShell V2 ISE. On 64-bit systems, the 64-bit version of the PowerShell ISE is

started by default. If you want to use the 32-bit application on a 64-bit system, you

must select the Windows PowerShell V2 ISE (x86) option.

You can start the PowerShell application from a command prompt (cmd.exe) by

entering:

powershell_ise

powershell_ise

Figure 1-2 shows the main window for the PowerShell application. By default, the

main window displays the Script pane, the Command pane, and the Output pane. In

the Script pane, you can type the commands and text for PowerShell scripts. In the

Command pane, you can enter commands at a prompt as you would using the Power-

Shell console. The Output pane shows you the results of running scripts or commands.

As you enter text into the Script or Command panes, the text is color coded

depending on whether it is a cmdlet, function, variable, or other type of text. Options

on the View menu allow you to control the view panes. Select Show Script Pane to

display the Script pane if it is hidden. Select the option again to hide the Script pane

if it is displayed. When the Script pane is displayed, you can select Script Pane Right

to display the Script pane on the right rather than at the top of the main window.

Select the option again to restore the original position. If you prefer that the

Command pane be displayed above the Output pane, select Command Pane Up.

The organization I prefer is with the Command pane up and the Script pane on the

right (see Figure 1-3). This arrangement helps me keep the purpose of the windows

clear as I work. You can resize the panes by clicking and dragging as well.

The PowerShell application supports multiple execution environments called

sessions, where each session has its own working environment. By default, the

Power Shell application starts with a single session, but you can add up to seven

other sessions for a total of eight. You add a session by pressing Ctrl+T or by selecting

New PowerShell Tab from the File menu.

Introducing Windows PowerShell CHAPTER 1

5

FIGURE 1-2 When you work with PowerShell ISE, you’ll frequently use the command-line

environment.

FIGURE 1-3 Use the tabs provided to toggle between sessions.

6

 CHAPTER 1 Introducing Windows PowerShell

The default text size is fairly small. You can change the text size by using the Zoom slider in the lower-right corner of the main window. Alternatively, press

Ctrl and+ to increase the text size, or press Ctrl and – to decrease the text size.

To close a session, press Ctrl+W or select the related Close option on the File

menu. To exit the PowerShell application, press Alt+F4 or select the Exit option on

the File menu. You can also exit by typing exit at the PowerShell prompt in the

Command pane.

Configuring Windows PowerShell Console Properties

If you use the Windows PowerShell console frequently, you’ll definitely want to

customize its properties. For example, you can add buffers so that text scrolled out

of the viewing area is accessible. You can resize the console, change its fonts, and

more.

To get started, click the PowerShell prompt icon at the top of the console window

or right-click the console’s title bar and then select Properties. As Figure 1-4 shows,

the Properties dialog box has four tabs:

N Options Allows you to configure cursor size, display options, edit options,

and command history. Select QuickEdit Mode if you want to use a single

mouse click to paste copied text into the PowerShell window. Clear QuickEdit

Mode if you want to right-click and then select Paste to insert copied text.

Clear Insert Mode to overwrite text as the default editing mode. Use the

command history to configure how previously used commands are buffered

in memory. (You’ll find more information about the command history in the

next section of this chapter, “Working with the Command History.”)

N Font Allows you to set the font size and face used by the PowerShell

prompt. Raster font sizes are set according to their pixel width and height.

For example, the size 8 r 12 is 8 screen pixels wide and 12 screen pixels high.

Other fonts are set by point size, such as 10-point Lucida Console. Interest-

ingly, when you select a point size of n, the font will be n pixels high; there-

fore, a 10-point font is 10 screen pixels high. These fonts can be designated

as a bold font type as well, which increases their screen pixel width.

N Layout Allows you to set the screen buffer size, window size, and window

position. Size the buffer height so that you can easily scroll back through

previous listings and script output. A good setting is in the range of 2,000 to

3,000. Size the window height so that you can view more of the PowerShell

window at one time. A good setting is 60 lines on screens set to 1280 r 1024

resolution with a 12-point font. If you want the PowerShell window to be in

a specific screen position, clear Let System Position Window and then specify

a position, in pixels, for the upper-left corner of the PowerShell window by

using Left and Top.

N Colors Allows you to set the text and background colors used by the

PowerShell console. Screen Text and Screen Background control the respec-

tive color settings for the window. The Popup Text and Popup Background

Introducing Windows PowerShell CHAPTER 1

7

options control the respective color settings for any pop-up dialog boxes

generated when running commands at the PowerShell prompt.

FIGURE 1-4 Configure PowerShell console properties for your environment.

When you are finished updating the window properties, click OK to save your

settings to your user profile. Your settings modify only the shortcut that started

the current window. Any time you start PowerShell using the applicable shortcut,

PowerShell will use these settings. If, however, you start PowerShell using a different

shortcut, you’ll have the settings associated with that shortcut.

Working with the Command History

The command history buffer is a feature of Windows PowerShell that stores

commands you’ve used in the current session and allows you to access them

without having to retype the command text. The maximum number of commands

to buffer is set through the PowerShell Properties dialog box discussed in the

previous section. By default, up to 50 commands are stored.

You can change the history size by completing these steps:

1. Right-click the PowerShell console’s title bar, select Properties, and then click

the Options tab.

2. Use the Buffer Size field to set the maximum number of commands to store

in the history, and then click OK to save your settings to your user profile.

Your settings modify only the shortcut that started the current window. Any time

you start a PowerShell using the applicable shortcut, it will use these settings. If,

8

 CHAPTER 1 Introducing Windows PowerShell

however, you start a PowerShell using a different shortcut, you’ll have the settings associated with that shortcut.

You can access commands stored in the history in the following ways:

N Browsing with the arrow keys Use the up arrow and down arrow keys to

move up and down through the list of buffered commands. When you find

the command you want to use, press Enter to execute it as entered previ-

ously, or you can modify the command text displayed by adding or changing

parameters and then pressing Enter.

N Browsing the command history pop-up window Press F7 to display a

pop-up window that contains a listing of buffered commands. Next, select

a command using the arrow keys. (Alternatively, press F9, press the corre-

sponding number on the keyboard, and then press Enter.) Execute the se-

lected command by pressing Enter, or press Esc to close the pop-up window

without executing a command.

N Searching the command history Enter the first few letters of the command

you want to execute, and then press F8. PowerShell searches through the

history for the first command that begins with the characters you entered.

Press Enter to execute it, or press F8 again to search the history buffer for the

next match in the command history.

As you work with the command history, keep in mind that each instance of

Windows PowerShell has its own set of command buffers. Thus, buffers are valid

only in the related PowerShell context.

Working with Cmdlets and Scripts

Windows PowerShell introduces the concept of a cmdlet (pronounced commandlet).

A cmdlet is the smallest unit of functionality in Windows PowerShell. You can think

of a cmdlet as a built-in command. Rather than being highly complex, most cmdlets

are quite simple and have a small set of associated properties.

Using Cmdlets

You use cmdlets the same way you use any other commands and utilities. Cmdlet

names are not case sensitive. This means you can use a combination of both

uppercase and lowercase characters. After starting Windows PowerShell, you can

enter the name of the cmdlet at the prompt, and it will run in much the same way

as a command-line command.

For ease of reference, cmdlets are named using verb-noun pairs. As Table 1-1

shows, the verb tells you what the cmdlet does in general. The noun tells you

what specifically the cmdlet works with. Verbs and nouns are always separated

by a hyphen with no spaces. For example, the Get-Variable cmdlet gets a named

Windows PowerShell variable and returns its value. If you don’t specify which variable

Introducing Windows PowerShell CHAPTER 1

9

to get as a parameter, Get-Variable returns a list of all PowerShell variables and their values.

TABLE 1-1 Common Verbs Used with Cmdlets

CMDLET VERB

USAGE

Add

Adds an instance of an item, such as a history entry or

snap-in.

Clear

Removes the contents of an item, such as an event log or

variable value.

ConvertFrom

Converts an item from one format to another, such as

converting from a list of comma-separated values to

object properties.

ConvertTo

Converts an item to a particular format, such as converting

object properties to a list of comma-separated values.

Disable

Disables an enabled setting, such as disabling remote

connections.

Enable

Enables a disabled setting, such as enabling remote

connections.

Export

Exports an item’s properties in a particular format, such as

exporting console properties in XML format.

Get

Queries a specific object or a subset of a type of object,

such as getting a list of running processes.

Import

Imports an item’s properties from a particular format, such

as importing console properties from serialized XML.

Invoke

Executes an instance of an item, such as an expression.

New

Creates a new instance of an item, such as a new variable

or event.

Remove

Removes an instance of an item, such as a variable or

event.

Set

Modifies specific settings of an object.

Start

Starts an instance of an item, such as a service or process.

Stop

Stops an instance of an item, such as a service or process.

Test

Tests an instance of an item for a specific state or value,

such as testing a connection to see if it is valid

Write

Performs a write operation on an instance of an item, such

as writing an event to the system event log.

10

 CHAPTER 1 Introducing Windows PowerShell

Table 1-2 provides a list of cmdlets you’ll commonly use for administration.

Although many other cmdlets are available, these are the ones you’re likely to use

the most.

TABLE 1-2 Cmdlets Commonly Used for Administration

CMDLET NAME

DESCRIPTION

Add-Computer, Remove-Computer

Adds or removes a computer’s member-

ship in a domain or workgroup.

Checkpoint-Computer,

Creates a system restore checkpoint for a

Restore-Computer

computer or restores a computer from a

checkpoint.

Compare-Object, Group-Object,

Cmdlets for comparing, grouping, sorting,

Sort-Object, Select-Object,

selecting, and creating objects.

New-Object

ConvertFrom-SecureString,

Cmdlets for creating or exporting secure

ConvertTo-SecureString

strings.

Debug-Process

Debugs a process running on a computer.

Get-Alias, New-Alias, Set-Alias,

Cmdlets for getting, creating, setting,

Export-Alias, Import-Alias

exporting, and importing aliases.

Get-AuthenticodeSignature,

Cmdlets for getting or setting the

Set-AuthenticodeSignature

signature object associated with a file.

Get-Command, Invoke-Command,

Cmdlets for getting information about

Measure-Command, Trace-Command cmdlets, invoking commands, measuring

the run time of commands, and tracing

commands.

Get-Counter

Gets performance counter data.

Get-Credential

Gets a credential object based on a

password.

Get-Date, Set-Date

Gets or sets the current date and time.

Get-EventLog, Write-EventLog,

Gets events, writes events, or clears events

Clear-EventLog

in an event log.

Get-ExecutionPolicy,

Gets or sets the effective execution policy

Set-ExecutionPolicy

for the current shell.

Get-Host

Gets information about the PowerShell

host application.

Get-HotFix

Gets the hotfixes and other updates that

have been applied to a computer.

Introducing Windows PowerShell CHAPTER 1

11

TABLE 1-2 Cmdlets Commonly Used for Administration

CMDLET NAME

DESCRIPTION

Get-Location, Set-Location

Displays or sets the current working

location.

Get-Process, Start-Process, Stop-

Gets, starts, or stops processes on a

Process

computer.

Get-PSDrive, New-PSDrive, Remove-

Gets, creates, or removes a specified

PSDrive

PowerShell drive.

Get-Service, New-Service, Set-Service

Gets, creates, or sets system services.

Get-Variable, New-Variable, Set-Vari-

Cmdlets for getting, creating, setting, and

able, Remove-Variable, Clear-Variable removing variables as well as for clearing

variable values.

Import-Counter, Export-Counter

Imports or exports performance counter

log files.

Limit-EventLog

Sets the size and age limits for an event

log.

New-EventLog, Remove-EventLog

Creates or removes a custom event log

and event source

Ping-Computer

Sends Internet Control Message Protocol

(ICMP) request packets to designated

computers.

Pop-Location

Obtains a pushed location from the stack.

Push-Location

Pushes a location to the stack

Read-Host, Write-Host, Clear-Host

Reads input from, writes output to, or

clears the host window.

Rename-Computer, Stop-Computer,

Renames, stops, or restarts a computer.

Restart-Computer

Reset-ComputerMachinePassword

Changes and resets the machine account

password that the computer uses to

authenticate in a domain.

Show-EventLog

Displays a computer’s event logs in Event

Viewer.

Show-Service

Displays a computer’s services in the

Services utility.

Start-Sleep

Suspends shell or script activity for the

specified period.

12

 CHAPTER 1 Introducing Windows PowerShell

 TABLE 1-2 Cmdlets Commonly Used for Administration

 CMDLET NAME

DESCRIPTION

Stop-Service, Start-Service, Suspend-

Cmdlets for stopping, starting, suspending,

Service, Resume-Service, Restart-

resuming, and restarting system services.

Service

Wait-Process

Waits for a process to be stopped before

accepting input.

Write-Output

Writes an object to the pipeline.

Write-Warning

Displays a warning message.

You can work with cmdlets by executing them directly at the PowerShell prompt

or by running commands from within scripts. At the Windows PowerShell prompt,

you can get a complete list of cmdlets available by typing get-command. However,

the output lists both cmdlets and functions by name and defi nition. With cmdlets,

the defi nition provided is the syntax, but the full syntax rarely fi ts on the line. More

often, you simply want to know if a cmdlet exists. You can display a formatted list of

cmdlets by entering the following command:

get-command | format-wide –column 3

get-command | format-wide –column 3

This command shows many of the features of PowerShell that you’ll use regu-

larly at the command line. The | symbol is called a pipe. Here, you pipe the output

of Get-Command to Format-Wide. Format-Wide takes the output and formats it

in multiple columns. The default number of columns is two, but here we used the

–Column parameter to specify that we wanted to format the output into three

columns, as shown in this example:

A: Add-Computer Add-Content

A: Add-Computer Add-Content

Add-History Add-Member Add-PSSnapin

Add-History Add-Member Add-PSSnapin

Add-Type B: C:

Add-Type B: C:

cd.. cd\ Checkpoint-Computer

cd.. cd\ Checkpoint-Computer

Clear-Content Clear-EventLog Clear-History

Clear-Content Clear-EventLog Clear-History

Clear-Host Clear-Item Clear-ItemProperty

Clear-Host Clear-Item Clear-ItemProperty

Clear-Variable Compare-Object Complete-Transaction

Clear-Variable Compare-Object Complete-Transaction

Connect-WSMan ConvertFrom-Csv ConvertFrom-SecureString

Connect-WSMan ConvertFrom-Csv ConvertFrom-SecureString

A better way to get information about cmdlets is to use Get-Help. If you enter

get-help *-*, you get a list of all cmdlets, which includes a synopsis that summarizes

the purpose of the cmdlet—much more useful than a list of commands.

Rather than list all commands, you can list specifi c commands by name or by

using wildcards. For example, if you know the command you are looking for begins

with Get, enter get-help get* to view all commands that start with Get. If you know

the command includes the word computer, you could enter get-help *computer*

Introducing Windows PowerShell CHAPTER 1

13

to view all commands that included this keyword. Finally, if you are looking for related commands on a specifi c subject, such as aliases, enter get-help * and then the keyword, such as get-command *alias.

When you work with cmdlets, you’ll encounter two standard types of errors:

N Terminating

errors Errors that halt execution

N Nonterminating errors Errors that cause error output to be returned but

do not halt execution

With both types of errors, you’ll typically see error text that can help you resolve

the problem that caused it. For example, an expected fi le might be missing or you

may not have suffi cient permissions to perform a specifi ed task.

To help you examine cmdlet syntax and usage, Windows PowerShell provides

three levels of Help documentation: standard, detailed, and full. To view the

standard Help documentation for a specifi c cmdlet, type get-help followed by the

cmdlet name, such as:

get-help new-variable

The standard Help documentation provides the complete syntax for using a

cmdlet, which includes details on any parameters the cmdlet supports and examples.

You can get detailed information about a cmdlet by adding the –Detailed parameter.

Or you can get full technical information about a cmdlet by adding the –Full

parameter. The detailed and the full documentation are both useful when you

want to dig deeper, and usually either one will give you the information you are

looking for.

Using Cmdlet Parameters

All cmdlet parameters are designated with an initial dash (–), as with –Detailed

and –Full in the previous section. To reduce the amount of typing required, some

parameters are position sensitive, so that you can sometimes pass parameters in a

specifi c order without having to specify the parameter name. For example, in the

syntax for the Get-Service cmdlet, you know the –Name parameter can be omitted

because it is enclosed in brackets as shown here:

Get-Service [-ComputerName <string[]>] [-DependentServices]

Get-Service [-ComputerName <string[]>] [-DependentServices]

[-Exclude <string[]>] [-Include <string[]>] [-ServicesDependedOn]

[-Exclude <string[]>] [-Include <string[]>] [-ServicesDependedOn]

[[-Name] <string[]>] [<CommonParameters>]

[[-Name] <string[]>] [<CommonParameters>]

Therefore, with Get-Service, you don’t have to specify the –Name parameter; you

can simply type the following:

get-service

get-servi

 ServiceName

ce ServiceName

14

CHAPTER 1 Introducing Windows PowerShell

 where ServiceName is the name of the service you want to examine, such as: get-service winrm

get-service winrm

This command line returns the status of the Windows Remote Management ser-

vice. Because you can use wildcards, such as *, with name values, you can also type

get-service win* to return the status of all services whose names begin with win.

Typically, these will include the Windows Defender, Windows Management Instru-

mentation, and Windows Remote Management services, as shown in this example:

Status Name DisplayName

Status Name DisplayName

------ ---- -----------

------ ---- -----------

Running WinDefend Windows Defender

Running WinDefend Windows Defender

Stopped WinHttpAutoProx... WinHTTP Web Proxy Auto-Discovery

Stopped WinHttpAutoProx... WinHTTP Web Proxy Auto-Discovery

Running Winmgmt Windows Management Instrumentation

Running Winmgmt Windows Management Instrumentation

Stopped WinRM Windows Remote Management

Stopped WinRM Windows Remote Management

All cmdlets support a common set of parameters. Most cmdlets that make

changes support the risk mitigation parameters: –Confi rm and –WhatIf. Table 1-3 lists

the common and risk mitigation parameters. Although you can use the common

parameters with any cmdlet, they don’t necessarily have an effect with all cmdlets.

For example, if a cmdlet doesn’t generate verbose output, using the –Verbose

parameter has no effect.

 TABLE 1-3 Common and Risk Mitigation Parameters

 PARAMETER NAME

DESCRIPTION

–Confi rm

Pauses execution and requires the user to acknowledge

the action before continuing.

–Debug

Provides programming-level debugging information

about the operation.

–ErrorAction

Controls the command behavior when an error occurs.

Valid values are SilentlyContinue (suppress the error

and continue), Continue (display the error and continue),

Inquire (display the error and prompt to confi rm

before continuing), and Stop (display the error and

halt execution). The default value is Continue.

–ErrorVariable

Sets the name of the variable (in addition to the stan-

dard error) in which to store errors that have occurred.

–OutBuffer

Sets the output buffer for the cmdlet.

–OutVariable

Sets the name of the variable in which to place output

objects.

–Verbose

Provides detailed information about the operation.

Introducing Windows PowerShell CHAPTER 1

15

 TABLE 1-3 Common and Risk Mitigation Parameters

PARAMETER NAME

DESCRIPTION

–WarningAction

Determines how a cmdlet responds to a warning mes-

sage. Valid values are SilentlyContinue (suppress the

warning and continue), Continue (display the warning

and continue), Inquire (display the warning and prompt

to confi rm before continuing), and Stop (display the

warning and halt execution). The default value is

Continue.

–WarningVariable

Sets the name of the variable (in addition to the

standard error) in which to store warnings that have

occurred.

–WhatIf

Allows the user to view what would happen if a cmdlet

were run with a specifi c set of parameters.

Using External Commands

Because Windows PowerShell runs within the context of the Windows command

prompt, you can run all Windows command-line commands, utilities, and graphi-

cal applications from within the Windows PowerShell, either at the PowerShell

prompt or in your scripts. However, it is important to remember that the Windows

PowerShell interpreter parses all commands before passing off the command to

the command-prompt environment. If the Windows PowerShell has a like-named

command, keyword, alias, or function for a command, this command, and not the

expected Windows command, is executed. (See the “Initializing the Environment”

and “Understanding Command Input, Parsing, and Output” sections in Chapter 2,

“Getting the Most from Windows PowerShell” for more information on aliases and

functions.)

Non–Windows PowerShell commands and programs must reside in a directory

that is part of the PATH environment variable. If the item is found in the path, it is

run. The PATH variable also controls where the Windows PowerShell looks for

applications, utilities, and scripts. In Windows PowerShell, you can work with Windows

environment variables by using $env. If you want to view the current settings for the

PATH environment variable, you type $env:path. If you want to add a directory to

this variable, you can use the following syntax:

$env:path += ";DirectoryPathToAdd"

$env:path += ";DirectoryPathToAdd"

Here, DirectoryPathToAdd is the directory path you want to add to the path, such

as:

$env:path += ";C:\Scripts"

$env:path += ";C:\Scripts"

16

CHAPTER 1 Introducing Windows PowerShell

 To have this directory added to the path every time you start Windows Power-

Shell, you can add the command line as an entry in a PowerShell profi le. A profi le

is a type of script used to set the working environment for PowerShell. Keep in

mind that cmdlets are like built-in commands rather than stand-alone executables.

Because of this, they are not affected by the PATH environment variable.

 REAL WORLD Computers running Windows Vista and later versions of Windows

have the SETX utility. With the SETX utility, you can write environment variable

changes directly to the Windows registry, which makes the changes permanent rather

than temporary, as the $env:path command does. You can also use SETX to obtain

current registry key values and write them to a text fi le.

Using Scripts

Windows PowerShell scripts are text fi les with the .ps1 extension. You can enter

any command or cmdlet that you can run at the PowerShell prompt into a script by

copying the related command text to a fi le and saving the fi le with the .ps1 exten-

sion. You can then run the script in the same way you would any other command or

cmdlet. However, when you are working with PowerShell scripts, the current direc-

tory might not be part of the environment path. For this reason, you might need

to use “./” when you run a script in the current directory. For example, if you create

a PowerShell script called run_all.ps1, and the script is in the current directory, you

could run the script by entering the following command:

./run_all

./run_all

 NOTE PowerShell is designed to accommodate users with backgrounds in UNIX

or Windows operating systems. You can use a forward slash or backward slash as a

 directory separator. Following this, you can enter ./run_all or .\run_all to reference

a script in the current working directory.

Whenever you work with scripts, you need to keep in mind the current execution

policy and whether signed scripts are required.

Understanding Execution Policy

The current execution policy for Windows PowerShell controls whether and how

you can run confi guration fi les and scripts. Execution policy is a built-in security

feature of Windows PowerShell that is set on a per-user basis in the Windows

registry. Although the default confi guration depends on which operating system

and edition is installed, you can quickly determine the execution policy by entering

get-executionpolicy at the PowerShell prompt.

Introducing Windows PowerShell CHAPTER 1

17

The available execution policies, from most secure to least secure, are:

N Restricted

Does not load confi guration fi les or scripts. This means all

confi guration fi les and scripts, regardless of whether they are signed or un-

signed. Because a profi le is a type of script, profi les are not loaded either.

N AllSigned Requires all confi guration fi les and scripts from all sources—

whether local or remote—to be signed by a trusted publisher. Because of

this requirement, confi guration fi les and scripts on the local computer must

be signed as confi guration fi les, and scripts from remote computers must

be signed. PowerShell prompts you before running scripts from trusted

publishers.

N RemoteSigned Requires all confi guration fi les and scripts from remote

sources to be signed by a trusted publisher. Confi guration fi les and scripts on

the local computer do not need to be signed. PowerShell does not prompt

you before running scripts from trusted publishers.

N Unrestricted Allows all confi guration fi les and scripts to run whether they

are from local or remote sources and regardless of whether they are signed

or unsigned. However, if you run a confi guration fi le or script from a remote

resource, you are prompted with a warning that the fi le comes from a remote

resource before the confi guration fi le is loaded or the script runs.

As you can see, execution policy determines whether you can load confi gura-

tion fi les and run scripts as well as whether scripts must be digitally signed before

they will run. When an execution policy prevents loading a fi le or running a script, a

warning is displayed explaining applicable restrictions.

You can use Set-ExecutionPolicy to change the preference for the execution

policy. Changes to the policy are written to the registry. However, if the Turn On

Script Execution setting in Group Policy is enabled for the computer or user, the user

preference is written to the registry, but it is not effective, and Windows PowerShell

displays a message explaining the confl ict. You cannot use Set-ExecutionPolicy to

override a group policy, even if the user preference is more restrictive than the

policy setting.

To set the execution policy to require that all scripts have a trusted signature to

execute, enter the following command:

set-executionpolicy allsigned

set-executionpolicy allsigned

To set the execution policy so that scripts downloaded from the Web execute

only if they are signed by a trusted source, enter:

set-executionpolicy remotesigned

set-executionpolicy remotesigned

18

CHAPTER 1 Introducing Windows PowerShell

 To set the execution policy to run scripts regardless of whether they have a digital signature and work in an unrestricted environment, you can enter the following

command:

set-executionpolicy unrestricted

set-executionpolicy unrestricted

The change occurs immediately and is applied to the local console or application

session. Because the change is written to the registry, the new execution policy will

be used whenever you work with PowerShell.

 NOTE Because only administrators are allowed to change the execution policy

on Windows Vista or later, you must run Windows PowerShell with the Run As

Administrator option.

Understanding Script Signing

Signing scripts is much easier than you might think. To sign scripts, you can use

the Set-AuthenticodeSignature cmdlet. This cmdlet creates digital signatures using

a digital certifi cate. Digital certifi cates can be created by a certifi cate authority

(CA), or you can create your own self-signed certifi cates. When you use certifi cates

created by a CA, you can use the certifi cate on any computer that trusts the CA.

When you use self-signed certifi cates, you can use the certifi cate on your local

computer.

In Windows domains, you can use Active Directory Certifi cate Services to

establish a certifi cate authority (CA) and create digital certifi cates. As most

enterprises have CAs and use digital certifi cates to enhance security, you may

already have been issued a digital certifi cate that you can use for code signing.

To fi nd out, enter the following command:

get-childitem cert:\CurrentUser\My -codesigningcert

get-childitem cert:\CurrentUser\My -codesigningcert

Or you can examine the certifi cates store. The certifi cates store on a Windows

computer stores trust information. In the certifi cates store, you can view information

about the following:

N Personal Certifi cates stored on the local computer that are assigned to

you for various uses.

N Other People Certifi cates stored on the local computer that are assigned

to other people for various uses.

N Trusted Root Certifi cation Authorities Root CAs your computer trusts.

Your computer will trust any certifi cates from these root CAs.

N Trusted Publishers Publishers whose digitally signed scripts are trusted.

N Untrusted Publisher Publishers whose digitally signed scripts are not

trusted.

Introducing Windows PowerShell CHAPTER 1

19

You can access the certifi cates store through the Internet Properties dialog box.

In Control Panel, select Network And Internet and then click Internet Options. In the

Internet Properties dialog box, on the Content tab, click Certifi cates to display the

Certifi cates dialog box. Use the Certifi cates store to examine the various types of

trust information and related details.

PowerShell makes certifi cates available through the Cert provider. As you’ll learn

more about in the “Using Providers” section in Chapter 5, “Navigating Core Power-

Shell Structures,” the data that a provider exposes appears as a drive that you can

browse much like you browse a hard drive. If you enter cd cert: at the PowerShell

prompt, you will access the certifi cates store on your computer. If you then enter

dir (which is an alias for Get-ChildItem), you’ll see a list of locations you can browse.

Typically, this will include CurrentUser and LocalMachine, which are the certifi cate

stores for the currently logged-on user and the local computer, respectively, as

shown in the following example and sample output:

cd cert:

cd cert:

dir

dir

Location : CurrentUser

Location : CurrentUser

StoreNames : {SmartCardRoot, UserDS, AuthRoot, CA...}

StoreNames : {SmartCardRoot, UserDS, AuthRoot, CA...}

Location : LocalMachine

Location : LocalMachine

StoreNames : {SmartCardRoot, AuthRoot, CA, Trust...}

StoreNames : {SmartCardRoot, AuthRoot, CA, Trust...}

While you are working with the Cert provider, if you enter cd currentuser and

then type dir again, you’ll see all the substores for the current user. One of these

stores is the My store, where personal certifi cates are stored, as shown in the follow-

ing example and sample output:

cd currentuser

cd currentuser

dir

Name : SmartCardRoot

Name : SmartCardRoot

Name : UserDS

Name : UserDS

Name : AuthRoot

Name : AuthRoot

Name : CA

Name : CA

Name : ADDRESSBOOK

Name : ADDRESSBOOK

Name : Trust

Name : Trust

Name : Disallowed

Name : Disallowed

Name : My

Name : My

Name : Root

Name : Root

Name : TrustedPeople

Name : TrustedPeople

Name : TrustedPublisher

Name : TrustedPublisher

20

CHAPTER 1 Introducing Windows PowerShell

 You can see the personal certifi cates for code signing in the My store by entering cd my and then entering dir –codesigningcert, as shown in the following example and sample output:

cd my

cd my

dir

dir -codesigningcert

-codesigningcert

Directory: Microsoft.PowerShell.Security\Certificate::currentuser\my

Directory: Microsoft.PowerShell.Security\Certificate::currentuser\my

Thumbprint Subject

Thumbprint Subject

---------- -------

D382828348348388243348238423BE2828282833 CN=WRSTANEK

D382828348348388243348238423BE2828282833 CN=WRSTANEK

AED38282838383848483483848348348BAC39839 CN=WRSTANEK

AED38282838383848483483848348348BAC39839 CN=WRSTANEK

Whether you enter Get-ChildItem –Codesigningcert or Dir –Codesigningcert, the

results are the same. The command returns an array of certifi cates. In PowerShell,

you can reference individual elements in an array by their index position. The fi rst

element in an array has the index position 0, the second 1, and so on.

If you have a personal certifi cate for code signing issued by a CA, you can sign

unsigned scripts using the following command:

$cert = @(Get-ChildItem cert:\CurrentUser\My -codesigningcert)[0]

$cert = @(Get-ChildItem cert:\CurrentUser\My -codesigningcert)[0]

Set-AuthenticodeSignature

Set-AuthenticodeSignature ScriptName

 ScriptName.ps1 $cert

.ps1 $cert

Note that these are two separate commands and that ScriptName sets the name

of the script to sign, such as:

$cert = @(Get-ChildItem cert:\CurrentUser\My -codesigningcert)[0]

$cert = @(Get-ChildItem cert:\CurrentUser\My -codesigningcert)[0]

Set-AuthenticodeSignature run_all.ps1 $cert

Set-AuthenticodeSignature run_all.ps1 $cert

Here, you use Get-ChildItem to access the My certifi cates store and get the fi rst

personal certifi cate for code signing and then use the certifi cate to sign the run_all.

ps1 script. As long as the certifi cate is signed by an enterprise CA, you can run the

signed script on any computer in the enterprise that trusts the CA.

Creating and Using Self-Signed Certifi cates

You can create a self-signed certifi cate using makecert.exe. This utility is included

in the Microsoft .NET Framework Software Development Kit (SDK) Versions 1.1 and

later, and in the platform-specifi c Windows SDK. After you download and install the

appropriate SDK, you must:

1. Open an elevated, administrator command prompt (cmd.exe).

2. Use the command prompt to create a local certifi cate authority for your

computer.

3. Use the command prompt to generate a personal certifi cate via this certifi -

cate authority.

Introducing Windows PowerShell CHAPTER 1

21

You create the local certifi cate authority by entering the following command:

makecert -n "CN=PowerShell Local Certificate Root" -a sha1

makecert -n "CN=PowerShell Local Certificate Root" -a sha1

-eku 1.3.6.1.5.5.7.3.3 -r -sv root.pvk root.cer

-eku 1.3.6.1.5.5.7.3.3 -r -sv root.pvk root.cer

-ss Root -sr localMachine

-ss Root -sr localMachine

Here, you’re running this from a command prompt with Administrator privileges

in the directory where makecert is located. Note that this is a single command, and

the parameters are used as follows:

N The –n parameter sets the certifi cate name. The name value is preceded by

CN=.

N The –a parameter sets the signature algorithm as SHA1 as opposed to MD5

(the default value).

N The –eku parameter inserts the enhanced key usage object identifi er:

1.3.6.1.5.5.7.3.3.

N The –r parameter specifi es that you want to create a self-signed certifi cate.

N The –sv parameter sets the fi le names for the private key fi le and the certifi -

cate fi le that makecert will create.

N The –ss parameter sets the name of the store that stores the output certifi -

cate as Root for the Trusted Root Certifi cate Authorities store.

N The –sr parameter sets the certifi cate store location as the local machine, as

opposed to the current user (the default value).

You generate a personal certifi cate via this certifi cate authority by entering the

following command:

makecert -pe -n "CN=PowerShell User" -ss MY -a sha1

makecert -pe -n "CN=PowerShell User" -ss MY -a sha1

-eku 1.3.6.1.5.5.7.3.3 -iv root.pvk -ic root.cer

-eku 1.3.6.1.5.5.7.3.3 -iv root.pvk -ic root.cer

Note that this is a single command, and the parameters are used as follows:

N The –pe parameter marks the certifi cate’s private key as exportable.

N The –n parameter sets the certifi cate name. Again, the name value is

preceded by CN=.

N The –ss parameter sets the name of the store that stores the output certifi -

cate as MY, for the Personal store.

N The –a parameter sets the signature algorithm as SHA1.

N The –eku parameter inserts the enhanced key usage object identifi er:

1.3.6.1.5.5.7.3.3.

N The –iv parameter specifi es the name of the CA’s private key fi le.

N The –ic parameter specifi es the name of the CA’s certifi cate fi le.

The fi rst command generates two temporary fi les: root.pvk and root.cer. The

second command uses these fi les to create a certifi cate that is stored in the Personal

certifi cate store on the local computer.

22

CHAPTER 1 Introducing Windows PowerShell

 MakeCert will prompt you for a private key password. The password ensures that no one can use or access the certifi cate without your consent. Create and enter a

password that you can remember. You will use this password later to retrieve the

certifi cate.

To verify that the certifi cate was generated correctly, use the following command

to search for the certifi cate in the Personal certifi cate store on the computer:

get-childitem cert:\CurrentUser\My -codesigningcert

get-childitem cert:\CurrentUser\My -codesigningcert

This command uses the Windows PowerShell Certifi cate provider to view infor-

mation about certifi cates in the My personal certifi cate store. If the certifi cate was

created, the output lists the certifi cate by its encrypted thumbprint and subject.

After you have a self-signed certifi cate, you can sign scripts as discussed previously.

The signed script will run on the local computer. However, the signed script will not

run on computers on which the execution policy requires a digital signature from a

trusted authority. On these computers, Windows PowerShell reports that the script

cannot be loaded and that the signature of the certifi cate cannot be verifi ed.

Introducing Windows PowerShell CHAPTER 1

23

C H A P T E R 2

Getting the Most from

 Windows PowerShell

N

Initializing the Environment 26

N

Understanding Command Input, Parsing, and Output 31

N

Writing and Formatting Output 37

Windows PowerShell provides an effective environment for working with

commands and scripts. As discussed in Chapter 1, “Introducing Windows

PowerShell,” you can run many types of commands at the command line, including

built-in cmdlets, Windows utilities, and applications with command-line extensions.

Regardless of its source, every command you’ll use follows the same syntax rules.

These rules state that a command consists of a command name followed by any

required or optional arguments. Arguments, which include parameters, parameter

values, and other command text, can also use piping to combine commands and

redirection to specify the sources for inputs, outputs, and errors.

When you execute commands in PowerShell, you start a series of events that

are similar to the following:

1. Multiple commands that are chained or grouped and passed on a single

line are broken into individual units of execution. Values within a unit of

execution are broken into a series of segments called tokens.

2. Each token is parsed, commands are separated from values, and values are

evaluated as some kind of object type, such as String or Boolean. Variables

in the command text are replaced with their actual values as appropriate

during parsing.

3. The individual commands are then processed. If a command’s name has a

file path, PowerShell uses this path to find the command. If the command

cannot be found in the specified location, PowerShell returns an error.

4. If a command’s name doesn’t specify a file path, PowerShell tries to resolve

the command name internally. A match means that you’ve referenced a

built-in command (including an alias to a command or a function) that can

25

be executed immediately. If no match is found, PowerShell searches the

command path for a matching command executable. If the command cannot

be found in any of those locations, PowerShell returns an error. Because

PowerShell does not look in the current directory by default, you must

explicitly specify the current directory.

5. If the command is located, the command is executed using any specified

arguments, including those that specify the inputs to use. Command output

and any errors are written to the PowerShell window or to the specified des-

tinations for output and errors.

As you can see, many factors can affect command execution, including com-

mand path settings, redirection techniques, and whether commands are chained

or grouped. In this chapter, I’ll describe and show examples of this breakdown of

command execution to help you get the most out of PowerShell. Before diving into

those discussions, however, let’s look at special considerations for starting Power-

Shell and examine the concepts of profiles and console files.

Initializing the Environment

Windows PowerShell provides a dynamic, extensible execution environment. You

can initialize the environment for PowerShell in several ways, including passing

startup parameters to Powershell.exe, using a customized profile, using a console

file, or any combination of the three. You can extend the environment for PowerShell

in several ways as well, including by installing providers and registering snap-ins as

discussed in Chapter 3, “Managing Your PowerShell Environment.”

Passing Startup Parameters

If you worked with PowerShell previously, you probably opened a console window

by clicking Start, pointing to All Programs, pointing to Accessories, pointing to

Windows PowerShell, and then choosing Windows PowerShell. This technique

starts PowerShell with standard user privileges rather than administrator privileges,

however, so you would not be able to perform many administrative tasks. To

start PowerShell with administrator privileges, you need to click Start, point to All

Programs, point to Accessories, point to Windows PowerShell, right-click Windows

PowerShell, and then select Run As Administrator.

Other ways to start a PowerShell console are to use the Search box on the Start

menu, use the Run dialog box, or type powershell in an open command-shell

window. These techniques enable you to pass arguments to PowerShell, including

switches that control how PowerShell works and parameters that execute additional

commands. For example, you can start PowerShell in no-logo mode (meaning the

logo banner is turned off) by using the startup command powershell -nologo.

By default, when you start PowerShell via the command shell, PowerShell runs and

then exits. If you want PowerShell to execute a command and not terminate, type

powershell /noexit followed by the command text.

26

 CHAPTER 2 Getting the Most from Windows PowerShell

 Listing 2-1 shows the basic syntax for invoking the PowerShell console. Table 2-1

lists the available startup parameters. By default, startup profi les are loaded when

the PowerShell console starts. You can exit the console at any time by typing exit.

LISTING 2-1 PowerShell Syntax

powershell[.exe] [-PSConsoleFile

p

 FileName

owershell[.exe] [-PSConsoleFile FileNam | -Version

 e | -Version VersionNumber

 VersionNumber]

[-NoLogo] [-NoExit] [-NoProfile] [-NonInteractive] [-Sta]

[-NoLogo] [-NoExit] [-NoProfile] [-NonInteractive] [-Sta]

[-InputFormat {Text | XML}] [-OutputFormat {Text | XML}]

[-InputFormat {Text | XML}] [-OutputFormat {Text | XML}]

[-WindowsStyle

[-WindowsStyle Style

 St

] [-EncodedCommand

 yle] [-EncodedCommand Base64EncodedCommand

 Base64EncodedComman]

 d

[-File

[-File ScriptFilePath

 ScriptFilePat] [-ExecutionPolicy

 h] [-ExecutionPoli

 PolicySetting

cy PolicySetting]

[-Command

[-Command CommandText

 CommandTex]

 t

 TABLE 2-1 PowerShell Startup Parameters

 PARAMETER

DESCRIPTION

–Command

Specifi es the command text to execute as though it were

typed at the PowerShell command prompt.

–EncodedCommand

Specifi es the base64-encoded command text to execute.

–ExecutionPolicy

Sets the default execution policy for the console session.

–File

Sets the name of a script fi le to execute.

–InputFormat

Sets the format for data sent to PowerShell as either text

string or serialized XML. The default format is XML. Valid

values are text and XML.

–NoExit

Does not exit after running startup commands. This

parameter is useful when you run PowerShell commands

or scripts via the command prompt (cmd.exe).

–NoLogo

Starts the PowerShell console without displaying the

copyright banner.

–Noninteractive

Starts the PowerShell console in noninteractive mode.

In this mode, PowerShell does not present an interactive

prompt to the user.

–NoProfi le

Tells the PowerShell console not to load the current

user’s profi le.

–OutputFormat

Sets the format for output as either text string or serialized

XML. The default format is text. Valid values are text and

 XML.

Getting the Most from Windows PowerShell CHAPTER 2

27

TABLE 2-1 PowerShell Startup Parameters

PARAMETER

DESCRIPTION

–PSConsoleFile

Loads the specified Windows PowerShell console file.

Console files end with the .psc1 extension and can be

used to ensure that specific snap-in extensions are

loaded and available. You can create a console file using

Export-Console in Windows PowerShell.

–Sta

Starts PowerShell in single-threaded mode.

–Version

Sets the version of Windows PowerShell to use for

compatibility, such as 1.0.

–WindowStyle

Sets the window style as Normal, Minimized, Maximized,

or Hidden. The default is Normal.

Invoking Windows PowerShell

Although you’ll most often work with the PowerShell console or the PowerShell

application, at times you might want to invoke PowerShell to run a cmdlet from the

Windows command shell (cmd.exe) environment or a batch script. To do so, you use

the –Command parameter. Generally, you will also want to suppress the Windows

PowerShell logo with the –NoLogo parameter and stop execution of profiles

with the –NoProfile parameter. For example, at a command prompt or in a batch

script, you could get a list of running processes via PowerShell with the following

command:

powershell –nologo –noprofile –command get-process

When you enter this command, the Windows command shell runs PowerShell

as it would any other external program, passing in the parameters and parameter

values you use and then exiting PowerShell when execution completes. If you want

the command shell to run a PowerShell command and remain in PowerShell after

execution, you can add the –NoExit parameter as shown in the following example:

powershell –noexit –command get-process

Using –Command to Run Commands

Because –Command is the most common parameter you’ll use when invoking

PowerShell from a command prompt or batch script, let’s take a closer look at all the

ways it can be used. If you enter – as the command, the command text is read from

standard input. You also can use piping and redirection techniques to manipulate

the output of a command. However, keep in mind that any characters typed after

the command are interpreted as command arguments. Because of this, to write a

command that includes piping or redirection, you must enclose the command text

28

 CHAPTER 2 Getting the Most from Windows PowerShell

in double quotation marks. The following example gets information about currently running processes and sorts it by process identifier:

powershell –nologo –noprofile –command "get-process | sort-object Id"

 REAL WORLD Most commands generate output that can be redirected to another

command as input. To do this, you use a technique called piping, whereby the output of a command is sent as the input of the next command. Following this, you can see

the general syntax for piping is

 Command1 | Command2

where the pipe redirects the output of Command1 to the input of Command2. But you

can also redirect output more than once by using this syntax:

 Command1 | Command2 | Command3

Generally, if a cmdlet accepts input from another cmdlet, the cmdlet will have an

–InputObject parameter and you can pipe output to the cmdlet.

Windows PowerShell also supports script blocks. A script block is a series of

commands executed in sequence. Script blocks are enclosed in braces ({}), and

each command within a script block is separated by a semicolon. Although you can

enter script blocks enclosed in braces, you can do so directly only when running

Powershell.exe in Windows PowerShell. The results are then returned as deserialized

XML objects rather than standard objects. For example, if you are already working

at the PowerShell prompt and want to run a series of commands through a separate

Power Shell instance, you can do so by enclosing the commands in braces and

separating commands with semicolons, as shown in this example:

powershell –command {get-service; get-process}

Although this technique works if you are already working with the PowerShell

prompt, it doesn’t work when you want to run PowerShell from a command prompt.

The workaround is to use the following format:

"& { CommandText}"

Here, the quotation marks indicate a string, and the ampersand (&) is an invoke

operator that causes the command to be executed. After you write a string that runs

a command, you will generally be able to run the command at either the command

prompt or the PowerShell prompt. For example, even though you cannot enter

power shell -command {get-service; get-process} at the command prompt, you

can enter the following at a command prompt:

powershell –command "& {get-service; get-process}"

Here, you pass a code block to PowerShell as a string to parse and execute.

PowerShell executes Get-Service and displays the results and then executes

Get-Process and displays the results. If you want one syntax that will generally

Getting the Most from Windows PowerShell CHAPTER 2

29

succeed whether you are working with strings, multiple commands, the command

prompt, or the PowerShell prompt, this syntax is the one you should use.

Using –File to Run Scripts

When you are working with the Windows command shell and want to run a

PowerShell script, you also can use piping and redirection techniques to manipulate

the output of a command. However, instead of using the –Command parameter,

you use the –File parameter to specify the script to run. As shown in the following

example, you follow the –File parameter with the path to the script to run:

powershell –nologo –noprofile –file c:\scripts\run_all.ps1

If the script is in the current directory, simply enter the script name:

powershell –nologo –noprofile –file run_all.ps1

If the path name includes blank spaces, you must enclose the path in double

quotation marks, as shown in this example:

powershell –nologo –noprofile –file "c:\data\current scripts\run_all.ps1"

 REAL WORLD You can specify parameters whether you start PowerShell from the

menu or a command prompt. When starting PowerShell from the menu, edit the menu

shortcut that starts the PowerShell console or the PowerShell application to specify

parameters you want to use whenever you work with PowerShell. To do so, follow

these steps:

1.

 On the menu, right-click the shortcut and then select Properties.

In the Properties dialog box, the Target entry on the Shortcut tab is selected

by default.

2. Without pressing any other key, press the Right arrow key. This places the

insertion cursor at the end of the full path to PowerShell. Insert a space, and

then type your parameters and parameter values.

3. Click OK to save the settings. If you make a mistake or no longer want to use

parameters, repeat this procedure and remove any parameters and values

you’ve added.

Using Nested Consoles

Sometimes you might want to use different environment settings or parameters for

a PowerShell console and then go back to your original settings without exiting the

console window. To do this, you can use a technique called nesting. With nesting,

you start a PowerShell console within another PowerShell console.

Unlike the command shell, the nested console opens with a new working envi-

ronment and does not inherit its environment settings from the current console. You

can work in this separate console environment and execute commands and scripts.

30

 CHAPTER 2 Getting the Most from Windows PowerShell

When you type exit to close the instance of the nested console, you return to the previous console, and the previous environment settings are restored.

Understanding Command Input, Parsing, and Output

As you’ve seen from examples in this chapter and in Chapter 1, typing commands at

the PowerShell prompt is a fairly straightforward process. The most basic approach

is simply to type your command text and then press Enter. When you press Enter,

PowerShell processes and parses the command text.

Basic Line Editing

The PowerShell console includes some basic editing capabilities for the current

line. Table 2-2 lists the editing keys. Alternatively, enter get-history to list all the commands in the command history, or enter clear-history to clear the command

history. Get-History lists commands by command number, and you can pass this to

Invoke-History to run a specific numbered command from your command history.

In this example, you run command 35:

invoke-history 35

TABLE 2-2 Basic Editing Keys

KEY

USAGE

`

Press the backward apostrophe key to insert a line break

or as an escape character to make a literal character. You

can also break a line at the pipe (|) character.

Alt+Space+E

Displays an editing shortcut menu with Mark, Copy,

Paste, Select All, Scroll, and Find options. You can then

press K for Mark, Y for Copy, P for Paste, S for Select

All, L to scroll through the screen buffer, or F to search

for text in the screen buffer. To copy the screen buffer

to the Clipboard, press Alt+Space+E+S and then press

Alt+Space+E+Y.

Alt+F7

Clears the command history.

Ctrl+C

Press Ctrl+C to break out of the subprompt or terminate

execution.

Ctrl+End

Press Ctrl+End to delete all the characters in the line

after the cursor.

Ctrl+Left arrow /

Press Ctrl+Left arrow or Ctrl+Right arrow to move left or

Ctrl+Right arrow

right one word at a time.

Ctrl+S

Press Ctrl+S to pause or resume the display of output.

Getting the Most from Windows PowerShell CHAPTER 2

31

TABLE 2-2 Basic Editing Keys

KEY

USAGE

Delete / Backspace

Press Delete to delete the character under the cursor, or

press the Backspace key to delete the character to the

left of the cursor.

Esc

Press the Esc key to clear the current line.

F1

Moves the cursor one character to the right on the com-

mand line. At the end of the line, inserts one character

from the text of your last command.

F2

Creates a new command line by copying your last com-

mand line up to the character you type.

F3

Completes the command line with the content from

your last command line, starting from the current cursor

position to the end of the line.

F4

Deletes characters from your current command line,

starting from the current cursor position up to the char-

acter you type.

F5

Scans backward through your command history.

F7

Displays a pop-up window with your command history

and allows you to select a command. Use the arrow keys

to scroll through the list. Press Enter to select a com-

mand to run, or press the Right arrow key to place the

text on the command line.

F8

Uses text you’ve entered to scan backward through your

command history for commands that match the text

you’ve typed so far on the command line.

F9

Runs a specific numbered command from your com-

mand history. Command numbers are listed when you

press F7.

Home / End

Press Home or End to move to the beginning or end of

the line.

Insert

Press Insert to switch between insert mode and over-

write mode.

Left / Right arrow keys

Press the Left or Right arrow key to move the cursor left

or right on the current line.

Page Up / Page Down

Press the Page Up or Page Down key to access the first

or last command in the command history.

32

 CHAPTER 2 Getting the Most from Windows PowerShell

TABLE 2-2 Basic Editing Keys

KEY

USAGE

Right-click

If QuickEdit is disabled, displays an editing shortcut

menu with Mark, Copy, Paste, Select All, Scroll, and Find

options. To copy the screen buffer to the Clipboard,

right-click, choose Select, and then press Enter.

Tab / Shift+Tab

Press the Tab key or press Shift+Tab to access the tab

expansion function as discussed in “Creating and Using

Functions” in Chapter 6, “Mastering Aliases, Functions,

and Objects.”

Up / Down arrow keys

Press the Up or Down arrow key to scan forward or

backward through your command history, as discussed

in “Working with the Command History” in Chapter 1.

Windows key+R and

Runs Windows PowerShell. However, if you’ve installed

then type powershell

multiple versions of PowerShell or are using a 64-bit

computer, the first version encountered runs (and this is

not necessarily the one you want to use).

 REAL WORLD The way copying and pasting text works in the PowerShell console

depends on whether QuickEdit mode is enabled or disabled. With QuickEdit enabled,

you copy text by dragging the mouse and pressing Enter, and then paste text by clicking

the mouse. When you drag the mouse to select text to copy, be careful not to pause

momentarily when you start; otherwise, PowerShell will paste from the Clipboard. With

QuickEdit disabled, you copy by right-clicking, selecting Mark, dragging the mouse to

select the text, and then pressing Enter. You paste by right-clicking and selecting Paste.

You can enable or disable QuickEdit using the Properties dialog box, as described in the

“Configuring Windows PowerShell Console Properties” section of Chapter 1.

How Parsing Works

In addition to the processing modes discussed previously in “Passing Startup Param-

eters,” PowerShell also has parsing modes. Don’t confuse processing modes with

parsing modes. Processing modes control the way PowerShell processes commands.

Generally speaking, processing occurs either interactively or noninteractively. Pars-

ing modes control the way PowerShell parses each value within a command line.

PowerShell breaks down command lines into units of execution and tokens. A

unit of execution includes everything from the first character on a line to either a

semicolon or the end of a line. A token is a value within a unit of execution. Know-

ing this, you can:

N Enter multiple commands on a single command line by using semicolons to

separate each command.

N Mark the end of a unit of execution by pressing Enter.

Getting the Most from Windows PowerShell CHAPTER 2

33

The way PowerShell parses values is determined by the first token encountered

when parsing a unit of execution. PowerShell parses using one of these modes:

N Expression

mode PowerShell uses expression mode when the first token

encountered in a unit of execution is not the name of a cmdlet, keyword,

alias, function, or external utility. PowerShell evaluates expressions as either

numerical values or strings. Character string values must be contained in

quotation marks, and numbers not in quotation marks are treated as numeri-

cal values (rather than as a series of characters).

N Command

mode PowerShell uses command mode when the first token

encountered in a unit of execution is the name of a cmdlet, keyword, alias,

function, or external utility. PowerShell invokes command tokens. Values

after the command token are handled as expandable strings except when

they start with a special character that denotes the start of a variable, array,

string, or subexpression. These special characters include $, @, ‘, “ and (, and

when these characters are encountered, the value is handled using expres-

sion mode.

With these rules in mind, you can see that the following are true:

N If you enter 5+5 at the PowerShell prompt, PowerShell interprets 5+5 as an

expression to evaluate and displays the result as 10.

N If you enter Write-Host 5+5 at the PowerShell prompt, PowerShell interprets

5+5 as an argument to Write-Host and displays 5+5.

N If you enter Write-Host (5+5) at the PowerShell prompt, PowerShell inter-

prets (5+5) as an expression to evaluate and then pass to Write-Host. As a

result, PowerShell displays 10.

Parsing Assigned Values

In PowerShell, variable definitions begin with the dollar sign ($) and are followed by

the name of the variable you are defining. To assign a value to a variable, you use

the equals sign (=) and then specify the value you want. After you create a variable,

you can reference or display the value of the variable by using the variable name.

Following this, if you enter $a = 5+5 at the PowerShell prompt, PowerShell inter-

prets 5+5 as an expression to evaluate and assigns the result to the variable a. As a

result, when you write the value of $a to the PowerShell prompt by entering

$a

or by entering

Write-Host $a

the output is

10

34

 CHAPTER 2 Getting the Most from Windows PowerShell

On the other hand, let’s say you define a variable named $a and assign it a string value, such as:

$a = "This is a string."

Here, the value assigned to $a is handled as a literal string, and the string is

processed in expression mode. You know this because when you write the value of

$a to the PowerShell prompt by entering

$a

or by entering

Write-Host $a

the output is

This is a string.

Sometimes, however, you’ll want to force PowerShell to interpret a string literal

expression using command mode. To see why, consider the following example:

$a = "Get-Process"

If you write the value of $a to the PowerShell prompt by entering

$a

the output is

Get-Process

This occurs because the value assigned to $a is handled as a literal string, and

the string is processed in expression mode. However, you might have wanted

Power Shell to actually run the Get-Process cmdlet. To do this, you need PowerShell

to parse the string and determine that it contains a token that should be processed

in command mode. You can accomplish this by using the & operator when you

reference the $a variable, as shown in this example:

&$a

Because PowerShell processes the string in command mode, Get-Process is seen

as a command token, the Get-Process cmdlet is invoked, and the output displays the

currently running processes. This technique can be used with any cmdlet, keyword,

alias, function, or external utility name assigned to a variable in a string. However, if

you want to add values in addition to the command name, for example parameters,

or use multiple commands or piping, you must enclose your command or commands

in curly braces rather than quotation marks. This denotes a script block. Here is an

example:

$a = {get-eventlog -newest 25 -logname application}

Getting the Most from Windows PowerShell CHAPTER 2

35

The value assigned to $a is handled as a special string, and the string is processed in expression mode. You know this because when you write the value of $a to the

PowerShell prompt, the output is:

get-eventlog -newest 25 -logname system

You can force PowerShell to parse the contents of the script block by using:

&$a

PowerShell will then parse each token in the script block. The result will be the

same as when you enter the command text.

Parsing Exceptions

When you enter part of an expression on the command line but do not complete

the expression, PowerShell displays the >> subprompt, indicating that it is waiting

for you to complete the expression. For example, if you type Write-Host (and press

Enter, PowerShell displays the >> subprompt and waits for you to complete the

expression. You must then complete the command line by entering any additional

required text, such as 5+5), and then press Enter. You must then press Enter again

(without typing any additional text) to exit the subprompt and return. PowerShell

then interprets this input as a completed unit of execution.

If you want to intentionally split command text across multiple lines of input, you

can use the backward apostrophe character (`). This technique is handy when you

are copying long command lines and pasting them into a PowerShell console so

that you can run them. Here’s how this works:

1. Enter part of the command text, and then type `. When you press Enter,

PowerShell displays the >> subprompt.

2. Enter the next part of the command text. Then either enter ` to indicate that

you want to continue the command text on the next line or press Enter to

mark the end of the command text.

3. When you fi nally mark the end of the line by pressing Enter without using

the backward apostrophe (and you’ve closed all expressions), PowerShell

parses the command text as appropriate.

An example and partial output follows:

get-eventlog -newest 25 `

get-eventlog -newest 25 `

>> -logname system

>> -logname system

>>

Index Time EntryType Source InstanceID Message

Index Time EntryType Source InstanceID Message

----- ---- --------- ------ ---------- -------

----- ---- --------- ------ ---------- -------

258248 Feb 28 16:12 Information Service Control M... 1073748860 The

258248 Feb 28 16:12 Information Service Control M... 1073748860 The

description for Event ID ‘1073748860’ in So...

description for Event ID ‘1073748860’ in So...

258247 Feb 28 14:27 Information Service Control M... 1073748860 The

258247 Feb 28 14:27 Information Service Control M... 1073748860 The

description for Event ID ‘1073748860’ in So...

description for Event ID ‘1073748860’ in So...

36

CHAPTER 2 Getting the Most from Windows PowerShell

 If your command text uses the pipe (|) character, you can also break a line and continue it on the next line at the pipe character, as shown in the following example

and partial output:

get-process |

get-process |

>> sort-object Id

>> sort-object Id

>>

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

------- ------ ----- ----- ----- ------ -- -----------

----- -----

-- -----------

 0 0 0 24 0 0 Idle

 0 0 0 24 0 0 Idle

 710 0 0 12904 20 4 System

 710 0 0 12904 20 4 System

 28 1 360 816 4 516 smss

 28 1 360 816 4 516 smss

 666 6 1872 5212 94 592 csrss

 666 6 1872 5212 94 592 csrss

Output from Parsing

After parsing commands and values, PowerShell returns output. Unlike with the

command shell (Cmd.exe), built-in commands that you run in PowerShell return

objects in the output. An object is a collection of data points that represent an item.

Objects have a specifi c data type, such as String, Boolean, or Numeric, and have

methods and properties. Object methods allow you to perform actions on the item

the object represents. Object properties store information about the item the object

represents. When you work with PowerShell, you can use an object’s methods and

properties to take specifi c actions and manipulate data.

When you combine commands in a pipeline, the commands pass information to

each other as objects. When the fi rst command runs, it sends one or more objects

along the pipeline to the second command. The second command receives the

objects from the fi rst command, processes the objects, and then displays output or

passes new or modifi ed objects to the next command in the pipeline. This continues

until all commands in the pipeline run and the fi nal command’s output is displayed.

Because you and I can’t read objects, PowerShell translates the objects for output

on the screen as text. You can manipulate this output in many ways.

Writing and Formatting Output

Although PowerShell reads and writes objects, the various values associated with

objects are converted to text as a fi nal part of the cmdlet execution process. When

output is written to the console, this output is said to be written to the standard

 output stream. PowerShell supports other output streams as well. Before I describe

these output streams, however, I’ll explain how output is formatted by default.

Getting the Most from Windows PowerShell CHAPTER 2

37

Using Formatting Cmdlets

When you are working with external utilities and programs, those utilities and pro-

grams determine how the output is formatted. With PowerShell cmdlets, PowerShell

calls designated formatting cmdlets to format the output for you. The formatter

determines which properties of the output are displayed and whether they are dis-

played in a list or table. The formatter makes this determination based on the type

of data being displayed. Strings and objects are handled and processed in different

ways.

 NOTE The formatting cmdlets arrange the data to be displayed but do not actually

display it. The output cmdlets, discussed next, are responsible for displaying output.

You can explicitly specify the output format by using one of the following

formatting cmdlets:

N Format-List Formats the output as a list of properties. All properties of the

objects are formatted by default, with each property displayed on a separate

line. Use –Properties to specify which properties to display by name. Enter

property names in a comma-separated list. Use wildcard characters such as

to match any value as necessary.

Format-List [-DisplayError] [-ShowError] [-Expand

Format-List [-DisplayError] [-ShowError] [-Expand String

 Strin] [-Force]

 g] [-Force]

[-GroupBy

[-GroupBy Object

 Object] [-InputObject

] [-InputObject Object

 Object] [-View

] [-View String

 String]

[[-Property]

[[-Property] PropertyName

 PropertyName]

N Format-Table Formats the output as a table with selected properties of

the objects in each column. The object type determines the default layout

and the properties that are displayed. Use –AutoSize to automatically adjust

the column size and number of columns based on the width of the data. Use

–HideTableHeaders to omit column headings. Use –Wrap to display text that

exceeds the column width on the next line.

Format-Table [-DisplayError] [-ShowError] [-Expand

Format-Table [-DisplayError] [-ShowError] [-Expand String

 Stri

] [-Force]

 ng] [-Force]

[-GroupBy

[-GroupBy Object

 Object] [-InputObject

] [-InputObject Object

 Object] [-View

] [-View String

 String]

[-AutoSize] [-HideTableHeaders] [-Wrap] [[-Property]

[-AutoSize] [-HideTableHeaders] [-Wrap] [[-Property] PropertyName

 PropertyNam]

 e

N Format-Wide Formats the output as a multicolumned table, but only one

property of each object is displayed. Use –AutoSize to automatically adjust

the column size and number of columns based on the width of the data. Use

–Columns to specify the number of columns to display.

Format-Wide [-DisplayError] [-ShowError] [-Expand

Format-Wide [-DisplayError] [-ShowError] [-Expand String

 Stri

] [-Force]

 ng] [-Force]

[-GroupBy

[-GroupBy Object

 Object] [-InputObject

] [-InputObject Object

 Object] [-View

] [-View String

 String]

[-AutoSize] [-Column

[-AutoSize] [-Col

 NumColumns

umn NumColumns] [[-Property]

] [[-Property] PropertyName]

38

CHAPTER 2 Getting the Most from Windows PowerShell

N Format-Custom Formats the output using a predefi ned alternate view.

You can determine the alternate view by reviewing the *format.PS1XML

fi les in the Windows PowerShell directory. To create your own views in new

.PS1XML fi les, use the Update-FormatData cmdlet to add them to Windows

PowerShell. Use –Depth to specify the number of columns to display.

Format-Custom [-DisplayError] [-ShowError] [-Expand

Format-Custom [-DisplayError] [-ShowError] [-Expand String

 Strin]

 g

[-Force] [-GroupBy

[-Force] [-GroupBy Object

 Object] [-InputObject

] [-InputObject Object

 Object] [-View

] [-View String

 String]

[-Depth

[-Depth Num

 Num] [[-Property]

] [[-Property] PropertyName]

When working with the previous formatting cmdlets, you might also want to use

these cmdlets:

N Group-Object Groups objects that contain the same value for specifi ed

properties. Objects are grouped in sequence, so if values aren’t sorted you

won’t get the result you want. Use –CaseSensitive to use case-sensitive

grouping rather than the default grouping, which is not case sensitive. Use

–NoElement to omit the names of members of the group, such as fi le names

if you are grouping fi les by extension.

Group-Object [-CaseSensitive] [-Culture

Group-Object [-CaseSensitive] [-Culture String

 String] [-NoElement]

] [-NoElement]

[-InputObject

[-InputObject Object

 Object] [[-Property]

] [[-Property] PropertyName]

N Sort-Object Sorts objects in ascending order based on the values of prop-

erties of the object. Use –Descending to reverse sort. Use –CaseSensitive to

use case-sensitive sorting rather than the default sorting, which is not case

sensitive. Use –Unique to eliminate duplicates and return only the unique

members of a specifi ed collection.

Sort-Object [-Culture

Sort-Object [-Culture String

 String] [-CaseSensitive] [-Descending]

] [-CaseSensitive] [-Descending]

[-InputObject

[-InputObject Object

 Object] [-Unique] [[-Property]

] [-Unique] [[-Property] PropertyName

 PropertyName]

To change the format of the output from any cmdlet, use the pipeline operator

(|) to send the output of the command to a formatter. For example, the default

format for the Get-Service cmdlet is a table that displays the value of the Status,

Name, and DisplayName properties, as shown in this command and sample output:

get-service

get-service

Status Name DisplayName

Status Name DisplayName

------ ---- -----------

Stopped Adobe LM Service Adobe LM Service

Stopped Adobe LM Service Adobe LM Service

Running Adobe Version C... Adobe Version Cue CS2

Running Adobe Version C... Adobe Version Cue CS2

Stopped Adobe Version C... Adobe Version Cue CS3

Stopped Adobe Version C... Adobe Version Cue CS3

Running AeLookupSvc Application Experience

Running AeLookupSvc Application Experience

Running AlertService Intel(R) Alert Service

Running AlertService Intel(R) Alert Service

Stopped ALG Application Layer Gateway Service

Stopped ALG Application Layer Gateway Service

Getting the Most from Windows PowerShell CHAPTER 2

39

Format-Wide formats the output as a multicolumned table, but only one property

of each object is displayed. The following command sends the output of a Get-Service

cmdlet to the Format-Wide cmdlet:

get-service | format-wide -column 3

get-service | format-wide -column 3

Adobe LM Service Adobe Version Cue CS2 Adobe Version Cue CS3

Adobe LM Service Adobe Version Cue CS2 Adobe Version Cue CS3

AeLookupSvc AlertService ALG

AeLookupSvc AlertService ALG

AOL ACS Appinfo Apple Mobile Device

AOL ACS Appinfo Apple Mobile Device

AppMgmt AudioEndpointBuilder Audiosrv

AppMgmt AudioEndpointBuilder Audiosrv

BFE BITS Bonjour Service

BFE BITS Bonjour Service

Browser CertPropSvc clr_optimization_v2.0

Browser CertPropSvc clr_optimization_v2.0

COMSysApp CryptSvc CscService

COMSysApp CryptSvc CscService

DcomLaunch DFSR Dhcp

DcomLaunch DFSR Dhcp

As a result, the service data is formatted into multiple columns for each service.

The output provides the name of each confi gured service.

Knowing the name of a service, you can then examine services by listing the

value of each confi gured property. For example, the following command gets

detailed information on the WinRM service:

get-service winrm | format-list

get-service winrm | format-list

Name : WinRM

Name : WinRM

DisplayName : Windows Remote Management (WS-Management)

DisplayName : Windows Remote Management (WS-Management)

Status : Stopped

Status : Stopped

DependentServices : {}

DependentServices : {}

ServicesDependedOn : {RPCSS, HTTP}

ServicesDependedOn : {RPCSS, HTTP}

CanPauseAndContinue : False

CanPauseAndContinue : False

CanShutdown : False

CanShutdown : False

CanStop : False

CanStop : False

ServiceType : Win32ShareProcess

ServiceType : Win32ShareProcess

In this format, the data appears in a list instead of a table, and there is additional

information about the service that the previous output formatting omitted.

With any of the formatting cmdlets, you can use the –Properties parameter to

specify properties to display by name. You can use wildcards such as * to match

any value as necessary. For example, to display all the properties of the winlogon

process, enter:

get-process winlogon | format-list -property *

get-process winlogon | format-list -property *

__NounName : Process

__NounName : Process

Name : winlogon

Name : winlogon

Handles : 147

Handles : 147

VM : 58609664

VM : 58609664

40

CHAPTER 2 Getting the Most from Windows PowerShell

WS : 6696960

WS : 6696960

PM : 2437120

PM : 2437120

NPM : 3832

NPM : 3832

Id : 808

PriorityClass :

PriorityClass :

HandleCount : 147

HandleCount : 147

WorkingSet : 6696960

WorkingSet : 6696960

PagedMemorySize : 2437120

PagedMemorySize : 2437120

PrivateMemorySize : 2437120

PrivateMemorySize : 2437120

VirtualMemorySize : 58609664

VirtualMemorySize : 58609664

To see all the properties of an object, send the output of a command to the

Get-Member cmdlet. For example, to see all the properties of a service object, type:

get-service | get-member -membertype *property

get-service | get-member -membertype *property

 TypeName: System.ServiceProcess.ServiceController

 TypeName: System.ServiceProcess.ServiceController

Name MemberType Definition

Name MemberType Definition

---- ---------- ----------

Name AliasProperty Name = ServiceName

Name AliasProperty Name = ServiceName

CanPauseAndContinue Property System.Boolean CanPauseAndContinue

CanPauseAndContinue Property System.Boolean CanPauseAndContinue

{get;}

{get;}

CanShutdown Property System.Boolean CanShutdown {get;}

CanShutdown Property System.Boolean CanShutdown {get;}

CanStop Property System.Boolean CanStop {get;}

CanStop Property System.Boolean CanStop {get;}

Container Property System.ComponentModel.IContainer

Container Property System.ComponentModel.IContainer

DependentServices Property System.ServiceProcess.ServiceController

DependentServices Property System.ServiceProcess.ServiceController

DisplayName Property System.String DisplayName {get;set;}

DisplayName Property System.String DisplayName {get;set;}

MachineName Property System.String MachineName {get;set;}

MachineName Property System.String MachineName {get;set;}

ServiceHandle Property System.Runtime.InteropServices.SafeHand

ServiceHandle Property System.Runtime.InteropServices.SafeHand

ServiceName Property System.String ServiceName {get;set;}

ServiceName Property System.String ServiceName {get;set;}

ServicesDependedOn Property System.ServiceProcess.ServiceController

ServicesDependedOn Property System.ServiceProcess.ServiceController

ServiceType Property System.ServiceProcess.ServiceType

ServiceType Property System.ServiceProcess.ServiceType

Site Property System.ComponentModel.ISite Site

Site Property System.ComponentModel.ISite Site

Status Property System.ServiceProcess.ServiceController

Status Property System.ServiceProcess.ServiceController

Because all these properties are in the object that Get-Service retrieves for each

service, you can display any or all of them by using the –Property parameter. For

example, the following command uses the Format-Table command to display only

the Name, Status, ServiceType, and ServicesDependedOn properties of each service:

get-service | format-table Name, Status, ServiceType, ServicesDependedOn

get-service | format-table Name, Status, ServiceType, ServicesDependedOn

Name Status ServiceType ServicesDependedOn

Name Status ServiceType ServicesDependedOn

 ------ ----------- -----------------

----------- -----------------

Adobe LM Service Stopped Win32OwnProcess {}

Adobe LM Service Stopped Win32OwnProcess {}

Adobe Version C... Running Win32OwnProcess {}

Adobe Version C... Running Win32OwnProcess {}

Adobe Version C... Stopped Win32OwnProcess {}

Adobe Version C... Stopped Win32OwnProcess {}

Getting the Most from Windows PowerShell CHAPTER 2

41

AeLookupSvc Running Win32ShareProcess {}

AeLookupSvc Running Win32ShareProcess {}

AlertService Running ...ractiveProcess {}

AlertService Running ...ractiveProcess {}

ALG Stopped Win32OwnProcess {}

ALG Stopped Win32OwnProcess {}

AOL ACS Running ...ractiveProcess {}

AOL ACS Running ...ractiveProcess {}

Appinfo Stopped Win32ShareProcess {ProfSvc, RpcSs}

Appinfo Stopped Win32ShareProcess {ProfSvc, RpcSs}

Apple Mobile De... Running Win32OwnProcess {Tcpip}

Apple Mobile De... Running Win32OwnProcess {Tcpip}

AppMgmt Stopped Win32ShareProcess {}

AppMgmt Stopped Win32ShareProcess {}

AudioEndpointBu... Running Win32ShareProcess {PlugPlay}

AudioEndpointBu... Running Win32ShareProcess {PlugPlay}

Audiosrv Running Win32ShareProcess {AudioEndpoint...

Audiosrv Running Win32ShareProcess {AudioEndpoint...

BFE Running Win32ShareProcess {RpcSs}

BFE Running Win32ShareProcess {RpcSs}

BITS Running Win32ShareProcess {EventSystem, ...

BITS Running Win32ShareProcess {EventSystem, ...

Bonjour Service Running Win32OwnProcess {Tcpip}

Bonjour Service Running Win32OwnProcess {Tcpip}

Browser Running Win32ShareProcess {LanmanServer,...

Browser Running Win32ShareProcess {LanmanServer,...

CertPropSvc Running Win32ShareProcess {RpcSs}

CertPropSvc Running Win32ShareProcess {RpcSs}

clr_optimizatio... Stopped Win32OwnProcess {}

clr_optimizatio... Stopped Win32OwnProcess {}

COMSysApp Stopped Win32OwnProcess {SENS, EventSy...

COMSysApp Stopped Win32OwnProcess {SENS, EventSy...

In addition to formatting output for display, you might want to group and sort

objects. All the formatting cmdlets include the –GroupBy parameter, which allows

you to group output based on a specifi ed property.

Using the –GroupBy parameter produces the same results as sending the

output to the Group-Object cmdlet and then sending the output to a formatting

cmdlet. However, these techniques probably won’t generate the output you are

looking for because these approaches generate a new header each time a new

value is encountered for the specifi ed property. For example, with the Get-Service

cmdlet, you can group services by status, such as Running or Stopped, by using

the following command:

get-service | format-list –groupby status

get-service | format-list –groupby status

 Status: Stopped

 Status: Stopped

Name : WinRM

Name : WinRM

DisplayName : Windows Remote Management (WS-Management)

DisplayName : Windows Remote Management (WS-Management)

Status : Stopped

Status : Stopped

DependentServices : {}

DependentServices : {}

ServicesDependedOn : {RPCSS, HTTP}

ServicesDependedOn : {RPCSS, HTTP}

CanPauseAndContinue : False

CanPauseAndContinue : False

CanShutdown : False

CanShutdown : False

CanStop : False

CanStop : False

ServiceType : Win32ShareProcess

ServiceType : Win32ShareProcess

 Status: Running

 Status: Running

Name : Wlansvc

Name : Wlansvc

DisplayName : WLAN AutoConfig

DisplayName : WLAN AutoConfig

Status : Running

Status : Running

DependentServices : {}

DependentServices : {}

ServicesDependedOn : {Eaphost, RpcSs, Ndisuio, nativewifip}

ServicesDependedOn : {Eaphost, RpcSs, Ndisuio, nativewifip}

42

CHAPTER 2 Getting the Most from Windows PowerShell

CanPauseAndContinue : False

CanPauseAndContinue : False

CanShutdown : True

CanStop : True

CanStop : True

ServiceType : Win32ShareProcess

ServiceType : Win32ShareProcess

When you use Group-Object and group by status, you get a different result

entirely:

get-service | group-object status

get-service | group-object status

Count Name Group

Count Name Group

----- ---- -----

----- ---- -----

 68 Stopped {System.ServiceProcess.ServiceControll

 68 Stopped {System.ServiceProcess.ServiceControll

 89 Running {System.ServiceProcess.ServiceControll

 89 Running {System.ServiceProcess.ServiceControll

Although both outputs can be useful, neither produces the result you need

if you want to see all stopped services and all started services in sequence. The

workaround is to sort the objects fi rst and then group them. You sort objects by us-

ing the Sort-Object cmdlet. Sort-Object supports sorting on a single property and

sorting on multiple properties. You specify the property or properties to sort on

with the –Property parameter and separate multiple properties with commas. For

example, if you want to sort services by status and name, you can use the following

command:

get-service | sort-object status, name | format-table –groupby status

get-service | sort-object status, name | format-table –groupby status

 Status: Stopped

 Status: Stopped

Status Name DisplayName

Status Name DisplayName

------ ---- -----------

Stopped Adobe LM Service Adobe LM Service

Stopped Adobe LM Service Adobe LM Service

Stopped Adobe Version C... Adobe Version Cue CS3

Stopped Adobe Version C... Adobe Version Cue CS3

Stopped ALG Application Layer Gateway Service

Stopped ALG Application Layer Gateway Service

Stopped Appinfo Application Information

Stopped Appinfo Application Information

Stopped AppMgmt Application Management

Stopped AppMgmt Application Management

Stopped clr_optimizatio... Microsoft .NET Framework NGEN v2.0....

Stopped clr_optimizatio... Microsoft .NET Framework NGEN v2.0....

Stopped COMSysApp COM+ System Application

Stopped COMSysApp COM+ System Application

Stopped DFSR DFS Replication

Stopped DFSR DFS Replication

Stopped dot3svc Wired AutoConfig

Stopped dot3svc Wired AutoConfig

 Status: Running

 Status: Running

Status Name DisplayName

Status Name DisplayName

------ ---- -----------

------ ---- -----------

Running Adobe Version C... Adobe Version Cue CS2

Running Adobe Version C... Adobe Version Cue CS2

Running AeLookupSvc Application Experience

Running AeLookupSvc Application Experience

Running AlertService Intel(R) Alert Service

Running AlertService Intel(R) Alert Service

Running AOL ACS AOL Connectivity Service

Running AOL ACS AOL Connectivity Service

Running Apple Mobile De... Apple Mobile Device

Running Apple Mobile De... Apple Mobile Device

Getting the Most from Windows PowerShell CHAPTER 2

43

Running AudioEndpointBu... Windows Audio Endpoint Builder

Running AudioEndpointBu... Windows Audio Endpoint Builder

Running Audiosrv Windows Audio

Running Audiosrv Windows Audio

Running BFE Base Filtering Engine

Running BFE Base Filtering Engine

Running BITS Background Intelligent Transfer Ser...

Running BITS Background Intelligent Transfer Ser...

By default, properties are sorted in ascending order. You can sort in descending

order with the –Descending parameter. For example, with the Get-Process cmdlet,

sorting the working set in descending order can help you identify processes that are

using the most resources on the computer. The command to do this is:

get-process | sort-object ws -descending

get-process | sort-object ws -descending

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

------- ------ ----- ----- ----- ------ -- -----------

----- -----

-- -----------

 481 22 97236 79804 371 4.31 5276 powershell_ise

 481 22 97236 79804 371 4.31 5276 powershell_ise

 1057 39 84208 78912 279 17.94 3664 iexplore

 1057 39 84208 78912 279 17.94 3664 iexplore

 743 16 69532 74688 188 1120 svchost

 743 16 69532 74688 188 1120 svchost

 1377 44 62880 73172 218 1132 svchost

 1377 44 62880 73172 218 1132 svchost

 763 14 89156 66536 347 784 VersionCueCS2

 763 14 89156 66536 347 784 VersionCueCS2

 459 12 58148 64140 201 7.88 5520 powershell

 459 12 58148 64140 201 7.88 5520 powershell

 596 23 39208 63676 412 110.25 5400 WINWORD

 596 23 39208 63676 412 110.25 5400 WINWORD

 614 27 33284 56512 421 5.22 5776 OUTLOOK

 614 27 33284 56512 421 5.22 5776 OUTLOOK

 739 0 0 55780 68 4 System

 739 0 0 55780 68 4 System

 1113 12 45712 43988 154 2560 SearchIndexer

 1113 12 45712 43988 154 2560 SearchIndexer

 588 19 26768 34592 193 5.33 1704 explorer

 588 19 26768 34592 193 5.33 1704 explorer

 378 13 54952 34056 132 1004 svchost

 378 13 54952 34056 132 1004 svchost

By default, properties are sorted using case-insensitive sorting. You can use case-

sensitive sorting by adding the –CaseSensitive parameter. Finally, when you want to

view only the unique values of a property, you can add the –Unique parameter. This

eliminates multiple occurrences of members of a specifi ed collection with the same

value. When you are sorting based on object properties, this means only unique

values for specifi ed properties are returned, which may be what you want when you

are sorting business names but probably isn’t what you want when you are sorting

process names. To see why, enter the following command to display a name-sorted

list of running processes:

get-process | sort-object name

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

------- ------ ----- ----- ----- ------ -- -----------

------- ------ ----- ----- ----- ------ -- -----------

 52 3 1292 3856 51 0.00 2204 acrotray

 52 3 1292 3856 51 0.00 2204 acrotray

 139 4 2556 7356 75 1380 AlertService

 139 4 2556 7356 75 1380 AlertService

 586 8 22100 19900 132 652 csrss

 586 8 22100 19900 132 652 csrss

 658 6 1720 5160 95 592 csrss

 658 6 1720 5160 95 592 csrss

44

CHAPTER 2 Getting the Most from Windows PowerShell

 57 2 884 2860 23 2100 svchost

 57 2 884 2860 23 2100 svchost

 306 24 17576 21816 86 1828 svchost

 306 24 17576 21816 86 1828 svchost

 680 20 20688 24184 119 1524 svchost

 680 20 20688 24184 119 1524 svchost

 135 5 2764 6036 52 2112 svchost

 135 5 2764 6036 52 2112 svchost

 105 4 1436 4076 46 640 wininit

 105 4 1436 4076 46 640 wininit

 147 4 2380 6540 56 808 winlogon

 147 4 2380 6540 56 808 winlogon

 598 23 39240 63696 413 111.77 5400 WINWORD

 598 23 39240 63696 413 111.77 5400 WINWORD

In the output, you’ll likely see multiple occurrences of some processes, such as

powershell or svchost. If you enter the following command:

get-process | sort-object name –unique

get-process | sort-object name –unique

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

------- ------ ----- ----- ----- ------ -- -----------

------- ------ ----- ----- ----- ------ -- -----------

 52 3 1292 3856 51 0.00 2204 acrotray

 52 3 1292 3856 51 0.00 2204 acrotray

 139 4 2556 7356 75 1380 AlertService

 139 4 2556 7356 75 1380 AlertService

 586 8 22100 19900 132 652 csrss

 586 8 22100 19900 132 652 csrss

 57 2 884 2860 23 2100 svchost

 57 2 884 2860 23 2100 svchost

 105 4 1436 4076 46 640 wininit

 105 4 1436 4076 46 640 wininit

 147 4 2380 6540 56 808 winlogon

 147 4 2380 6540 56 808 winlogon

 598 23 39240 63696 413 111.77 5400 WINWORD

 598 23 39240 63696 413 111.77 5400 WINWORD

In the output, you’ll see only the fi rst occurrence of each process, which doesn’t

give you a complete picture of how many processes are running and what resources

are being used by those processes.

Writing to Output Streams

Windows PowerShell supports several Write cmdlets for writing to different output

streams. The fi rst thing to know about these cmdlets is that they don’t actually ren-

der the output. They simply pipeline (send) the output to a specifi ed output stream.

Although some output streams modify formatting of the output, the job of actually

rendering and fi nalizing output belongs to the Output cmdlets discussed in the next

section.

The available output streams include the following:

N Standard output stream

N Verbose message stream

N Warning message stream

N Debugging message stream

N Error stream

Getting the Most from Windows PowerShell CHAPTER 2

45

Explicitly Writing Output

You can explicitly write output using one of the following output cmdlets:

N Write-Host Writes to the standard output stream and allows you to set the

background color and foreground color for text. By default, any text you

write is terminated with a newline character. Use –NoNewLine to write text

without inserting a newline character. Use –Separator to specify a string to

output between objects you are displaying. Use –Object to specify the object

or string literal to display.

Write-Host [-BackgroundColor

Write-Host [-BackgroundColor Color

 Color] [-ForegroundColor

] [-ForegroundColor Color]

[-NoNewline] [-Separator

[-NoNewline] [-Separator Object

 Object] [[-Object]

] [[-Object] Object

 Object]

N Write-Output Sends a specifi ed object down the pipeline to the next com-

mand or for display in the console. Because Write-Output accepts an input

object, you can pipeline objects to it, and it in turn will pipeline objects to

the next command or the console as appropriate.

Write-Output [[-InputObject]

Write-Output [[-InputObject] Object

 Object]

The main reason to use Write-Host is to take advantage of the formatting op-

tions it provides, which include alternative text and background colors. You use the

–BackgroundColor parameter to set the background color for output text and the

–ForegroundColor parameter to set the text color. The available colors are:

N Black, DarkBlue, DarkGreen, DarkCyan

N DarkRed, DarkMagenta, DarkYellow, Gray

N DarkGray, Blue, Green, Cyan

N Red, Magenta, Yellow, White

In the following example, you specify that you want black text on a yellow back-

ground:

write-host –backgroundcolor yellow –foregroundcolor black "This is text!"

write-host –backgroundcolor yellow –foregroundcolor black "This is text!"

This is text!

This is text!

 NOTE The Write-Host cmdlet writes output to the application that is hosting Power-

Shell. Typically, this is the PowerShell console (powershell.exe) or the PowerShell

 application (powershell_ise.exe). Other applications can host the PowerShell engine,

and those applications may handle Write-Host output in a different way. This means

that you’ll want to use Write-Host only when you know which host application will be

used and how the host application will handle Write-Host output.

46

CHAPTER 2 Getting the Most from Windows PowerShell

 The Write-Output cmdlet also writes to the standard output stream. Unlike

Write-Host, which does not accept input objects, Write-Output accepts objects as

input. However, the purpose of Write-Output is simply to send a specifi ed object

to the next command in the pipeline. If the command is the last in the pipeline, the

object is displayed on the console.

One situation in which to use Write-Output is when you want to be explicit

about what you are writing to output. For example:

get-process | write-output

get-process | write-output

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

------- ------ ----- ----- ----- ------ -- -----------

------- ------ ----- ----- ----- ------ -- -----------

 52 3 1292 3856 51 0.00 2204 acrotray

 52 3 1292 3856 51 0.00 2204 acrotray

 139 4 2556 7356 75 1380 AlertService

 139 4 2556 7356 75 1380 AlertService

Here, you pipeline the output of Get-Process to Write-Output to show you are

writing output.

When you are using variables, Write-Output is also helpful for being explicit

about output you are writing. Consider the following example:

$p = get-process; $p

$p = get-process; $p

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

------- ------ ----- ----- ----- ------ -- -----------

----- -----

-- -----------

 52 3 1292 3856 51 0.00 2204 acrotray

 52 3 1292 3856 51 0.00 2204 acrotray

 139 4 2556 7356 75 1380 AlertService

 139 4 2556 7356 75 1380 AlertService

Here you create the $p variable, store Process objects in it, and then write those

objects to the output. To be explicit about the write operation, you can change

the previous line of code to read as follows:

$p = get-process; write-output $p

$p = get-process; write-output $p

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

------- ------ ----- ----- ----- ------ -- -----------

----- -----

-- -----------

 52 3 1292 3856 51 0.00 2204 acrotray

 52 3 1292 3856 51 0.00 2204 acrotray

 139 4 2556 7356 75 1380 AlertService

 139 4 2556 7356 75 1380 AlertService

Getting the Most from Windows PowerShell CHAPTER 2

47

Using Other Output Streams

When you want to work with output streams other than the standard output stream,

use the following Write cmdlets:

N Write-Debug Writes debug messages to the console from a script or

command. By default, debug messages are not displayed in the console

and do not cause execution to halt. You can display debug messages using

the – Debug parameter (which is common to all cmdlets) or the $Debug-

Preference variable. The –Debug parameter overrides the value of the

$ DebugPreference variable for the current command.

Write-Debug [-message]

Write-Debug [-message] DebugMessage

 DebugMessage

N Write-Error Writes error messages to the console from a script or com-

mand. By default, error messages are displayed in the console but do not

cause execution to halt. You can modify the behavior using the –ErrorAction

parameter (which is common to all cmdlets) or the $ErrorActionPreference

variable. The –ErrorAction parameter overrides the value of the $ErrorAction-

Preference variable for the current command.

Write-Error -ErrorRecord

Write-Error -ErrorRecord ErrorRecord

 ErrorRecord [

 d

 AddtlParams

 AddtlParams]

Write-Error [-TargetObject

Write-Error [-TargetObject Object

 Object] [-Message]

] [-Message] String

 String

[-ErrorId

[-ErrorId String

 String] [

] [AddtlParams

 AddtlParams]

Write-Error -Exception

Write-Error -Exception Exception

 Exception [-Category

[-Category String

 String] [

] [AddtlParams

 AddtlParams]

AddtlParams=

AddtlParams=

[-CategoryTargetName

[

 String

-CategoryTargetName String] [-CategoryTargetType

] [-CategoryTargetType String

 String]

[-CategoryReason

[-Categ

 String

oryReason String] [-CategoryActivity

] [-CategoryActivity String

 String]

[-RecommendedAction

[-RecommendedAction String

 String]

N Write-Warning Writes warning messages to the console from a script

or command. By default, warning messages are displayed in the console

but do not cause execution to halt. You can modify the behavior using

the –WarningAction parameter (which is common to all cmdlets) or the

$ WarningPreference variable. The –WarningAction parameter overrides the

value of the $WarningPreference variable for the current command.

Write-Warning [-message]

Write-Warning [-message] WarningMessage

 WarningMessage

N Write-Verbose Writes verbose messages to the console from a script or

command. By default, verbose messages are not displayed in the console

and do not cause execution to halt. You can display verbose messages

using the –Verbose parameter (which is common to all cmdlets) or the

48

CHAPTER 2 Getting the Most from Windows PowerShell

$VerbosePreference variable. The –Verbose parameter overrides the value

of the $VerbosePreference variable for the current command.

Write-Verbose [-message]

Write-Verbose [-message] VerboseMessage

 VerboseMessage

Write-Debug, Write-Error, Write-Warning, and Write-Verbose can each be man-

aged using either a common parameter or a preference variable. In every case, the

related parameter accepts a value of $true or $false, and the preference variable

accepts one of the following values:

N Stop

N Inquire

N Continue

For example, the $DebugPreference variable determines how PowerShell handles

debugging messages. You can specify:

N $DebugPreference=Stop to display debug messages and stop executing.

N $DebugPreference=Inquire to display debug messages that ask whether you

want to continue.

N $DebugPreference=Continue to display debug messages and continue with

execution.

N $DebugPreference=SilentlyContinue to not display debug messages and

continue execution without interruption.

The –Debug parameter overrides the value of the $DebugPreference variable

for the current command. You can specify –Debug:$true or –Debug to turn on

debugging, or you can specify –Debug:$false to suppress the display of debugging

messages when the value of $DebugPreference is not SilentlyContinue.

Rendering and Finalizing the Output

Whether you enter a single cmdlet, send output to other cmdlets using piping, or format

output explicitly, the fi nal part of parsing and displaying output is a hidden background

call to an output cmdlet. By default, as the last part of the execution process, PowerShell

calls the default output cmdlet, which is typically the Out-Host cmdlet.

You can explicitly specify the output cmdlet to use by sending the output to one

of the following output cmdlets:

N Out-File Sends the output to a fi le. You must specify the path to the out-

put fi le to use. If the output fi le exists, you can use the –Force parameter to

overwrite it or the –Append parameter to add the output to the fi le. You can

use Out-File instead of the standard redirection techniques discussed in the

next section.

Out-File [-InputObject

Out-File [-InputObject Object

 Object] [-NoClobber] [-Width

] [-NoClobber] [-Width NumChars

 NumChars]

[-Force] [-Append] [-FilePath]

[-Force] [-Append] [-FilePath] String

 g [[-Encoding]

[[-Encoding] String

 String]

Getting the Most from Windows PowerShell CHAPTER 2

49

N Out-GridView Sends the output to a grid view window and displays the

output in an interactive table. The grid view window supports sorting, grouping,

copying, and fi ltering.

Out-GridView [-InputObject

Out-GridView [-InputObject Object

 Object]

N Out-Host Sends the output to the command line. Add the –Paging pa-

rameter to display one page of output at a time (similar to using the More

command in the command shell).

Out-Host [-InputObject

Out-Host [-InputObject Object

 Object] [-Paging]

] [-Paging]

N Out-Null Sends the output to the null port. This deletes the output without

displaying it, which is useful for output that you don’t need.

Out-Null [-InputObject

Out-Null [-InputObject Object

 Object]

N Out-Printer Sends the output to the default printer or to a named printer.

Use the –Name parameter to specify the UNC path to the printer to use, such

as –Name “\\PrintServer85\LaserP45”.

Out-Printer [-InputObject

Out-Printer [-InputObj

 Object

ect Object] [[-Name]

] [[-Name] String

 String]

N Out-String Converts the output of all objects to a single string and then

sends the result to the console. Use the –Stream parameter to send the

strings for each object separately. Use the –Width parameter to specify the

number of characters to display in each line of output. Any additional char-

acters are truncated. The default width is 80 characters.

Out-String [-InputObject

Out-String [-InputObject Object

 Object] [-Width

] [-Width NumChars

 NumChars] [-Stream]

] [-Stream]

All these cmdlets accept input objects, which means you can pipeline objects to

them. The following example writes events from the application log to the C:\logs\

app\current.txt fi le:

get-eventlog –newest 10 –logname application | out-file –filepath

get-eventlog –newest 10 –logname application | out-file –filepath

c:\logs\app\current.txt

c:\logs\app\current.txt

All these cmdlets also allow you to use the –InputObject parameter to specify the

input object. The following example displays the currently running processes in a

grid view window:

$p = get-process; out-gridview –inputobject $p

$p = get-process; out-gridview –inputobject $p

Because these commands do not accept positional input, you must always explicitly

declare the –InputObject parameter. Figure 2-1 shows the command output in grid view.

50

CHAPTER 2 Getting the Most from Windows PowerShell

FIGURE 2-1 Command output is displayed in the grid view.

More on Redirecting Input, Output, and Error

By default, commands take input from the parameters specified when they are

called by PowerShell and then send their output, including errors, to the standard

console window. Sometimes, however, you’ll want to take input from another source

or send output to a file or another output device, such as a printer. You might also

want to redirect errors to a file rather than have them displayed in the console window.

In addition to using the Output cmdlets discussed previously, you can perform

these and other redirection tasks by using the techniques introduced in Table 2-3

and discussed in the examples that follow.

TABLE 2-3 Redirection Techniques for Input, Output, and Errors

REDIRECTION TECHNIQUE

DESCRIPTION

command1 | command2

Sends the output of the first command to be the

input of the second command.

command > [path]filename

Sends output to the named file, creating the file

if necessary or overwriting it if it already exists.

command >> [path]filename

Appends output to the named file if it exists or

creates the file and then writes to it.

Getting the Most from Windows PowerShell CHAPTER 2

51

TABLE 2-3 Redirection Techniques for Input, Output, and Errors

REDIRECTION TECHNIQUE

DESCRIPTION

command 2> [path]filename

Creates the named file and sends any error out-

put to it. If the file exists, it is overwritten.

command 2>> [path]filename

Appends errors to the named file if it exists or

creates the file and then writes errors to it.

command 2>&1

Sends error output to the same destination as

standard output.

Piping is the primary redirection technique, and you’ll find examples of piping

throughout this chapter. Another command redirection technique is to send output

to a file. You can do this with the Out-File cmdlet. You also can use > to create or

overwrite a named file, or >> to create or append data to a named file. For example,

if you want to write the current status of running processes to a file, you can use the

following command:

get-process > processes.txt

Unfortunately, if there is a file in the current directory with the same file name,

this command overwrites the file and creates a new one. If you want to append this

information to an existing file rather than overwrite an existing file, change the

command text to read as follows:

get-process >> processes.txt

By default, errors from commands are written as output on the command line.

As discussed previously, you can manage the error stream using Write-Error, the

–ErrorAction parameter (which is common to all cmdlets), or the $ErrorActionPreference

variable. Another way to redirect standard error is to tell PowerShell that errors

should go to the same destination as standard output. To do this, type the 2>&1

redirection symbol as shown in this example:

chkdsk /r > diskerrors.txt 2>&1

Here, you send standard output and standard error to a file named Diskerrors.

txt. If you want to track only errors, you can redirect only the standard error. In this

example, standard output is displayed at the command line and standard error is

sent to the file Diskerrors.txt:

chkdsk /r 2> diskerrors.txt

If the error file exists, it is overwritten automatically. To append to an existing file

rather than overwrite it, you can use the append technique shown in the following

example:

chkdsk /r 2>> diskerrors.txt

52

 CHAPTER 2 Getting the Most from Windows PowerShell

C H A P T E R 3

Managing Your Windows

PowerShell Environment

N

Using Profiles 53

N

Navigating Windows PowerShell Extensions 60

When you start Windows PowerShell, the working environment is loaded

automatically. Many features of the working environment come from profiles,

which are a type of script that run when you start PowerShell. However, the working

environment is also determined by imported modules, snap-ins, providers, command

paths, file extensions, and file associations. You’ll learn about these features of

PowerShell in this chapter.

Additionally, when you work remotely, your working environment is different

from when you work locally. For this reason, you’ll use different techniques when

you work remotely than when you are working on your local computer. Not only

does PowerShell V2 support remote execution of commands, but PowerShell V2

also supports remote sessions and remote background jobs. You’ll learn about

these features of PowerShell in Chapter 4, “Using Sessions, Jobs, and Remoting.”

Using Profiles

Profiles end with the .ps1 file extension. Generally speaking, profiles are always

loaded when you work with Windows PowerShell, but there are specific excep-

tions. For example, when testing a script, you might want to invoke PowerShell

without loading a profile and then run the script. Doing so will help ensure that

you’ve coded the script properly and haven’t used any profile-specific settings.

You use profiles to store frequently used elements, including:

N Aliases An alias is an alternate name for a command, function, script, file,

executable, or other command element. After you create an alias, you can

use the alias as a keystroke shortcut or friendly name to invoke the related

command element. For example, gsv is an alias for Get-Service. Instead of

53

entering get-service winrm to get information about the WinRM service,

you could enter gsv winrm. To list all available aliases, enter get-alias at the PowerShell prompt.

Get-Alias [-Exclude

Get-Alias [-Exclude Strings

 Strings] [[-Name

] [[-Name Strings

 Strings] |

] |

[-Definition

[-Definition Strings

 Strings]] [-Scope

]] [-Scope String

 String]

N Functions A function is a named set of PowerShell commands. When you

call a function by its name, the set of commands runs just as though you

had typed each command at the command line. For example, you could

create a function to examine critical processes and services on a computer

and generate a report. By adding the function to a profi le, you would then

be able to run the function at any time by entering the function name at the

PowerShell prompt. To list all available functions, enter get-childitem function:

at the PowerShell prompt.

Get-ChildItem [[-Filter]

Get-ChildItem [[-Filter] Strings

 String] [-LiteralPath]

 s] [-LiteralPath] Strings

[AddtlParams]

 Strings

 s

Get-ChildItem [[-Path]

Get-ChildItem [[-Path] Strings

 Strings] [[-Filter]

] [[-Filter] Strings

 Strings] [AddtlParams]

] [AddtlParams]

AddtlParams=

AddtlParams=

[-Exclude Strings] [-Force] [-Include Strings] [-Name] [-Recurse]

[-Exclude Strings] [-Force] [-Include Strings] [-Name] [-Recurse]

N Variables A variable is a placeholder for a value. In addition to environment

variables from the operating system, PowerShell supports automatic, prefer-

ence, and user-created variables. To reference a variable at the prompt or

in scripts, you must precede the variable’s name with a dollar sign ($). For

example, to reference the home variable, you must enter $home. To list all

available variables, enter get-variable at the PowerShell prompt.

Get-Variable [-Scope

Get-Variable [-Scop

 String

e String] [-Exclude

] [-Exclude Strings

 Strings] [-Include

] [-Include Strings

 Strings]

]

[-ValueOnly] [[-Name]

[-ValueOnly] [[-Name] Strings

 Strings]

 NOTE Your scripts and command text can use any of the available variables. Automatic variables are fi xed and are used to store state information. Preference variables are

changeable and are used to store working values for PowerShell confi guration settings.

By default, variables you create exist only in the current session and are lost when you

exit or close the session. To maintain user-created variables, you must store them in a

profi le. For detailed information on variables, see “Working with Variables and Values”

in Chapter 5, “Navigating Core PowerShell Structures.”

 TIP You can view the value of an automatic or a preference variable simply by typing its name at the PowerShell prompt. For example, to see the current value of the $home variable, enter $home at the PowerShell prompt. Environment variables are accessed in a slightly

different way. You must reference $env: and then the name of the variable. For example, to

display the value of the %ComputerName% variable, you must enter $env:computername.

54

CHAPTER 3 Managing Your Windows PowerShell Environment

Creating Profiles

You can create a profile by using a standard text editor. Simply enter the commands

that define the aliases, functions, variables, or other elements you want to use, and

then save the file with the appropriate file name in the appropriate location on your

computer. That’s it. This means you can use the following technique to create a

profile:

1. In Notepad or any other text editor, enter the command text for the aliases,

functions, variables, and any other command elements you want to use.

2. Save the file with the appropriate file name and file extension for a profile,

such as Profile.ps1.

3. Copy the profile file to the appropriate location, such as a folder named

$pshome.

When you are working with the PowerShell console and the PowerShell applica-

tion, there are six types of profiles you need to know about. Table 3-1 summarizes

these profiles. $home and $pshome are automatic variables. The $home variable

stores the current user’s home directory. The $pshome variable stores the installa-

tion directory for PowerShell.

TABLE 3-1 Common PowerShell Profiles

PROFILE TYPE

DESCRIPTION

LOCATION

Current User,

A profile specific to

Directory: $home\[My]Documents\

PowerShell

the user account for

WindowsPowerShell

Console

the current user con-

Name: profile.ps1

text and applicable

only to the Power-

Shell console.

Current User,

A profile specific to

Directory: $home\[My]Documents\

PowerShell

the user account for

WindowsPowerShell

ISE

the current user con-

Name: Microsoft.PowerShellISE_profile.ps1

text and applicable

only to the Power-

Shell application.

Current User,

A profile specific to

Directory: $home\[My]Documents

All Hosts

the current user con-

Name: profile.ps1

text and applicable

to both the Power-

Shell console and

the PowerShell

application.

Managing Your Windows PowerShell Environment CHAPTER 3

55

TABLE 3-1 Common PowerShell Profiles

PROFILE TYPE

DESCRIPTION

LOCATION

All Users,

A profile applicable to Directory: $pshome

PowerShell

all users but specific

Name: Microsoft.PowerShell_profile.ps1

Console

to the PowerShell

console.

All Users,

A profile applicable to Directory: $pshome

PowerShell

all users but specific

Name: Microsoft.PowerShellISE_profile.ps1

ISE

to the PowerShell

application.

All Users, All

A profile applicable to Directory: $pshome

Hosts

all users for both the

Name: profile.ps1

PowerShell console

and the PowerShell

application.

When PowerShell starts, PowerShell looks for profiles in the specified locations

and runs the profiles in the following order:

1. The All Users, All Hosts profile

2. Either the All Users, PowerShell or All Users, PowerShell ISE profile as

appropriate

3. The Current User, All Hosts profile

4. Either the Current User, PowerShell or Current User, PowerShell ISE profile as

appropriate

The order of the profiles’ execution determines the precedence order for any

conflicts. Whenever there is a conflict, the last value written wins. Following this, an

alias defined in the Current User, PowerShell profile or the Current User, PowerShell

ISE profile has precedence over any conflicting entries in any other profile.

Understanding Execution Order

Whenever you work with Windows PowerShell and PowerShell profiles, don’t over-

look the importance of execution order and the PATH environment variable. It is

important to keep in mind where the commands you are using come from. Power-

Shell searches for commands in the following order:

1. Aliases PowerShell looks for alternate built-in or profile-defined aliases for

the associated command name. If an alias is found, the command to which

the alias is mapped is run.

2. Functions PowerShell looks for built-in or profile-defined functions with

the command name. If a function is found, the function is executed.

56

 CHAPTER 3 Managing Your Windows PowerShell Environment

 3. Cmdlets or language keywords PowerShell looks for built-in cmdlets or language keywords with the command name. If a cmdlet or language keyword

is found, the appropriate action is taken.

4. Scripts PowerShell looks for scripts with the .ps1 extension. If a PowerShell

script is found, the script is executed.

5. External commands and files PowerShell looks for external commands,

non-PowerShell scripts, and utilities with the command name. If an external

command or utility is found in a directory specified by the PATH environment

variable, the appropriate action is taken. If you enter a file name, PowerShell

uses file associations to determine whether a helper application is available

to open the file.

Because of the execution order, contrary to what you might think, when you

type dir and then press Enter to get a listing of the current directory, you are not

running the dir command that is built into the Windows command shell (cmd.exe).

Instead, when you type dir at the PowerShell prompt, you are actually running a

PowerShell command. This command is called Get-ChildItem. Why does this occur?

Although PowerShell does pass commands through to the Windows command

shell, it does so only when a PowerShell command or an alias to a PowerShell

command is not available. Because dir is a registered alias of Get-ChildItem, you are

actually running Get-ChildItem when you enter dir.

Working with the Command Path

The Windows operating system uses the command path to locate executables. The

types of files that Windows considers to be executables are determined by the file

extensions for executables. You can also map file extensions to specific applications

by using file associations.

Managing the Command Path

You can view the current command path for executables by displaying the value

of the PATH environment variable. To do this, open a PowerShell console, type

$env:path on a line by itself, and then press Enter. The results should look similar to the following:

C:\Windows\System32;C:\Windows;C:\Windows\System32\Wbem;

C:\Windows\System32\WindowsPowerShell\v1.0\

 NOTE Observe the use of the semicolon (;) to separate individual paths. PowerShell uses the semicolon to determine where one file path ends and another begins.

The command path is set during logon using system and user environment vari-

ables, namely the %PATH% variable. The order in which directories are listed in the

Managing Your Windows PowerShell Environment CHAPTER 3

57

path indicates the search order PowerShell uses when it searches for executables. In the previous example, PowerShell searches in this order:

1. C:\Windows\System32

2. C:\Windows

3. C:\Windows\System32\Wbem

4. C:\Windows\System32\PowerShell\v1.0

You can permanently change the command path in the system environment by

using the SETX command. For example, if you use specific directories for scripts or

applications, you may want to update the path information. You can do this by using

the SETX command to add a specific path to the existing path, such as setx PATH

“%PATH%;C:\Scripts” .

 NOTE Observe the use of the quotation marks and the semicolon. The quotation

marks are necessary to ensure that the value %PATH%;C:\Scripts is read as the second

argument for the SETX command. As mentioned previously, the semicolon is used to

specify where one file path ends and another begins. Because the command path is

set when you open the PowerShell console, you must exit the console and open a new

console to load the new path. If you’d rather not exit the console, you can update the

PATH environment variable for the console as discussed in “Using External Commands”

in Chapter 1, “Introducing Windows PowerShell.”

In this example, the directory C:\Scripts is appended to the existing command

path, and the sample path listed previously would be modified to read as follows:

C:\Windows\System32;C:\Windows;C:\Windows\System32\Wbem;C:\Windows\

System32\PowerShell\v1.0;C:\Scripts

Don’t forget about the search order that Windows uses. Because the paths are

searched in order, the C:\Scripts directory will be the last one searched. This can

sometimes slow execution of your scripts. To help Windows find your scripts faster,

you may want C:\Scripts to be the first directory searched. In this case, you could set

the command path by using the following command:

setx PATH "C:\Scripts;%PATH%"

Be careful when setting the command path. It is easy to overwrite all path

information accidentally. For example, if you don’t specify the %PATH% environ-

ment variable when setting the path, you will delete all other path information. One

way to ensure that you can easily re-create the command path is to keep a copy

of the command path in a file. To write the current command path to a file, type

$env:path > orig_path.txt. Keep in mind that if you are using a standard console

rather than an administrator console, you won’t be able to write to secure system

locations. In this case, you can write to a subdirectory to which you have access or

your personal profile. To write the command path to the PowerShell console, type

$env:path. Now you have a listing or a file that contains a listing of the original

command path.

58

 CHAPTER 3 Managing Your Windows PowerShell Environment

Managing File Extensions and File Associations

File extensions are what allow you to execute external commands by typing just

their command name at the PowerShell prompt. Two types of file extensions are

used:

N File extensions for executables Executable files are defined with the

%PATHEXT% environment variable. You can view the current settings by

typing $env:pathext at the command line. The default setting is .COM;.EXE;.

BAT;.CMD;.VBS;.VBE;.JS;.JSE;.WSF;.WSH;.MSC;.PSC1. With this setting, the com-

mand line knows which files are executables and which files are not, so you

don’t have to specify the file extension at the command line.

N File extensions for applications File extensions for applications are

referred to as file associations. File associations are what enable you to pass

arguments to executables and to open documents, spreadsheets, or other

application files by double-clicking file icons. Each known extension on a system

has a file association that you can view by typing cmd /c assoc followed by

the extension, such as cmd /c assoc .exe. Each file association in turn speci-

fies the file type for the file extension. This information can be viewed using

the FTYPE command followed by the file association, such as cmd /c ftype

exefile.

 NOTE Observe that you call ASSOC and FTYPE via the command shell. The reason is

that they are internal commands for the command shell.

With executables, the order of file extensions sets the search order used by the

command line on a per-directory basis. Thus, if a particular directory in the com-

mand path has multiple executables that match the command name provided, a

.com file would be executed before a .exe file and so on.

Every known file extension on a system has a corresponding file association and

file type—even extensions for executables. In most cases, the file type is the exten-

sion text without the period, followed by the keyword file, such as cmdfile, exefile,

or batfile. The file association specifies that the first parameter passed is the com-

mand name and that other parameters should be passed on to the application.

You can look up the file type and file association for known extensions by using

the ASSOC and FTYPE commands. To find the association, type cmd /c assoc

followed by the file extension that includes the period. The output of the ASSOC

command is the file type. So if you type cmd /c ftype association (where association is the output of the ASSOC command), you’ll see the file type mapping. For example,

if you type cmd /c assoc .exe to see the file associations for .exe executables, you

then type cmd /c ftype exefile to see the file type mapping.

You’ll see the file association is set to

exefile="%1" %*

Managing Your Windows PowerShell Environment CHAPTER 3

59

Thus, when you run an .exe fi le, Windows knows the fi rst value is the command that you want to run and anything else you’ve provided is a parameter to pass

along.

 TIP File associations and types are maintained in the Windows registry and can be

set using the ASSOC and FTYPE commands, respectively. To create the fi le association,

type cmd /c assoc followed by the extension setting, such as cmd /c assoc .pl=perlfi le.

To create the fi le type, set the fi le type mapping, including how to use parameters

 supplied with the command name, such as cmd /c ftype perlfi le=C:\Perl\Bin\

Perl.exe “%1” %* .

Navigating Windows PowerShell Extensions

Windows PowerShell can be extended in several different ways. Typically, extensions

are in the form of PowerShell snap-ins that add PowerShell providers to the work-

ing environment. The data that a provider exposes appears in a drive that you can

browse. PowerShell V2 introduces module extensions, which must be imported

before you use them.

Working with Windows PowerShell Extensions

Cmdlets that you’ll use to work with Windows PowerShell snap-ins, providers, and

drives include:

N Add-PSSnapin Adds one or more registered snap-ins to the current session.

After you add a snap-in, you can use the cmdlets and providers that the

snap-in supports in the current session.

Add-PSSnapin [-PassThru] [-Name]

Add-PSSnapin [-PassThru] [-Name] Strings

 Strings

N Export-Console Exports the names of PowerShell snap-ins in the current

session to a PowerShell console fi le (.psc1). You can add the snap-ins in the

console fi le to future sessions by using the –PSConsoleFile parameter of

PowerShell.exe.

Export-Console [-NoClobber] [-Force] [[-Path]

Export-Console [-NoClobber] [-Force] [[-Path] String

 String]

N Get-Module Gets information modules. The fi rst syntax shown in the fol-

lowing example gets information about imported modules that are on the

computer and available in the current session. The second syntax shown gets

information about available modules that you can use.

Get-Module [[-Name]

Get-Module [[-Name] Strings

 Strings] [-All]

] [-All]

Get-Module [-ListAvailable [-Name]

Get-Module [-ListAvailable [-Name] Strings

 Strings] -Recurse

] -Recurse

60

CHAPTER 3 Managing Your Windows PowerShell Environment

N Get-PSProvider Gets information about all or specifi ed providers that are installed on the computer and available in the current session. Providers

are listed by name, capability, and drive.

Get-PSProvider [[-PSProvider]

Get-PSProvider [[-PSProvider] Strings

 Strings]

N Get-PSSnapin Gets objects representing snap-ins that were added to the

current session or registered on the system. Snap-ins are listed in detection

order. You can register snap-ins using the InstallUtil tool included with

Microsoft .NET Framework 2.0.

Get-PSSnapin [-Registered] [[-Name]

Get-PSSnapin [-Registered] [[-Name] Strings

 Strings]

N Import-Module Imports one or more available modules into the current

session. After you add a module, you can use the cmdlets and functions that

the module supports in the current session.

Import-Module [-Name]

Import-Module [-Name] Strings

 Strings [AddtlParams]

[AddtlParams]

Import-Module [-Assembly]

Import-Module [-Assembly] Assemblies

 Assemblies [AddtlParams]

[AddtlParams]

Import-Module [-ModuleInfo]

Import-Module [-ModuleInfo] ModGUIDs

 ModGUIDs [AddtlParams]

[AddtlParams]

AddtlParams=

AddtlParams=

[-Prefix

[-Prefix String

 String] [-Function

] [-Function Strings

 Strings] [-Cmdlet

] [-Cmdlet Strings

 Strings] [-Variable

 Strings

 String] [-Alias

 s] [-Alias Strings

 Strings] [-Force] [-PassThru] [-AsCustomObject]

] [-Force] [-PassThru] [-AsCustomObject]

[-Version Version

 Version] [-ArgumentList

] [-ArgumentList Objects

 Objects]

N New-Module Creates a module based on script blocks, functions, and

cmdlets that you specify. Also available are New-ModuleManifest and Test-

ModuleManifest.

New-Module [-ScriptBlock]

New-Module [-ScriptBlock] ScriptBlock

 k [-Function

[-Function Strings

 Strings] [-Cmdlet

] [-Cmdlet

 Strings

 String] [-ReturnResult] [-AsCustomObject] [-ArgumentList

 s] [-ReturnResult] [-AsCustomObject] [-ArgumentList Objects

 Object]

 s

New-Module [-Name]

New-Module [-Name] String

[-ScriptBlock]

[-ScriptBlock]

 g

 ScriptBlock

 k [-Function

[-Function

 Strings

 Stri

] [-Cmdlet

 ngs] [-Cmdlet Strings

 Strings] [-ReturnResult] [-AsCustomObject]

] [-ReturnResult] [-AsCustomObject]

[-ArgumentList

[-ArgumentLi

 Objects

st Objects]

N Remove-Module Removes a module that you added to the current session.

Remove-Module [-Name]

Remove-Module [-Name] Strings

 Strings [-Force]

[-Force]

Remove-Module [-ModuleInfo]

Remove-Module [-ModuleInfo] ModGUIDs [-Force]

[-Force]

N Remove-PSSnapin Removes a PowerShell snap-in that you added to the

current session. You cannot remove snap-ins that are installed with Windows

PowerShell.

Remove-PSSnapin [-PassThru] [-Name]

Remove-PSSnapin [-PassThru] [-Name Strings

] Strings

Managing Your Windows PowerShell Environment CHAPTER 3

61

Using Snap-ins

Windows PowerShell snap-ins are .NET programs that are compiled into DLL files.

Snap-ins can include providers, cmdlets, and functions. PowerShell providers are

.NET programs that provide access to specialized data stores so that you can access

the data stores from the command line. Before using a provider, you must install the

related snap-in and add it to your Windows PowerShell session.

PowerShell comes with a set of core snap-ins, but you can extend PowerShell

by adding snap-ins that contain additional providers and cmdlets. For example,

when you are working with servers and applications such as Microsoft Exchange

Server 2007 SP1 or later or SQL Server 2008, those servers and applications include

extended command environments for PowerShell. Exchange Server 2007 SP1 or

later includes Exchange Management Shell, which is simply a PowerShell console

loaded with the snap-ins and environment used by Exchange Server. SQL Server

2008 or later includes SQL Server PowerShell, which is a PowerShell console loaded

with the snap-ins and environment used by SQL Server.

Similarly, when you add a snap-in, the providers and cmdlets that it contains

are immediately available for use in the current session. To ensure that a snap-in is

available in all future sessions, add the snap-in via your profile. You can also use the

Export-Console cmdlet to save the names of snap-ins to a console file. If you start a

console by using the console file, the named snap-ins are available.

To save the snap-ins from a session in a console file (.psc1), use the Export-

Console cmdlet. For example, to save the snap-ins in the current session configuration

to the MyConsole.psc1 file in the current directory, enter the following command:

export-console MyConsole

The following command starts PowerShell with the MyConsole.psc1 console file:

powershell.exe -psconsolefile MyConsole.psc1

You can list the available snap-ins by entering get-pssnapin. To find the snap-in

for each Windows PowerShell provider, enter the following command:

get-psprovider | format-list name, pssnapin

To list the cmdlets in a snap-in, enter

get-command -module SnapinName

where SnapinName is the name of the snap-in you want to examine. The built-in

snap-ins are summarized in Table 3-2.

62

 CHAPTER 3 Managing Your Windows PowerShell Environment

TABLE 3-2 Built-In PowerShell Snap-Ins

NAME

DESCRIPTION

Microsoft.PowerShell.Core

Contains providers and cmdlets

used to manage the basic features

of Windows PowerShell. Includes

the FileSystem, Registry, Alias,

Environment, Function, and Vari-

able providers and basic cmdlets

like Get-Help, Get-Command, and

Get-History.

Microsoft.PowerShell.Diagnostics

Contains the cmdlets used to

read Windows event log and

configuration data, for example,

Get-WinEvent.

Microsoft.PowerShell.Host

Contains cmdlets used by the

Windows PowerShell host, such as

Start-Transcript and Stop-Transcript.

Microsoft.PowerShell.Management

Contains cmdlets used to manage

Windows components, including

Get-Service and Get-ChildItem.

Microsoft.PowerShell.Security

Contains cmdlets to manage Win-

dows PowerShell security, such as

Get-Acl, Get-AuthenticodeSignature,

and ConvertTo-SecureString

Microsoft.PowerShell.Utility

Contains the cmdlets used to

manipulate objects and data, such

as Get-Member, Write-Host, and

Format-List.

Microsoft.PowerShell.WSMan.Management

Contains the cmdlets used to

manage WSMan operations,

such as Get-WSManInstance and

Set-WSManInstance.

The built-in snap-ins are registered in the operating system and added to the

default session whenever you start Windows PowerShell. To use snap-ins that you

create or obtain from other sources, you must register them and add them to your

console session. To find registered snap-ins (other than the built-in snap-ins) on

your system or to verify that an additional snap-in is registered, enter the following

command:

get-pssnapin -registered

Managing Your Windows PowerShell Environment CHAPTER 3

63

You can add a registered snap-in to the current session by using the Add-

PSSnapin cmdlet. For example, to add the SQL Server snap-in to the session, type

add-pssnapin sqlserver. Once you add the snap-in, its providers and cmdlets are

available in the console session. If you add the necessary Add-PSSnapin commands

to a relevant profi le, you can be sure that modules you want to use are always

loaded.

To remove a Windows PowerShell snap-in from the current session, use the

Remove-PSSnapin cmdlet. For example, to remove the SQL Server snap-in from

the current session, type remove-pssnapin sqlserver. This removes the snap-in

from the session. The snap-in is still loaded, but the providers and cmdlets that it

supports are no longer available.

When you are performing administrative tasks or creating scripts for later use,

you’ll often want to ensure that a particular PowerShell snap-in is available before

you try to use its functions or cmdlets. The easiest way to do this is to attempt

to perform the action or run a script only if the snap-in is available. Consider the

following example:

if (get-pssnapin -name ADRMS.PS.Admin -erroraction silentlycontinue)

if (get-pssnapin -name ADRMS.PS.Admin -erroraction silentlycontinue)

{

{

Code to execute if the snap-in is available.

Code to execute if the snap-in is available.

} else {

} else {

Code to execute if the snap-in is not available.

Code to execute if the snap-in is not available.

}

Here, when the ADRMS.PS.Admin snap-in is available, the statement in parenthe-

ses evaluates to True, and any code in the related script block is executed. When the

ADRMS.PS.Admin snap-in is not available, the statement in parentheses evaluates

to False, and any code in the Else statement is executed. Note also that I set the

– ErrorAction parameter to SilentlyContinue so that error messages aren’t written to

the output if the snap-in is not found.

 TIP The same technique can be used with providers and modules.

Using Providers

The data that a provider exposes appears in a drive that you can browse much like

you browse a hard drive, allowing you to view, search though, and manage related

data. To list all providers that are available, type Get-PSProvider. Table 3-3 lists the built-in providers. Note the drives associated with each provider.

64

CHAPTER 3 Managing Your Windows PowerShell Environment

TABLE 3-3 Built-In PowerShell Providers

PROVIDER

DATA ACCESSED

DRIVE

Alias

Windows PowerShell

{Alias}

aliases

Certificate

X509 certificates for digital {Cert}

signatures

Environment

Windows environment

{Env}

variables

FileSystem

File system drives,

{C, D, E, …}

directories, and files

Function

Windows PowerShell

{Function}

functions

Registry

Windows registry

{HKLM, HKCU}

Variable

Windows PowerShell

{Variable}

variables

WSMan

WS-Management

{WSMan}

PowerShell includes a set of cmdlets that are specifically designed to manage the

items in the data stores that are exposed by providers. You use these cmdlets in the

same ways to manage all the different types of data that the providers make avail-

able to you. Table 3-4 provides an overview of these cmdlets.

TABLE 3-4 Cmdlets for Working with Data Stores

CMDLET

DESCRIPTION

Get-PSDrive

Gets all or specified PowerShell drives in the current console.

This includes logical drives on the computer, drives mapped to

network shares, and drives exposed by Windows PowerShell

providers. Get-PSDrive does not get Windows mapped drives

that are added or created after you open PowerShell. However,

you can map drives using New-PSDrive, and those drives will

be available.

Get-PSDrive [-PSProvider Strings]

[-Scope String]

[[-LiteralName] | [-Name]] Strings

Managing Your Windows PowerShell Environment CHAPTER 3

65

TABLE 3-4 Cmdlets for Working with Data Stores

CMDLET

DESCRIPTION

New-PSDrive

Creates a PowerShell drive that is mapped to a location in a

data store, which can include a shared network folder, a local

directory, or a registry key. The drive is available only in the

current PowerShell console.

New-PSDrive [-Credential Credential]

[-Description String]

[-Scope String] [-Name] String

[-PSProvider] String [-Root] String

Remove-PSDrive

Removes a PowerShell drive that you added to the current

console session. You cannot delete Windows drives or mapped

network drives created by using other methods.

Remove-PSDrive [-Force]

[-PSProvider Strings] [-Scope String]

[[-LiteralName] | [-Name]] Strings

Get-ChildItem

Gets the items and child items in one or more specified

locations.

Get-ChildItem [[-Path] Strings]

[[-Filter] String] [AddtlParams]

Get-ChildItem [[-Filter] String]

[-LiteralPath] Strings [AddtlParams]

AddtlParams=

[-Exclude Strings] [-Force]

[-Include Strings] [-Name]

[-Recurse]

Get-Item

Gets the item at the specified location.

Get-Item [[-LiteralPath] |

[-Path]] Strings [AddtlParams]

AddtlParams=

[-Credential Credential]

[-Exclude Strings] [-Filter String]

[-Force] [-Include Strings]

New-Item

Creates a new item.

New-Item [-Credential Credential]

[-Force] [-ItemType String]

[-Path Strings] [-Value Object]

-Name String

66

 CHAPTER 3 Managing Your Windows PowerShell Environment

TABLE 3-4 Cmdlets for Working with Data Stores

CMDLET

DESCRIPTION

Set-Item

Changes the value of an item to the value specified in the

command.

Set-Item [-Value] Object]

[[-LiteralPath] | [-Path] Strings

[AddtlParams]

AddtlParams=

[-Credential Credential]

[-Exclude Strings] [-Filter String]

[-Force] [-Include Strings] [-PassThru]

Remove-Item

Deletes the specified item.

Remove-Item [[-LiteralPath] |

[-Path]] Strings [AddtlParams]

AddtlParams=

[-Credential Credential]

[-Exclude Strings] [-Filter String]

[-Force] [-Include Strings] [-Recurse]

Move-Item

Moves an item from one location to another.

Move-Item [[-Destination] String]

[[-LiteralPath] |

[-Path]] Strings [AddtlParams]

AddtlParams=

[-Credential Credential]

[-Exclude Strings] [-Filter String]

[-Force] [-Include Strings] [-PassThru]

Rename-Item

Renames an item in a Windows PowerShell provider

namespace.

Rename-Item [-Credential Credential]

[-Force] [-PassThru] [-Path] String

[-NewName] String

Managing Your Windows PowerShell Environment CHAPTER 3

67

TABLE 3-4 Cmdlets for Working with Data Stores

CMDLET

DESCRIPTION

Copy-Item

Copies an item from one location to another within a

namespace.

Copy-Item [[-Destination] String]

[[-LiteralPath] |

[-Path]] Strings [AddtlParams]

AddtlParams=

[-Container] [-Credential Credential]

[-Exclude Strings] [-Filter String]

[-Force] [-Include Strings] [-PassThru]

[-Recurse]

Clear-Item

Deletes the contents of an item but does not delete the item.

Clear-Item [[-LiteralPath] | [-Path]]

 Strings [AddtlParams]

AddtlParams=

[-Credential Credential]

[-Exclude Strings] [-Filter String]

[-Force] [-Include Strings]

Invoke-Item

Performs the default action on the specified item.

Invoke-Item [[-LiteralPath] |

[-Path]] Strings [AddtlParams]

AddtlParams=

[-Credential Credential]

[-Exclude Strings] [-Filter String]

[-Include Strings]

Clear-

Deletes the value of a property but does not delete the

ItemProperty

property.

Clear-ItemProperty [[-LiteralPath]

| [-Path]] Strings [-Name] String

[AddtlParams]

AddtlParams=

[-Credential Credential]

[-Exclude Strings] [-Filter String]

[-Force] [-Include Strings] [-PassThru]

68

 CHAPTER 3 Managing Your Windows PowerShell Environment

TABLE 3-4 Cmdlets for Working with Data Stores

CMDLET

DESCRIPTION

Copy-

Copies a property and value from a specified location to

ItemProperty

another location.

Copy-ItemProperty [[-LiteralPath] |

[-Path]] Strings [-Destination] String

[-Name] String [AddtlParams]

AddtlParams=

[-Credential Credential]

[-Exclude Strings] [-Filter String]

[-Force] [-Include Strings] [-PassThru]

Get-

Gets the properties of a specified item.

ItemProperty

Get-ItemProperty [-Name] String

[[-LiteralPath] | [-Path]] Strings

[AddtlParams]

AddtlParams=

[-Credential Credential]

[-Exclude Strings] [-Filter String]

[-Include Strings]

Move-

Moves a property from one location to another.

ItemProperty

Move-ItemProperty [[-LiteralPath] |

[-Path]] Strings

[-Destination] String [-Name] String

[AddtlParams]

AddtlParams=

[-Credential Credential]

[-Exclude Strings] [-Filter String]

[-Force] [-Include Strings] [-PassThru]

New-

Creates a property for an item and sets its value.

ItemProperty

New-ItemProperty [-PropertyType String]

[-Value Object] [[-LiteralPath] |

[-Path]] Strings [-Name] String

[AddtlParams]

AddtlParams=

[-Credential Credential]

[-Exclude Strings] [-Filter String]

[-Force] [-Include Strings]

Managing Your Windows PowerShell Environment CHAPTER 3

69

TABLE 3-4 Cmdlets for Working with Data Stores

CMDLET

DESCRIPTION

Remove-

Deletes the specified property and its value from an item.

ItemProperty

Remove-ItemProperty [[-LiteralPath] |

[-Path]] Strings

[-Name] String [AddtlParams]

AddtlParams=

[-Credential Credential]

[-Exclude Strings] [-Filter String]

[-Force] [-Include Strings]

Rename-Item-

Renames the specified property of an item.

Property

Rename-ItemProperty [[-LiteralPath] |

[-Path]] Strings

[-Name] String [-NewName] String

[AddtlParams]

AddtlParams=

[-Credential Credential]

[-Exclude Strings] [-Filter String]

[-Force] [-Include Strings] [-PassThru]

Set-ItemProperty Creates or changes the value of the specified property of an

item.

Set-ItemProperty -InputObject Object

[-LiteralPath] Strings [AddtlParams]

Set-ItemProperty [-Name] String

[-Value] Object

[AddtlParams]

Set-ItemProperty [-Path] Strings

[AddtlParams]

AddtlParams=

[-Credential Credential]

[-Exclude Strings] [-Filter String]

[-Force] [-Include Strings] [-PassThru]

In addition to the built-in cmdlets, providers can:

N Have custom cmdlets that are designed especially for related data.

N Add “dynamic parameters” to the built-in cmdlets that are available only

when using the cmdlet with the provider data.

70

 CHAPTER 3 Managing Your Windows PowerShell Environment

The drive associated with each provider is listed in the default display of

Get-PSProvider, but you can get more information about a provider drive by using

the Get-PSDrive cmdlet. For example, the Registry provider makes the HKEY_

LOCAL_MACHINE root key available as the HKLM drive. To find all the properties of

the HKLM drive, enter the following command:

get-psdrive hklm | format-list *

You can view and navigate through the data in a provider drive just as you would

data in a file system drive. To view the contents of a provider drive, use the Get-Item

or Get-ChildItem cmdlet. Type the drive name followed by a colon (:). For example,

to view the contents of the Function drive, type:

get-childitem function:

You can view and manage the data in any drive from another drive by including

the drive name in the path. For example, to view the HKLM\Software registry key in

the HKLM drive from another drive, type:

get-childitem hklm:\software

To get into the drive, use the Set-Location cmdlet. Remember the colon when

specifying the drive path. For example, to change your location to the root of the

Function drive, type set-location function:. Then, to view the contents of the

Function drive, type get-childitem.

You can navigate through a provider drive just as you would a hard drive. If the

data is arranged in a hierarchy of items within items, use a backslash (\) to indicate a

child item. The basic syntax is:

Set-location drive:\location\child-location\...

For example, to change your location to the HKLM\Software registry key, use a

Set-Location command, such as:

set-location hklm:\software

You can also use relative references to locations. A dot (.) represents the current

location. For example, if you are in the C:\Windows\System32 directory and you

want to list its files and folders, you can use the following command:

get-childitem .\

When PowerShell loads providers, the providers can add dynamic parameters

that are available only when the cmdlet is used with that provider. For example,

the Certificate drive adds the –CodeSigningCert parameter to the Get-Item and

Get-ChildItem cmdlets. You can use this parameter only when you use Get-Item or

Get-ChildItem in the Cert drive.

Although you cannot uninstall a provider, you can remove the Windows Power-

Shell snap-in for the provider from the current session. To remove a provider, use

the Remove-PSSnapin cmdlet. This cmdlet does not unload or uninstall providers. It

Managing Your Windows PowerShell Environment CHAPTER 3

71

removes all the contents of the snap-in, including providers and cmdlets. This makes the related providers and cmdlets unavailable in the current session.

Another way to remove features made available based on snap-ins is to use the

Remove-PSDrive cmdlet to remove a particular drive from the current session. When

you remove a drive, the data on the drive is not affected, but the drive is no longer

available in the current session.

Often, you’ll want to ensure that a particular PowerShell provider or PSDrive is

available before you try to work with its features. The easiest way to do this is to

attempt to perform the action or run a script only if the provider or PSDrive is avail-

able. Consider the following example:

iIf (get-psprovider -psprovider wsman -erroraction silentlycontinue)

iIf (get-psprovider -psprovider wsman -erroraction silentlycontinue)

{

{

Code to execute if the provider is available.

Code to execute if the provider is available.

} else {

Code to execute if the provider is not available.

Code to execute if the provider is not available.

}

Here, when the WSMan provider is available, the statement in parentheses

evaluates to True, and any code in the related script block is executed. When the

WSMan provider is not available, the statement in parentheses evaluates to False,

and any code in the Else statement is executed. Note also that I set the –ErrorAction

parameter to SilentlyContinue so that error messages aren’t written to the output if

the provider is not found.

Navigating and Using Provider Drives

When you are using provider drives, you might also want to manage content,

confi gure locations, and work with paths. Table 3-5 provides an overview of cmdlets

that you can use to perform related tasks.

72

CHAPTER 3 Managing Your Windows PowerShell Environment

TABLE 3-5 Cmdlets for Working with Provider Drives

CMDLET

DESCRIPTION

Add-Content

Adds content to the specified item, such as adding words to a

file.

Add-Content [[-LiteralPath] |

[-Path]] Strings

[-Value] Objects [AddtlParams]

AddtlParams=

[-Credential Credential] [-Encoding

{<Unknown> | String | <Unicode> | <Byte>

| <BigEndianUnicode> | <UTF8> | <UTF7>

| <Ascii>}] [-Exclude Strings] [-Filter

 String] [-Force] [-Include Strings]

[-PassThru]

Clear-Content

Deletes the contents of an item, such as deleting the text from a

file, but does not delete the item.

Clear-Content [[-LiteralPath] |

[-Path]] Strings [AddtlParams]

AddtlParams=

[-Credential Credential] [-Exclude

 Strings] [-Filter String] [-Force]

[-Include Strings]

Get-Content

Gets the content of the item at the specified location.

Get-Content [[-LiteralPath] | [-Path]]

 Strings [AddtlParams]

AddtlParams=

[-Credential Credential] [-Delimiter

 String] [-Encoding {<Unknown> | String |

<Unicode> | <Byte> | <BigEndianUnicode>

| <UTF8> | <UTF7> | <Ascii>}] [-Exclude

 Strings] [-Filter String] [-Force]

[-Include Strings] [-ReadCount <Int64>]

[-TotalCount <Int64>] [-Wait]

Managing Your Windows PowerShell Environment CHAPTER 3

73

TABLE 3-5 Cmdlets for Working with Provider Drives

CMDLET

DESCRIPTION

Set-Content

Writes content to an item or replaces the content in an item

with new content.

Set-Content [[-LiteralPath] |

[-Path]] Strings

[-Value] Objects [AddtlParams]

AddtlParams=

[-Credential Credential] [-Encoding

{<Unknown> | String | <Unicode> | <Byte>

| <BigEndianUnicode> | <UTF8> | <UTF7> |

<Ascii>}] [-Exclude Strings]

[-Filter String] [-Force]

[-Include Strings] [-PassThru]

Get-Location

Gets information about the current working location.

Get-Location [-PSDrive Strings]

[-PSProvider Strings]

Get-Location [-Stack]

[-StackName Strings]

Set-Location

Sets the current working location to a specified location.

Set-Location [-PassThru]

[[-Path] String]

Set-Location [-PassThru]

[-StackName String]

Push-Location

Adds the current location to the top of a list of locations.

(“stack”).

Push-Location [-PassThru]

[-StackName String]

[[-LiteralPath] | [-Path] String]

Pop-Location

Changes the current location to the location most recently

pushed onto the stack.

Pop-Location [-PassThru]

[-StackName String]

Join-Path

Combines a path and a child-path into a single path. The pro-

vider supplies the path delimiters.

Join-Path [-Credential Credential]

[-Resolve] [-Path] Strings

[-ChildPath] String

74

 CHAPTER 3 Managing Your Windows PowerShell Environment

TABLE 3-5 Cmdlets for Working with Provider Drives

CMDLET

DESCRIPTION

Convert-Path

Converts a path from a Windows PowerShell path to a Windows

PowerShell provider path.

Convert-Path [[-LiteralPath] |

[-Path]] Strings

Split-Path

Returns the specified part of a path.

Split-Path [-LiteralPath Strings]

[-Path] Strings

[AddtlParams]

AddtlParams=

[-Credential Credential]

[-IsAbsolute | -Leaf | -Parent |

-NoQualifier | -Qualifier] [-Resolve]

Test-Path

Determines whether all elements of a path exist.

Test-Path [[-LiteralPath] |

[-Path]] Strings

[AddtlParams]

AddtlParams=

[-Credential Credential] [-Exclude

 Strings] [-Filter String] [-Include

 Strings] [-IsValid] [-PathType {<Any> |

<Container> | <Leaf>}]

Resolve-Path

Resolves the wildcard characters in a path and displays the

path’s contents.

Resolve-Path [-Credential Credential]

[[-LiteralPath] | [-Path] Strings]

The currently selected provider drive determines what data store you are work-

ing with. The default data store is the file system, and the default path within the file

system is the profile directory for the currently logged-on user (in most cases).

The current working location is the location that Windows PowerShell uses if you

do not supply an explicit path to the item or location that is affected by the com-

mand. Typically, this is a directory on a hard drive accessed through the FileSystem

provider. All commands are processed from this working location unless another

path is explicitly provided.

PowerShell keeps track of the current working location for each drive even when

the drive is not the current drive. This allows you to access items from the current

working location by referring only to the drive of another location. For example,

Managing Your Windows PowerShell Environment CHAPTER 3

75

suppose that your current working location is C:\Scripts\PowerShell. Then you use the following command to change your current working location to the HKLM drive:

Set-Location HKLM:

Although your current location is now the HKLM drive, you can still access items

in the C:\Scripts\PowerShell directory by using the C drive, as shown in the following

example:

Get-ChildItem C:

PowerShell retains the information that your current working location for the C

drive is the C:\Scripts\PowerShell directory, so it retrieves items from that directory.

The results would be the same if you ran the following command:

Get-ChildItem C:\Scripts\PowerShell

You can use the Get-Location command to determine the current working loca-

tion, and you can use the Set-Location command to set the current working loca-

tion. For example, the following command sets the current working location to the

Scripts directory of the C drive:

Set-Location c:\scripts

After you set the current working location, you can still access items from other

drives simply by including the drive name (followed by a colon) in the command, as

shown in the following example:

Get-ChildItem HKLM:\software

This example retrieves a list of items in the Software container of the HKEY Local

Machine hive in the registry.

You use special characters to represent the current working location and its

parent location. To represent the current working location, you use a single period.

To represent the parent of the current working location, you use two periods. For

example, the following command specifies the PowerShell subdirectory in the cur-

rent working location:

Get-ChildItem .\PowerShell

If the current working location is C:\Scripts, this command returns a list of all the

items in C:\Scripts\PowerShell. However, if you use two periods, the parent directory

of the current working location is used, as shown in the following example:

Get-ChildItem ..\Data

In this case, PowerShell treats the two periods as the C drive, so the command

retrieves all the items in the C:\Data directory.

A path beginning with a slash identifies a path from the root of the current drive.

For example, if your current working location is C:\Scripts\PowerShell, the root

76

 CHAPTER 3 Managing Your Windows PowerShell Environment

of your drive is C. Therefore, the following command lists all items in the C:\Data directory:

Get-ChildItem \Data

If you do not specify a path beginning with a drive name, slash, or period when

supplying the name of a container or item, the container or item is assumed to

be located in the current working location. For example, if your current working

location is C:\Scripts, the following command returns all the items in the C:\Scripts\

PowerShell directory:

Get-ChildItem PowerShell

If you specify a fi le name rather than a directory name, PowerShell returns de-

tails about that fi le, as long as the fi le is available in the current working location. If

the fi le is not available, PowerShell returns an error.

Using Modules

Windows PowerShell modules are self-contained, reusable units of execution that

can include:

N Script functions that are made available through .PSM1 fi les.

N .NET assemblies that are compiled into .DLL fi les and made available through

.PSD1 fi les.

N PowerShell snap-ins that are made available in .DLL fi les.

N Custom views and data types that are described in .PS1XML fi les.

Most modules have related snap-ins, .NET assemblies, custom views, and custom

data types. In the .PSD1 fi les that defi ne the included assemblies, you’ll fi nd an as-

sociative array that defi nes the properties of the module, as is shown in the example

that follows and summarized in Table 3-6.

@{

GUID="{8FA5064B-8479-4c5c-86EA-0D311FE48875}"

GUID="{8FA5064B-8479-4c5c-86EA-0D311FE48875}"

Author="Microsoft Corporation"

Author="Microsoft Corporation"

CompanyName="Microsoft Corporation"

CompanyName="Microsoft Corporation"

Copyright="© Microsoft Corporation. All rights reserved."

Copyright="© Microsoft Corporation. All rights reserved."

ModuleVersion="1.0.0.0"

ModuleVersion="1.0.0.0"

Description="Powershell File Transfer Module"

Description="Powershell File Transfer Module"

PowerShellVersion="2.0"

PowerShellVersion="2.0"

CLRVersion="2.0"

CLRVersion="2.0"

NestedModules="Microsoft.BackgroundIntelligentTransfer.Management"

NestedModules="Microsoft.BackgroundIntelligentTransfer.Management"

FormatsToProcess="FileTransfer.Format.ps1xml"

FormatsToProcess="FileTransfer.Format.ps1xml"

RequiredAssemblies=Join-Path $psScriptRoot "Microsoft.

RequiredAssemblies=Join-Path $psScriptRoot "Microsoft.

BackgroundIntelligentTransfer.Management.Interop.dll"

BackgroundIntelligentTransfer.Management.Interop.dll"

}

Managing Your Windows PowerShell Environment CHAPTER 3

77

TABLE 3-6 Common Properties of Modules

PROPERTY

DESCRIPTION

Author, CompanyName, Copyright

Provides information about the creator of

the module and copyright.

CLRVersion

The common language runtime (CLR)

version of the .NET Framework required

by the module.

Description

The descriptive name of the module.

FormatsToProcess

A list of FORMAT.PS1XML files loaded by

the module to create custom views for

the module’s cmdlets.

GUID

The globally unique identifier (GUID) of

the module.

ModuleVersion

The version and revision number of the

module.

NestedModules

A list of snap-ins, .NET assemblies, or both

loaded by the module.

PowerShellVersion

The version of PowerShell required by the

module. The version specified or a later

version must be installed for the module

to work.

RequiredAssemblies

A list of .NET assemblies that must be

loaded for the module to work.

TypesToProcess

A list of TYPES.PS1XML files loaded by the

module to create custom data types for

the module’s cmdlets.

Although PowerShell includes a New-Module cmdlet for creating modules, you’ll

more commonly use Get-Module, Import-Module, and Remove-Module to work

with existing modules. You can list the available modules by entering get-module

-listavailable. However, this will give you the full definition of each module in list

format. A better way to find available modules is to look for them by name, path,

and description:

get-module -listavailable | format-list name, path, description

You can also look for them only by name and description:

get-module -listavailable | format-table name, description

78

 CHAPTER 3 Managing Your Windows PowerShell Environment

If you want to determine the availability of a specific module, enter the following command:

get-module -listavailable [-name] ModuleNames

where ModuleNames is a comma-separated list of modules to check. You can enter

module names with or without the associated file extension and use wildcards such

as. Note that when you use the –ListAvailable parameter, the –Name parameter is

position sensitive, allowing you to specify modules using either

get-module –listavailable –name ModuleNames

or

get-module –listavailable ModuleNames

Here is an example:

get-module –listavailable –name networkloadbalancingclusters

The core set of modules available in PowerShell depends on the versions of

Windows you are running as well as the components that are installed. Table 3-7

lists some of the most common modules as well as the operating systems they are

commonly found on by default.

TABLE 3-7 Common PowerShell Modules

OPERATING

NAME

DESCRIPTION

 SYSTEM

ActiveDirectory

Provides a comprehensive set of

Windows Server

cmdlets for working with Active

2008 Release 2

Directory Domain Services (AD DS). or later

ADRMS

Provides cmdlets for updating,

Windows Server

installing, and uninstalling Active

2008 Release 2

Directory Rights Management

or later

Services (AD RMS), including

Update-ADRMS, Uninstall-ADRMS,

Install-ADRMS.

BestPractices

Provides cmdlets for testing

Windows Server

best-practices scenarios, including

2008 Release 2

Get-BPAModel, Invoke-BPAModel,

or later

Get-BPAResult, Set-BPAResult.

FailoverClusters

Provides a comprehensive set of

Windows Server

cmdlets for working with Microsoft 2008 Release 2

Cluster Service.

or later

Managing Your Windows PowerShell Environment CHAPTER 3

79

TABLE 3-7 Common PowerShell Modules

OPERATING

NAME

DESCRIPTION

 SYSTEM

FileTransfer

Provides cmdlets for working with

Windows Vista

Background Intelligent Transfer

or later

Service, including Add-FileTransfer,

Clear-FileTransfer, Complete-

FileTransfer, Get-FileTransfer, New-

FileTransfer, Resume-FileTransfer

Set-FileTransfer, Suspend-FileTransfer.

GroupPolicy

Provides a comprehensive set of

Windows Server

cmdlets for working with Group

2008 Release 2

Policy objects (GPOs).

or later

NetworkLoadBalancing-

Provides a comprehensive set of

Windows Server

Clusters

cmdlets for working with Network

2008 Release 2

Load Balancing (NLB) clusters.

or later

PSDiagnostics

Provides functions for performing

Windows Vista or

event traces, including Disable-

later

PSTrace, Disable-PSWSMan-

CombinedTrace, Disable-

WSManTrace, Enable-PSTrace,

Enable-PSWSManCombinedTrace,

Enable-WSManTrace, Get-

LogProperties, Set-LogProperties,

Start-Trace, Stop-Trace.

RemoteDesktopServices

Provides cmdlets for working

Windows Server

with Terminal Services running in

2008 Release 2

Remote Desktop mode.

or later

ServerManager

Provides cmdlets for listing, adding, Windows Server

and removing Windows features,

2008 Release 2

including Get-WindowsFeature,

or later

Add-WindowsFeature, Remove-

WindowsFeature.

TroubleshootingPack

Provides cmdlets for getting infor-

Windows 7 or

mation about and running trouble- later

shooting packs you’ve installed,

including Get-TroubleshootingPack

and Invoke-TroubleshootingPack.

WebAdministration

Provides a comprehensive set of

Windows Server

cmdlets for working with Internet

2008 Release 2

Information Services (IIS).

or later

80

 CHAPTER 3 Managing Your Windows PowerShell Environment

 The components for available modules are registered in the operating system

as necessary but are not added to your PowerShell sessions by default (in most

instances). Therefore, to use functions, cmdlets, or other features of a module, you

must fi rst import the module. Modules such as PSDiagnostics that defi ne functions

and include .PSM1 fi les require an execution policy to be set so that signed scripts

can run.

You can import an available module into the current session by using the

Import-Module cmdlet. For example, to import the WebAdminstration module,

type import-module webadministration. After you import a module, its provid-

ers, cmdlets, and other features are available in the console session.

If you add the necessary Import-Module commands to a relevant profi le, you

can be sure that modules you want to use are always loaded. To fi nd imported

modules or to verify that an additional module is imported, enter the following

command:

get-module | format-table name, description

Any module listed in the output is imported and available.

To remove a module from the current session, use the Remove-Module cmdlet.

For example, to remove the WebAdministration module from the current session,

type remove-module webadministration. The module is still loaded, but the pro-

viders, cmdlets, and other features that it supports are no longer available.

You will often want to be sure that a particular module has been imported before

you try to use its features. In the following example, when the WebAdministration

module is available, the statement in parentheses evaluates to True, and any code in

the related script block is executed:

if (get-module -name WebAdministration -erroraction silentlycontinue)

if (get-module -name WebAdministration -erroraction silentlycontinue)

{

{

 Code to execute if the provider is available.

 Code to execute if the provider is available.

} else {

} else {

 Code to execute if the provider is not available.

 Code to execute if the provider is not available.

}

As shown previously, you could add an Else clause to defi ne alternative actions.

As before, I set the –ErrorAction parameter to SilentlyContinue so that error mes-

sages aren’t written to the output if the module has not been imported.

Managing Your Windows PowerShell Environment CHAPTER 3

81

 REAL WORLD Although checking for modules is helpful, you’ll want to consider the case of SQL Server separately. The SQL Server PowerShell console loads an extended

environment designed specifi cally for working with SQL Server. You can re-create this

environment using a lengthy script that loads all the right extensions. However, it usu-

ally is much easier to simply start the SQL Server PowerShell console when you want to

manage SQL Server using PowerShell.

Generally, if the $sqlpsreg variable exists and has child items, the user is running the

SQL Server PowerShell console. Knowing this, you can determine whether this console

is available as shown in the following example:

if (Get-ChildItem $sqlpsreg -ErrorAction "SilentlyContinue")

if (Get-ChildItem $sqlpsreg -ErrorAction "SilentlyContinue")

{ throw "SQL Server PowerShell is not installed."

{ throw "SQL Server PowerShell is not installed."

} else {

} else {

$item = Get-ItemProperty $sqlpsreg

$sqlpsPath = [System.IO.Path]::GetDirectoryName($item.Path)

$sqlpsPath = [System.IO.Path]::GetDirectoryName($item.Path)

}

Here, you determine whether the $sqlpsreg variable exists and has child items. If the

variable doesn’t exist, PowerShell throws an error. If the variable exists, you get the

properties of the related object and then use the Path property to specify the path to

use with SQL Server.

PowerShell Extensions for Exchange Server and SQL Server

PowerShell extensions are available for Exchange Server 2007 with Service Pack 1 or

later and SQL Server 2008. The extensions for Exchange Server 2007 SP1 or later are

implemented in a custom console called the Exchange Management Console. The

extensions for SQL Server 2008 are implemented in a minishell called the SQL Server

PowerShell console.

Custom consoles and minishells and modules are two different approaches for

creating prepackaged PowerShell environments. A custom console automatically

loads the snap-ins required to preconfi gure the working environment, but it does

not save the entire state. A minishell gives you a complete working environment

with the entire state preserved, including any snap-ins, providers, and type exten-

sions loaded previously. However, minishells are closed environments with their own

security settings. Because of this, you cannot extend minishell environments and

must manage security settings separately from the security settings in PowerShell.

 TIP The PowerShell Software Developer’s Kit allows developers to create minishells using make-shell. In PowerShell Version 1.0, custom consoles and minishells were the

only way to create prepackaged PowerShell environments. As discussed previously,

PowerShell V2 adds modules that extend the working environment using .NET assem-

blies and script functions. Because modules are more versatile and can be easily added

to any console, Microsoft likely will use modules to implement PowerShell functional-

ity for Exchange Server and SQL Server (and may have already done so by the time you

read this).

82

CHAPTER 3 Managing Your Windows PowerShell Environment

 When you are working on a server running Exchange Server 2007 SP1 or later,

you can access Exchange cmdlets at the PowerShell prompt or in a script by loading

the custom console for Exchange. To load the console for Exchange Server 2007,

enter the following command:

powershell.exe –noexit -psconsolefile "C:\Program Files\Microsoft\Exchange

Server\Bin\exshell.psc1"

With scheduled tasks, don’t forget that you must load the custom console for

Exchange as shown in the following example:

at 05:30 /interactive powershell.exe –noexit -psconsolefile "C:\Program

Files\Microsoft\Exchange Server\Bin\exshell.psc1" -command "Move-Mailbox

–identity <wrstanek@cpandl.com> -TargetDatabase EngMailboxDB"

 NOTE Both of the preceding examples are a single line. If you installed Exchange

Server 2007 in a different location, modify the path so that it points to the Exchange

Server bin directory on your server.

When you are working on a server running SQL Server 2008, you can access

SQL Server cmdlets at the PowerShell prompt or in a script by running the SQL

Server PowerShell console or by loading the required startup environment from a

script. The executable for the SQL Server PowerShell console is SQLPS.exe, and the

required path to use the executable is confi gured automatically when you install

SQL Server. To start the SQL Server PowerShell console, enter sqlps at a command

prompt or PowerShell prompt. To load the SQL Server environment from a script,

the script must add the SQL Server snap-ins, set certain global variables, and then

load the SQL Server management objects. A sample initialization script follows.

#

Add the SQL Server PowerShell Provider, if available

Add the SQL Server PowerShell Provider, if available

$ErrorActionPreference = "Stop"

$ErrorActionPreference = "Stop"

$sqlpsreg="HKLM:\SOFTWARE\Microsoft\PowerShell\1\ShellIds\Microsoft.

$sqlpsreg="HKLM:\SOFTWARE\Microsoft\PowerShell\1\ShellIds\Microsoft.

SqlServer.Management.PowerShell.sqlps"

SqlServer.Management.PowerShell.sqlps"

if (Get-ChildItem $sqlpsreg -ErrorAction "SilentlyContinue")

if (Get-ChildItem $sqlpsreg -ErrorAction "SilentlyContinue")

{ throw "SQL Server PowerShell Provider is not installed."

{ throw "SQL Server PowerShell Provider is not installed."

} else {

} else {

$item = Get-ItemProperty $sqlpsreg

$item = Get-ItemProperty $sqlpsreg

$sqlpsPath = [System.IO.Path]::GetDirectoryName($item.Path)

$sqlpsPath = [System.IO.Path]::GetDirectoryName($item.Path)

}

#

Set global variables

Set global variables

Set-Variable SqlServerMaximumChildItems 0 -scope Global

Set-Variable SqlServerMaximumChildItems 0 -scope Global

Set-Variable SqlServerConnectionTimeout 30 -scope Global

Set-Variable SqlServerConnectionTimeout 30 -scope Global

Set-Variable SqlServerIncludeSystemObjects $false -scope Global

Set-Variable SqlServerIncludeSystemObjects $false -scope Global

Set-Variable SqlServerMaximumTabCompletion 1000 -scope Global

Set-Variable SqlServerMaximumTabCompletion 1000 -scope Global

Managing Your Windows PowerShell Environment CHAPTER 3

83

#

Load the SQL Server Management Objects

Load the SQL Server Management Objects

$assemblylist = "Microsoft.SqlServer.Smo",

$assemblylist = "Microsoft.SqlServer.Smo",

"Microsoft.SqlServer.Dmf ",

"Microsoft.SqlServer.Dmf ",

"Microsoft.SqlServer.SqlWmiManagement ",

"Microsoft.SqlServer.SqlWmiManagement ",

"Microsoft.SqlServer.ConnectionInfo ",

"Microsoft.SqlServer.ConnectionInfo ",

"Microsoft.SqlServer.SmoExtended ",

"Microsoft.SqlServer.SmoExtended ",

"Microsoft.SqlServer.Management.RegisteredServers ",

"Microsoft.SqlServer.Management.RegisteredServers ",

"Microsoft.SqlServer.Management.Sdk.Sfc ",

"Microsoft.SqlServer.Management.Sdk.Sfc ",

"Microsoft.SqlServer.SqlEnum ",

"Microsoft.SqlServer.SqlEnum ",

"Microsoft.SqlServer.RegSvrEnum ",

"Microsoft.SqlServer.RegSvrEnum ",

"Microsoft.SqlServer.WmiEnum ",

"Microsoft.SqlServer.WmiEnum ",

"Microsoft.SqlServer.ServiceBrokerEnum ",

"Microsoft.SqlServer.ServiceBrokerEnum ",

"Microsoft.SqlServer.ConnectionInfoExtended ",

"Microsoft.SqlServer.ConnectionInfoExtended ",

"Microsoft.SqlServer.Management.Collector ",

"Microsoft.SqlServer.Management.Collector ",

"Microsoft.SqlServer.Management.CollectorEnum"

"Microsoft.SqlServer.Management.CollectorEnum"

foreach ($asm in $assemblylist)

foreach ($asm in $assemblylist)

{ $asm = [Reflection.Assembly]::LoadWithPartialName($asm) }

{ $asm = [Reflection.Assembly]::LoadWithPartialName($asm) }

#

Load SQL Server snapins, type data and format data

Load SQL Server snapins, type data and format data

Push-Location

Push-Location

cd $sqlpsPath

cd $sqlpsPath

Add-PSSnapin SqlServerCmdletSnapin100

Add-PSSnapin SqlServerCmdletSnapin100

Add-PSSnapin SqlServerProviderSnapin100

Add-PSSnapin SqlServerProviderSnapin100

Update-TypeData -PrependPath SQLProvider.Types.ps1xml

Update-TypeData -PrependPath SQLProvider.Types.ps1xml

update-FormatData -prependpath SQLProvider.Format.ps1xml

update-FormatData -prependpath SQLProvider.Format.ps1xml

Pop-Location

Pop-Location

Before you use this type of initialization script, you should check current

documentation for the version and service pack of SQL Server you are running

to determine the required components. On the Microsoft Support site (at

support.microsoft.com), you’ll likely fi nd examples of initialization scripts for

your version and service pack.

84

CHAPTER 3 Managing Your Windows PowerShell Environment

C H A P T E R 4

Using Sessions, Jobs,

and Remoting

N

Enabling Remote Commands 85

N

Executing Remote Commands 87

N

Establishing Remote Sessions 94

N

Establishing Remote Background Jobs 97

N

Working Remotely Without WinRM 107

Windows PowerShell V2 supports remote execution of commands, remote

sessions, and remote background jobs. When you work remotely, you type

commands in Windows PowerShell on your computer but execute the commands

on one or more remote computers. To work remotely, your computer and the

remote computer must both have PowerShell V2, the Microsoft .NET Framework 2.0,

and Windows Remote Management 2.0.

Enabling Remote Commands

The Windows PowerShell remoting features are supported by the WS-Management

protocol and the Windows Remote Management (WinRM) service that implements

WS-Management in Windows. Computers running Windows 7 and later include

WinRM 2.0 or later. On computers running earlier versions of Windows, you need

to install WinRM 2.0 or later as appropriate and if supported. Currently, remoting

is supported only on Windows Vista with Service Pack 1 or later, Windows 7,

Windows Server 2008, and Windows Server 2008 Release 2.

You can verify the availability of WinRM and configure a PowerShell for

remoting by following these steps:

1. Start Windows PowerShell as an administrator by right-clicking the

Windows PowerShell shortcut and selecting Run As Administrator.

85

 2. The WinRM service is confi gured for manual startup by default. You must

change the startup type to Automatic and start the service on each com-

puter you want to work with. At the PowerShell prompt, you can verify that

the WinRM service is running using the following command:

get-service winrm

As shown in the following example, the value of the Status property in the

output should be Running:

Status Name DisplayName

Status Name DisplayName

------ ---- -----------

Running WinRM Windows Remote Management

Running WinRM Windows Remote Management

3. To

confi gure Windows PowerShell for remoting, type the following

command:

Enable-PSRemoting –force

In many cases, you will be able to work with remote computers in other domains.

However, if the remote computer is not in a trusted domain, the remote computer

might not be able to authenticate your credentials. To enable authentication, you

need to add the remote computer to the list of trusted hosts for the local computer

in WinRM. To do so, type

winrm s winrm/config/client '@{TrustedHosts="RemoteComputer"}'

where RemoteComputer is the name of the remote computer, such as

winrm s winrm/config/client '@{TrustedHosts="CorpServer56"}'

When you are working with computers in workgroups or homegroups, you must

either use HTTPS as the transport or add the remote machine to the TrustedHosts

confi guration settings. If you cannot connect to a remote host, verify that the

service on the remote host is running and is accepting requests by running the fol-

lowing command on the remote host:

winrm quickconfig

This command analyzes and confi gures the WinRM service. If the WinRM service

is set up correctly, you’ll see output similar to the following:

WinRM already is set up to receive requests on this machine.

WinRM already is set up to receive requests on this machine.

WinRM already is set up for remote management on this machine.

WinRM already is set up for remote management on this machine.

If the WinRM service is not set up correctly, you see output similar to the fol-

lowing and need to respond affi rmatively to several prompts. When this process

completes, WinRM should be set up correctly.

86

CHAPTER 4 Using Sessions, Jobs, and Remoting

WinRM is not set up to receive requests on this machine.

WinRM is not set up to receive requests on this machine.

The following changes must be made:

The following changes must be made:

Set the WinRM service type to delayed auto start.

Set the WinRM service type to delayed auto start.

Start the WinRM service.

Start the WinRM service.

Configure LocalAccountTokenFilterPolicy to grant administrative rights

Configure LocalAccountTokenFilterPolicy to grant administrative rights

remotely to local users.

remotely to local users.

Make these changes [y/n]? y

Make these changes [y/n]? y

WinRM has been updated to receive requests.

WinRM has been updated to receive requests.

WinRM service type changed successfully.

WinRM service type changed successfully.

WinRM service started.

WinRM service started.

Configured LocalAccountTokenFilterPolicy to grant administrative rights

Configured LocalAccountTokenFilterPolicy to grant administrative rights

remotely to local users.

remotely to local users.

WinRM is not set up to allow remote access to this machine for

WinRM is not set up to allow remote access to this machine for

management. The following changes must be made:

management. The following changes must be made:

Create a WinRM listener on HTTP://* to accept WS-Man requests to any IP

Create a WinRM listener on HTTP://* to accept WS-Man requests to any IP

on this machine.

on this machine.

Make these changes [y/n]? y

Make these changes [y/n]? y

WinRM has been updated for remote management.

WinRM has been updated for remote management.

Created a WinRM listener on HTTP://* to accept WS-Man requests to any IP

Created a WinRM listener on HTTP://* to accept WS-Man requests to any IP

on this machine.

on this machine.

To use PowerShell remoting features, you must start Windows PowerShell as an

administrator by right-clicking the Windows PowerShell shortcut and selecting Run

As Administrator. When starting PowerShell from another program, such as the

command prompt (cmd.exe), you must start that program as an administrator.

Executing Remote Commands

You can use Windows PowerShell remoting to run cmdlets and external programs

on remote computers. For example, you can run any built-in cmdlets and external

programs accessible in the PATH environment variable ($env:path). However,

because PowerShell runs as a network service or local service, you cannot use

PowerShell to open the user interface for any program on a remote computer. If you

try to start a program with a graphical interface, the program process starts but the

command cannot complete, and the PowerShell prompt does not return until the

program is fi nished or you press Ctrl+C.

Using Sessions, Jobs, and Remoting CHAPTER 4

87

Understanding Remote Execution

When you submit a remote command, the command is transmitted across the net-

work to the Windows PowerShell client on the designated remote computers, and

it runs in the Windows PowerShell client on the remote computer. The command

results are sent back to the local computer and appear in the Windows PowerShell

session on the local computer. Note that all of the local input to a remote command

is collected before being sent to the remote computer, but the output is returned to

the local computer as it is generated.

Whenever you use PowerShell remoting features, keep the following in mind:

N You must start Windows PowerShell as an administrator by right-clicking

the Windows PowerShell shortcut and selecting Run As Administrator. When

starting PowerShell from another program, such as the command prompt

(cmd.exe), you must start that program as an administrator.

N The current user must be a member of the Administrators group on the

remote computer or be able to provide the credentials of an administrator.

When you connect to a remote computer, PowerShell uses your user name

and password credentials to log on to the remote computer. The credentials

are encrypted.

N When you work remotely, you use multiple instances of Windows PowerShell:

a local instance and one or more remote instances. Generally, in the local

instance, the policies and profiles on the local computer are in effect. On a

remote instance, the policies and profiles on the remote computer are in ef-

fect. This means cmdlets, aliases, functions, preferences, and other elements

in the local profile are not necessarily available to remote commands. To en-

sure you can use cmdlets, aliases, functions, preferences, and other elements

in the local profile with remote commands, you must copy the local profiles

to each remote computer.

N Although you can execute commands on remote computers, any files, direc-

tories, and additional resources that are needed to execute a command must

exist on the remote computer. Additionally, your user account must have

permission to connect to the remote computer, permission to run Windows

PowerShell, and permission to access files, directories, and other resources

on the remote computer.

Commands for Remoting

You can work with remote computers using the following remoting cmdlets:

N Invoke-Command Runs commands on a local computer or one or more re-

mote computers, and returns all output from the commands, including errors. To

run a single command on a remote computer, use the –ComputerName param-

eter. To run a series of related commands that share data, create a PowerShell

session (PSSession) on a remote computer, and then use the –Session parameter

of Invoke-Command to run the command in the PSSession.

88

 CHAPTER 4 Using Sessions, Jobs, and Remoting

Invoke-Command [-ArgumentList

Invoke-Command [-ArgumentList Args

 Args] [-InputObject

] [-InputObject Object

 Object]

[-ScriptBlock] ScriptBlock

[-ScriptBlock]

Invoke-Command [[-ComputerName]

Invoke-Command [[-ComputerName] Computers

 Computers] [-ApplicationName

] [-ApplicationName

 String

 String] [-FilePath]

] [-FilePath] String

[-Port

 g

 PortNum

 PortNum] [-UseSSL]

] [-UseSSL]

[BasicParams] [SecurityParams]

[BasicParams] [SecurityParams]

Invoke-Command [[-Session]

Invoke-Command [[-Session] Sessions

 Sessions] [-FilePath]

] [-FilePath] String

 String

[BasicParams]

[BasicParams]

Invoke-Command [[-ConnectionURI] URIs

Invoke-Command [[-ConnectionURI] URIs] [-AllowRedirection]

] [-AllowRedirection]

[-FilePath]

[-FilePath] String

 g [BasicParams] [SecurityParams]

[BasicParams] [SecurityParams]

Invoke-Command [[-Session]

Invoke-Command [[-Session] Sessions

 Sessions] [-ScriptBlock]

] [-ScriptBlock] ScriptBlock

 ScriptBlock

[BasicParams]

[BasicParams]

Invoke-Command [[-ConnectionURI]

Invoke-Command [[-ConnectionURI] URIs

 URIs] [-AllowRedirection]

] [-AllowRedirection]

[-ScriptBlock]

[-ScriptBlock] ScriptBlock

[BasicParams] [SecurityParams]

 k

BasicParams=

BasicParams=

[-ArgumentList

[-Arg

 Args

umentList Args] [-AsJob] [-HideComputerName] [-InputObject

] [-AsJob] [-HideComputerName] [-InputObject

 Object

 Object] [-JobName

] [-JobName String

 String] [-ThrottleLimit

] [-ThrottleLimit Limit

 Limit]

SecurityParams=

SecurityParams=

[-Authentication {<Default> | <Basic> | <Negotiate> |

[-Authentication {<Default> | <Basic> | <Negotiate> |

<NegotiateWithImplicitCredential> | <Credssp>}]

<NegotiateWithImplicitCredential> | <Credssp>}]

[-CertificateThumbprint String

[-CertificateThumbprint String] [-ConfigurationName String

 String]

[-Credential

[-Credential Credential

 Credential] [-NoCompression]

] [-NoCompression]

[-SessionOption

[-SessionOption SessionOption

 SessionOption]

N New-PSSession Creates a PowerShell session (PSSession) on a local or

remote computer. When you create a PSSession, Windows PowerShell estab-

lishes a persistent connection to the remote computer, and you can use the

PSSession to interact directly with the computer.

New-PSSession [[-Session]

New-PSSession [[-Session] Sessions

 Sessions] [BasicParams]

] [BasicParams]

New-PSSession [[-ComputerName]

New-PSSession [[-ComputerName] Computers] [-ApplicationName

] [-ApplicationName

 Application

 Applicatio] [-UseSSL] [BasicParams] [SecurityParams]

 n] [-UseSSL] [BasicParams] [SecurityParams]

New-PSSession [-ConnectionURI]

New-PSSession [-ConnectionURI] URIs

 URIs [-AllowRedirection]

[BasicParams] [SecurityParams]

[BasicParams] [SecurityParams]

BasicParams=

BasicParams=

[-Noprofile] [-ThrottleLimit

[-Nop

 Limit

rofile] [-ThrottleLimit Limit] [-TimeOut

] [-TimeOut Num

 Num]

]

SecurityParams=

SecurityParams=

[-Authentication {<Default> | <Basic> | <Negotiate> |

[-Authentication {<Default> | <Basic> | <Negotiate> |

Using Sessions, Jobs, and Remoting CHAPTER 4

89

<NegotiateWithImplicitCredential> | <Credssp>}]

<NegotiateWithImplicitCredential> | <Credssp>}]

[-CertificateThumbprint

[-CertificateThumbprint String

 String] [-ConfigurationName

] [-ConfigurationName String

 String]

[-Credential

[-Credential Credential

 Credential] [-Name

] [-Name Names

 Names] [-NoCompression]

] [-NoCompression]

[-Port PortNum

[-Port PortNum] [-SessionOption

] [-SessionOption SessionOption

 SessionOption]

N Get-PSSession Gets the PowerShell sessions (PSSessions) that were cre-

ated in the current session. Without parameters, this cmdlet returns all of

the PSSessions created in the current session. You can use the parameters of

Get-PSSession to get the sessions that are connected to particular computers

or identify sessions by their names, IDs, or instance IDs. For computers, type

the NetBIOS name, IP address, or fully qualifi ed domain name. To specify the

local computer, type the computer name, localhost, or a dot (.). For IDs, type

an integer value that uniquely identifi es the PSSession in the current session.

PSSessions can be assigned friendly names with the –Name parameter. You

can specify the friendly names using wildcards. To fi nd the names and IDs of

PSSessions, use Get-PSSession without parameters. An instance ID is a GUID

that uniquely identifi es a PSSession, even when you have multiple sessions

running in PowerShell. The instance ID is stored in the RemoteRunspaceID

property of the RemoteRunspaceInfo object that represents a PSSession. To

fi nd the InstanceID of the PSSessions in the current session, type get-pssession

| Format-Table Name, ComputerName, RemoteRunspaceId.

Get-PSSession [[-ComputerName]

Get-PSSession [[-ComputerName] Computers

 Computers] | [-InstanceID

] | [-InstanceID GUIDs

 GUIDs] |

] |

[-Name Names

[-Name Names] | [-ID

] | [-ID IDs]

N Enter-PSSession Starts an interactive session with a single remote com-

puter. During the session, you can run commands just as if you were typing

directly on the remote computer. You can have only one interactive session

at a time. Typically, you use the –ComputerName parameter to specify the

name of the remote computer. However, you can also use a session that you

created previously by using New-PSSession for the interactive session.

Enter-PSSession [[-Session]

Enter-PSSession [[-Session] Session

 Session] | [-InstanceID

] | [-InstanceID GUID

 GUID] |

] |

[-Name

[

 Name

-Name Name] | [-ID

] | [-ID ID]

Enter-PSSession [-ComputerName]

Enter-PSSession [-ComputerName] Computer

 r [-ApplicationName

[-ApplicationName String

 String]

[-UseSSL] [SecurityParams]

[-UseSSL] [SecurityParams]

Enter-PSSession [[-ConnectionURI]

Enter-PSSession [[-ConnectionURI] URI][-AllowRedirection]

][-AllowRedirection]

[SecurityParams]

[SecurityParams]

SecurityParams=

SecurityParams=

[-Authentication {<Default> | <Basic> | <Negotiate> |

[-Authentication {<Default> | <Basic> | <Negotiate> |

<NegotiateWithImplicitCredential> | <Credssp>}]

<NegotiateWithImplicitCredential> | <Credssp>}]

[-CertificateThumbprint

[-CertificateThumbprint String

 String] [-ConfigurationName

] [-ConfigurationName String

 String]

[-Credential

[-Credential Credential

 Credential] [-NoCompression]

] [-NoCompression]

[-SessionOption SessionOption

[-SessionOption SessionOption]

90

CHAPTER 4 Using Sessions, Jobs, and Remoting

N Exit-PSSession Ends an interactive session and disconnects from the remote computer. You can also type exit to end an interactive session. The

effect is the same as using Exit-PSSession.

Exit-PSSession

N Import-PSSession Imports cmdlets, aliases, functions, and other com-

mand types from an open session on a local or remote computer into the

current session. You can import any command that Get-Command can fi nd

in the other session. To import commands, fi rst use New-PSSession to con-

nect to the session from which you will import. Then use Import-PSSession

to import commands. By default, Import-PSSession imports all commands

except for commands that exist in the current session. To overwrite a com-

mand, specify the command in the –CommandName parameter. PowerShell

adds the imported commands to a temporary module that exists only in

your session, and it returns an object that represents the module. Although

you can use imported commands just as you would use any command in the

session, the imported part of the command actually runs in the session from

which it was imported. Because imported commands might take longer to

run than local commands, Import-PSSession adds an –AsJob parameter to

every imported command. This parameter allows you to run the command

as a PowerShell background job.

Import-PSSession [-CommandType {Alias | Function | Filter | Cmdlet

Import-PSSession [-CommandType {Alias | Function | Filter | Cmdlet

| ExternalScript | Application | Script | All}]

| ExternalScript | Application | Script | All}]

[-FormatTypeName

[-FormatTypeName Types

 Types] [-PSSnapin

] [-PSSnapin Snapins

 Snapins] [[-CommandName]

] [[-CommandName]

 Commands

 Commands] [[-ArgumentList]

] [[-ArgumentList] Args

 Args] [-Session]

] [-Session] Session

 Session

N Export-PSSession Gets cmdlets, functions, aliases, and other command

types from an open session on a local or remote computer, and saves them

in a Windows PowerShell script module fi le (.psm1). When you want to use

the commands from the script module, use the Add-Module cmdlet to

add the commands to the local session so that they can be used. To export

commands, fi rst use New-PSSession to connect to the session that has the

commands that you want to export. Then use Export-PSSession to export

the commands. By default, Export-PSSession exports all commands except

for commands that already exist in the session. However, you can use the

–PSSnapin, –CommandName, and –CommandType parameters to specify

the commands to export.

Export-PSSession [-CommandType {Alias | Function | Filter | Cmdlet

Export-PSSession [-CommandType {Alias | Function | Filter | Cmdlet

| ExternalScript | Application | Script | All}]

| ExternalScript | Application | Script | All}]

[-Encoding String] [-Force] [-NoClobber] [-PSSnapin

[-Encoding String] [-Force] [-NoClobber] [-PSSnapin Snapins

 Snapi

]

 ns

[[-CommandName]

[[-CommandName] Commands

 Commands] [[-ArgumentList]

] [[-ArgumentList] Args

 Args] [-Session]

] [-Session] Session

 Session

Using Sessions, Jobs, and Remoting CHAPTER 4

91

Invoking Remote Commands

One way to run commands on remote computers is to use the Invoke-Command

cmdlet. With this cmdlet, you can do the following:

N Use the –ComputerName parameter to specify the remote computers to

work with by DNS name, NetBIOS name, or IP address.

N When working with multiple remote computers, separate each computer

name or IP address with a comma.

N Enclose your command or commands to execute in curly braces, which

denotes a script block, and use the –ScriptBlock parameter to specify the

command or commands to run.

After completing any of the preceding actions, you can type the following com-

mand as a single line to run a Get-Process command remotely:

invoke-command -computername Server43, Server27, Server82

invoke-command -computername Server43, Server27, Server82

-scriptblock {get-process}

-scriptblock {get-process}

 TIP By default, Invoke-Command runs under your user name and credentials. Use

the –Credential parameter to specify alternate credentials, such as UserName or

 Domain\UserName. You will be prompted for a password.

 REAL WORLD When you connect to a remote computer that is running Windows

Vista, Windows Server 2003, or later versions of either one, the default starting loca-

tion is the home directory of the current user, which is stored in the %HomePath%

environment variable ($env:homepath) and the Windows PowerShell $home variable.

When you connect to a remote computer that is running Windows XP, the default

starting location is the home directory of the default user, which is stored in the

%HomePath% environment variable ($env:homepath) for the default user.

When you use Invoke-Command, the cmdlet returns an object that includes

the name of the computer that generated the data. The remote computer name is

stored in the PSComputerName property. Typically, the PSComputerName property

is displayed by default. You can use the –HideComputerName parameter to hide the

PSComputerName property.

If the PSComputerName property isn’t displayed and you want to see the source

computer name, use the Format-Table cmdlet to add the PSComputerName prop-

erty to the output as shown in the following example:

$procs = invoke-command -script {get-process |

$procs = invoke-command -script {get-process |

sort-object -property Name} -computername Server56, Server42, Server27

sort-object -property Name} -computername Server56, Server42, Server27

&$procs | format-table Name, Handles, WS, CPU, PSComputerName –auto

&$procs | format-table Name, Handles, WS, CPU, PSComputerName –auto

92

CHAPTER 4 Using Sessions, Jobs, and Remoting

Name Handles WS CPU PSComputerName

Name Handles WS CPU PSComputerName

---- ------- -- --- --------------

---- ------- -- --- --------------

acrotray 52 3948544 0 Server56

acrotray 52 3948544 0 Server56

AlertService 139 7532544 Server56

AlertService 139 7532544 Server56

csrss 594 20463616 Server56

csrss 594 20463616 Server56

csrss 655 5283840 Server56

csrss 655 5283840 Server56

CtHelper 96 6705152 0.078125 Server56

CtHelper 96 6705152 0.078125 Server56

 . . .

. . .

acrotray 43 3948234 0 Server42

acrotray 43 3948234 0 Server42

AlertService 136 7532244 Server42

AlertService 136 7532244 Server42

csrss 528 20463755 Server42

csrss 528 20463755 Server42

csrss 644 5283567 Server42

csrss 644 5283567 Server42

CtHelper 95 6705576 0.067885 Server42

CtHelper 95 6705576 0.067885 Server42

acrotray 55 3967544 0 Server27

acrotray 55 3967544 0 Server27

AlertService 141 7566662 Server27

AlertService 141 7566662 Server27

csrss 590 20434342 Server27

csrss 590 20434342 Server27

csrss 654 5242340 Server27

csrss 654 5242340 Server27

CtHelper 92 6705231 0.055522 Server27

CtHelper 92 6705231 0.055522 Server27

PowerShell includes a per-command throttling feature that lets you limit the

number of concurrent remote connections that are established for a command. The

default is 32 or 50 concurrent connections, depending on the cmdlet. You can use

the –ThrottleLimit parameter to set a custom throttle limit for a command. Keep in

mind the throttling feature is applied to each command, not to the entire session or

to the computer. If you are running a command concurrently in several sessions, the

number of concurrent connections is the sum of the concurrent connections in all

sessions.

Keep in mind that although PowerShell can manage hundreds of concurrent

remote connections, the number of remote commands that you can send might be

limited by the resources of your computer and its ability to establish and maintain

multiple network connections. To add more protection for remoting, you can use

the –UseSSL parameter of Invoke-Command. This option uses an HTTPS channel

over Port 443 instead of HTTP over Port 80. As with commands that are run locally,

you can pause or terminate a remote command by pressing Ctrl+S or Ctrl+C.

 REAL WORLD PowerShell remoting is available even when the local computer is

not in a domain. For testing and development, you can use the remoting features to

connect to and create sessions on the same computer. PowerShell remoting works the

same as when you are connecting to a remote computer.

 To run remote commands on a computer in a workgroup, you might need to change

Windows settings on the computer. In Windows XP with Service Pack 2 (SP2), use Local

Security Settings (secpol.msc) to change the setting of the Network Access: Sharing

And Security Model For Local Accounts policy in Security Settings\Local Policies\

Security Options to Classic. In Windows Vista, create the LocalAccountTokenFilterPolicy

registry entry in HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Policies\

System and set its value to 1.

Using Sessions, Jobs, and Remoting CHAPTER 4

93

In Windows 2003, no changes are needed in most cases because the default setting of the Network Access: Sharing And Security Model For Local Accounts policy is Classic.

However, you should check the setting to be sure it wasn’t changed.

Establishing Remote Sessions

Windows PowerShell 2.0 supports both local and remote sessions. A session is a

runspace that establishes a common working environment for commands. Com-

mands in a session can share data. Although you’ll learn more about sessions in

upcoming chapters, let’s look now at how remote sessions are used.

Invoking Sessions

You can establish a local or remote session to create a persistent connection using

the New-PSSession cmdlet. Unless you use the –ComputerName parameter and use

it to specify the name of one or more remote computers, PowerShell assumes you

are creating a session for the local computer. With New-PSSession, you must use the

–Session parameter with Invoke-Command to run the command in the named ses-

sion. For example, you can establish a session by typing the following command:

$s = new-PSSession –computername Server24

$s = new-PSSession –computername Server24

Here, $s is a variable that sets the name of the session. Because you’ve used the

–ComputerName parameter, PowerShell knows you are creating a remote session

rather than a local session. PowerShell creates a persistent connection with the

specifi ed computer. You can then use Invoke-Command with the –Session param-

eter to run the command in the named session as shown in this example:

invoke-command –session $s -scriptblock {get-process}

invoke-command –session $s -scriptblock {get-process}

Here, you use Invoke-Command to run Get-Process in the $s session. Because

this session is connected to a remote computer, the command runs on the remote

computer.

You can just as easily establish a session with multiple computers. Simply es-

tablish the session and name all the computers. Generally, you might also need to

specify your credentials using the –Credential parameter.

The –Credential parameter specifi es a user account that has permission to

perform an action. The default user account is the current user. You can provide

alternative credentials in one of two ways. You can:

N Pass in a Credential object to provide the information required for au-

thentication. A Credential object has UserName and Password properties.

Although the user name is stored as a regular string, the password is stored

as a secure, encrypted string. You can learn more about Credential objects

94

CHAPTER 4 Using Sessions, Jobs, and Remoting

in “Specifying Authentication Credentials” in Chapter 9, “Inventorying and

Evaluating Windows Systems.”

N Specify the user account that has permission to perform the action. Enter

the user name as Domain\UserName or simply as UserName. If you specify

a user name, PowerShell displays a prompt for the user’s password. When

prompted, enter the password and then click OK.

To see how the –Credential parameter can be used, consider the following

example:

$t = new-PSSession –computername Server24, Server45, Server36

$t = new-PSSession –computername Server24, Server45, Server36

–Credential Cpandl\WilliamS

–Credential Cpandl\WilliamS

Here, you establish a session with Server24, Server45, and Server36 and specify

your domain and user name. As a result, when you use Invoke-Command to run

commands in the $t session, the commands run on each remote computer with

those credentials. Note that although this is a single session, each runspace on each

computer is separate.

Extending this idea, you can also just as easily get the list of remote computers from

a text fi le. In this example, servers.txt contains a comma-separated list of computers:

$ses = get-content c:\test\servers.txt | new-PSSession

$ses = get-content c:\test\servers.txt | new-PSSession

–Credential Cpandl\WilliamS

–Credential Cpandl\WilliamS

Here, the contents of this fi le are piped to New-PSSession. As a result, the $ses

session is established with all computers listed in the fi le.

Sometimes, you’ll want to execute an application or external utility on a remote

computer as shown in the following example:

$comp = get-content c:\computers.txt

$comp = get-content c:\computers.txt

$s = new-pssession -computername $comp

$s = new-pssession -computername $comp

invoke-command -session $s { powercfg.exe –energy }

invoke-command -session $s { powercfg.exe –energy }

Here, C:\Computers.txt is the path to the fi le containing the list of remote com-

puters to check. On each computer, you run PowerCfg with the –Energy param-

eter. This generates an Energy-Report.html fi le in the default directory for the user

account used to access the computer. The energy report provides details on power

confi guration settings and issues that are causing power management not to work

correctly. If you’d rather not have to retrieve the report from each computer, you

can write the report to a share and base the report name on the computer name, as

shown in the following example:

$comp = get-content c:\computers.txt

$comp = get-content c:\computers.txt

$s = new-pssession -computername $comp

$s = new-pssession -computername $comp

invoke-command -session $s { powercfg.exe –energy –output

invoke-command -session $s { powercfg.exe –energy –output

"\\fileserver72\reports\$env:computername.html"}

"\\fileserver72\reports\$env:computername.html"}

Using Sessions, Jobs, and Remoting CHAPTER 4

95

Here, you write the report to the \\fi leserver72\reports share and name the fi le using the value of the ComputerName environment variable. Note that when you

work with PowerShell and are referencing applications and external utilities, you

must specify the .exe fi le extension with the program name.

When you are running commands on many remote computers, you might

not want to wait for the commands to return before performing other tasks. To

avoid having to wait, use Invoke-Command with the –AsJob parameter to create

a background job in each of the runspaces:

invoke-command –session $s -scriptblock {get-process moddr |

invoke-command –session $s -scriptblock {get-process moddr |

stop-process -force } -AsJob

stop-process -force } -AsJob

Here, you use Invoke-Command to get and stop a named process via the $s

session. Because the command is run as a background job, the prompt returns

immediately without waiting for the command to run on each computer.

Although being able to establish a session on many computers is handy, some-

times you might want to work interactively with a single remote computer. To do

this, you can use the Enter-PSSession cmdlet to start an interactive session with

a remote computer. At the Windows Powershell prompt, type Enter-PSSession

 ComputerName, where ComputerName is the name of the remote computer.

The command prompt changes to show that you are connected to the remote

computer, as shown in the following example:

[Server49]: PS C:\Users\wrstanek.cpandl\Documents>

Now the commands that you type run on the remote computer just as if you had

typed them directly on the remote computer. For enhanced security through encryp-

tion of transmissions, the Enter-PSSession cmdlet also supports the –Credential and

–UseSSL parameters. You can end the interactive session using the command Exit-

PSSession or by typing exit.

Understanding Remote Execution and Object Serialization

When you are working with remote computers, you need to keep in mind the

following:

N How commands are executed

N How objects are serialized

Whether you use Invoke-Command or Enter-PSSession with remote computers,

Windows PowerShell establishes a temporary connection, uses the connection to

run the current command, and then closes the connection each time you run a com-

mand. This is an effi cient method for running a single command or several unrelated

commands, even on a large number of remote computers.

The New-PSSession cmdlet provides an alternative by establishing a session with

a persistent connection. With New-PSSession, Windows PowerShell establishes a

96

CHAPTER 4 Using Sessions, Jobs, and Remoting

persistent connection and uses the connection to run any commands you enter.

Because you can run multiple commands in a single, persistent runspace, the com-

mands can share data, including the values of variables, the definitions of aliases,

and the contents of functions. New-PSSession also supports the –UseSSL parameter.

When you use Windows PowerShell locally, you work with live .NET Framework

objects, and these objects are associated with actual programs or components.

When you invoke the methods or change the properties of live objects, the changes

affect the actual program or component. And, when the properties of a program or

component change, the properties of the object that represent them change too.

Because live objects cannot be transmitted over the network, Windows Power-

Shell serializes the objects sent in remote commands. This means it converts each

object into a series of Constraint Language in XML (CLiXML) data elements for

transmission. When Windows PowerShell receives a serialized file, it converts the

XML into a deserialized object type. Although the deserialized object is an accurate

record of the properties of the program or component at execution time, it is no

longer directly associated with the originating component, and the methods are

removed because they are no longer effective. Also, the serialized objects returned

by the Invoke-Command cmdlet have additional properties that help you determine

the origin of the command.

 NOTE You can use Export-Clixml to create XML-based representations of objects

and store them in a file. The objects stored in the file are serialized. To import a

CLiXML file and create deserialized objects, you can use Import-CLixml.

Establishing Remote Background Jobs

Windows PowerShell 2.0 supports both local and remote background jobs. A back-

ground job is a command that you run asynchronously without interacting with it.

When you start a background job, the command prompt returns immediately, and

you can continue to work in the session while the job runs, even if it runs for an

extended period of time.

Using Background Jobs

PowerShell runs background jobs on the local computer by default. You can run

background jobs on remote computers by

N Starting an interactive session with a remote computer and starting a

job in the interactive session. This approach allows you to work with the

background job the same way as you would on the local computer.

N Running a background job on a remote computer that returns results

to the local computer. This approach allows you to collect the results of

background jobs and maintain them from your computer.

Using Sessions, Jobs, and Remoting CHAPTER 4

97

N Running a background job on a remote computer and maintaining the

results on the remote computer. This approach helps ensure the job data is

secure.

PowerShell has several commands for working with background jobs. These

commands include

N Get-Job Gets objects that represent the background jobs started in the

current session. Without parameters, Get-Job returns a list of all jobs in the

current session. The job object returned does not contain the job results.

To get the results, use the Receive-Job cmdlet. You can use the parameters

of Get-Job to get background jobs by their command text, names, IDs, or

instance IDs. For command text, type the command or the part of the com-

mand with wildcards. For IDs, type an integer value that uniquely identifi es

the job in the current session. For names, type the friendly names previously

assigned to the job. An instance ID is a GUID that uniquely identifi es a job,

even when you have multiple jobs running in PowerShell. To fi nd the names,

IDs, or instance IDs of jobs, use Get-Jobs without parameters. You can use

the –State parameter to get only jobs in the specifi ed state. Valid values are

NotStarted, Running, Completed, Stopped, Failed, and Blocked.

Get-Job [-Command

Get-Job [-Command Commands

 Commands] | [[-InstanceId]

] | [[-InstanceId] GUIDs

 GUIDs] | [[-Name]

] | [[-Name]

 Names] | [[-Id]

 Names] | [[-Id] IDs

] | [-State

] | [-State JobState

 JobState]

N Receive-Job Gets the output and errors of the PowerShell background jobs

started in the current session. You can get the results of all jobs or identify

jobs by their name, ID, instance ID, computer name, location, or session, or

by inputting a job object. By default, job results are deleted after you receive

them, but you can use the –Keep parameter to save the results so that you

can receive them again. To delete the job results, receive them again without

the –Keep parameter, close the session, or use the Remove-Job cmdlet to

delete the job from the session.

Receive-Job [[-ComputerName

Receive-Job [[-ComputerName Computers

 Computers] | [-Location

] | [-Location Locations

 Locations] |

] |

[-Session

[-Session Session

 Session]] [-Job]

]] [-Job] Jobs

 Jobs [BasicParams]

[BasicParams]

Receive-Job [[-Id]

Receive-Job [[-Id] IDs

 IDs] | [[-InstanceId]

] | [[-InstanceId] GUIDS

 GUIDS] | [[-Name]

] | [[-Name] Names

 Names] |

] |

[-State States

[-State States] [BasicParams]

] [BasicParams]

BasicParams=

BasicParams=

[-Error] [-Keep] [-NoRecurse]

[-Error] [-Keep] [-NoRecurse]

N Remove-Job Deletes PowerShell background jobs that were started by

using Start-Job or the –AsJob parameter of a cmdlet. Without parameters

or parameter values, Remove-Job has no effect. You can delete all jobs

or selected jobs based on their command, name, ID, instance ID, or state,

or by passing a job object to Remove-Job. Before deleting a running job,

98

CHAPTER 4 Using Sessions, Jobs, and Remoting

you should use Stop-Job to stop the job. If you try to delete a running job,

Remove-Job fails. You can use the –Force parameter to delete a running

job. If you do not delete a background job, the job remains in the global job

cache until you close the session in which the job was created.

Remove-Job [-Force] [-Command

Remove-Job [-Force] [-Command Commands

 Commands] | [[-Job]

] | [[-Job] Jobs

 Jobs] |

] |

[[-Id]

[[-Id] IDs

 IDs] | [[-InstanceId]

] | [[-InstanceId] GUIDS] | [[-Name]

] | [[-Name] Names

 Names] |

] |

[-State

[-State States

 States]

N Start-Job Starts a Windows PowerShell background job on the local

computer. To run a background job on a remote computer, use the –AsJob

parameter of a cmdlet that supports background jobs, or use the Invoke-

Command cmdlet to run a Start-Job command on the remote computer.

When you start a Windows PowerShell background job, the job starts, but

the results do not appear immediately. Instead, the command returns an

object that represents the background job. The job object contains useful

information about the job, but it does not contain the results. This approach

allows you to continue working while the job runs.

Start-Job [-FilePath

Start-Job [-FilePath Path

 Path] [AddtlParams]

] [AddtlParams]

Start-Job [-ScriptBlock]

Start-Job [-ScriptBlock] ScriptBlock [AddtlParams]

 k

AddtlParams=

AddtlParams=

[-ArgumentList

[-Arg

 Args

umentList Args] [-Authentication {<Default> | <Basic> |

] [-Authentication {<Default> | <Basic> |

<Negotiate> | <NegotiateWithImplicitCredential> | <Credssp>}]

<Negotiate> | <NegotiateWithImplicitCredential> | <Credssp>}]

[-ConfigurationName

[-Config

 String

urationName String] [-Credential

] [-Credential Credential

 Credential]

]

[-InputObject

[-InputObject Object

 Object] [-Name

] [-Name String] [-NoCompression]

] [-NoCompression]

N Stop-Job Stops PowerShell background jobs that are in progress. You can

stop all jobs or stop selected jobs based on their name, ID, instance ID, or state,

or by passing a job object to Stop-Job. When you stop a background job,

PowerShell completes all tasks that are pending in that job queue and then

ends the job. No new tasks are added to the queue after you stop the job.

Stop-Job does not delete background jobs. To delete a job, use Remove-Job.

Stop-Job [-PassThru] [[-Job]

Stop-Job [-PassThru] [[-Job] Jobs

 Jobs] | [[-Id]

] | [[-Id] IDs

 IDs] |

] |

[[-InstanceId]

[[-InstanceId] GUIDS

 GUIDS] | [[-Name]

] | [[-Name] Names

 Names] | [-State

] | [-State States

 States]

N Wait-Job Waits for PowerShell background jobs to complete before it dis-

plays the command prompt. You can wait until any specifi c background jobs

are complete or until all background jobs are complete. Use the –Timeout

parameter to set a maximum wait time for the job. When the commands in

the job are complete, Wait-Job displays the command prompt and returns a

job object so that you can pipe it to another command. Use the –Any param-

eter to display the command prompt when any job completes. By default,

Using Sessions, Jobs, and Remoting CHAPTER 4

99

Wait-Job waits until all of the specifi ed jobs are complete before displaying the prompt.

Stop-Job [-Any] [-TimeOut

Stop-Job [-Any

 WaitTime

] [-TimeOut WaitTime] [[-Job]

] [[-Job] Jobs

 Jobs] | [[-Id]

] | [[-Id] IDs] |

] |

[[-InstanceId]

[[-InstanceId] GUIDS

 GUIDS] | [[-Name]

] | [[-Name] Names

 Names] | [-State

] | [-State States

 States]

Some cmdlets can be run as background jobs automatically using an –AsJob

parameter. You can get a complete list of all cmdlets with an –AsJob parameter

by typing the following command: get-help * -parameter AsJob. These cmdlets

include :

N Invoke-Command Runs commands on local and remote computers.

N Invoke-WmiMethod Calls Windows Management Instrumentation (WMI)

methods.

N Test-Connection Sends Internet Control Message Protocol (ICMP) echo

request packets (pings) to one or more computers.

N Restart-Computer Restarts

(reboots) the operating system on local and

remote computers.

N Stop-Computer Stops (shuts down) local and remote computers.

The basic way background jobs work is as follows:

1. You start a background job using Start-Job or the –AsJob parameter of a

cmdlet.

2. The job starts, but the results do not appear immediately. Instead, the com-

mand returns an object that represents the background job.

3. As necessary, you work with the job object. The job object contains useful

information about the job, but it does not contain the results. This approach

allows you to continue working while the job runs.

4. To view the results of a job started in the current session, you use Receive-Job.

You can identify jobs by their name, ID, instance ID, computer name, location,

or session, or by inputting a job object to Receive-Job. After you receive a job,

the job results are deleted (unless you use the –Keep parameter).

Starting Jobs in Interactive Sessions

You can start any interactive session. The procedure for starting a background job

is almost the same whether you are working with your local computer or a remote

computer. When you work with the local computer, all operations occur on the lo-

cal computer. When you work with a remote computer, all operations occur on the

remote computer.

You can use the Enter-PSSession cmdlet to start an interactive session with a

remote computer. Use the –ComputerName parameter to specify the name of the

remote computer, such as in the following:

enter-pssession -computername filesvr32

100

CHAPTER 4 Using Sessions, Jobs, and Remoting

 NOTE To end the interactive session later, type exit-pssession.

You start a background job in a local or remote session using the Start-Job cmd-

let. You can reference a script block with the –ScriptBlock parameter or a local script

using the –FilePath parameter.

The following command runs a background job that gets the events in the

System, Application, and Security logs. Because Start-Job returns an object that

represents the job, this command saves the job object in the $job variable. Type the

command as a single line:

$job = start-job -scriptblock {$share = "\\FileServer85\logs";

$job = start-job -scriptblock {$share = "\\FileServer85\logs";

$logs = "system","application","security";

$logs = "system","application","security";

foreach ($log in $logs) {

foreach ($log in $logs) {

$filename = "$env:computername".ToUpper() + "$log" + "log" +

$filename = "$env:computername".ToUpper() + "$log" + "log" +

(get-date -format yyyyMMdd) + ".log";

(get-date -format yyyyMMdd) + ".log";

Get-EventLog $log | set-content $share\$filename; }

Get-EventLog $log | set-content $share\$filename; }

}

Or use the back apostrophe to continue the line as shown here:

$job = start-job -scriptblock {$share = "\\FileServer85\logs"; `

$job = start-job -scriptblock {$share = "\\FileServer85\logs"; `

$logs = "system","application","security"; `

$logs = "system","application","security"; `

foreach ($log in $logs) { `

foreach ($log in $logs) { `

$filename = "$env:computername".ToUpper() + "$log" + "log" + `

$filename = "$env:computername".ToUpper() + "$log" + "log" + `

(get-date -format yyyyMMdd) + ".log"; `

(get-date -format yyyyMMdd) + ".log"; `

Get-EventLog $log | set-content $share\$filename; } `

Get-EventLog $log | set-content $share\$filename; } `

}

Alternatively, you can store the commands as a script on the local computer

and then reference the local script using the –FilePath parameter as shown in the

examples that follow.

 Command line

Command line

$job = start-job -filepath c:\scripts\eventlogs.ps1

$job = start-job -filepath c:\scripts\eventlogs.ps1

 Source for Eventlogs.ps1

Source for Eventlogs.ps1

$share = "\\FileServer85\logs"

$share = "\\FileServer85\logs"

$logs = "system","application","security"

$logs = "system","application","security"

foreach ($log in $logs) {

foreach ($log in $logs) {

$filename = "$env:computername".ToUpper() + "$log" + "log" + `

$filename = "$env:computername".ToUpper() + "$log" + "log" + `

(get-date -format yyyyMMdd) + ".log"

(get-date -format yyyyMMdd) + ".log"

Get-EventLog $log | set-content $share\$filename

Get-EventLog $log | set-content $share\$filename

}

Using Sessions, Jobs, and Remoting CHAPTER 4

101

The script must reside on the local computer or in a directory that the local computer can access. When you use FilePath, Windows PowerShell converts the contents

of the specifi ed script fi le to a script block and runs the script block as a background

job.

While the job runs, you can continue working and run other commands, includ-

ing other background jobs. However, you must keep the interactive session open

until the job completes. Otherwise, the jobs will be interrupted, and the results will

be lost.

 NOTE You don’t have to store Job objects in variables. However, doing so makes it

easier to work with Job objects. But if you do use variables and you run multiple jobs,

be sure that you store the returned Job objects in different variables, such as $job1,

$job2, and $job3.

You use the Get-Job cmdlet to do the following:

N Find out if a job is complete.

N Display the command passed to the job.

N Get information about jobs so that you can work with them.

You can get all jobs or identify jobs by their name, ID, instance ID, computer

name, location, or session, or by inputting a job object. PowerShell gives jobs

sequential IDs and names automatically. The fi rst job you run has an ID of 1 and a

name of Job1, the second job you run has an ID of 2 and a name of Job2, and so on.

You can also name jobs when you start them using the –Name parameter. In the

following example, you create a job named Logs:

start-job -filepath c:\scripts\eventlogs.ps1 –name Logs

You can then get information about this job using Get-Job and the –Name

parameter as shown in the following example and sample output:

get-job –name Logs

Id Name State HasMoreData Location Command

Id Name State HasMoreData Location Command

-- ---- ----- ----------- -------- -------

-- ---- ----- ----------- -------- -------

1 Logs Failed False filesvr32 $share = "\\FileServer...

1 Logs Failed False filesvr32 $share = "\\FileServer...

Because this job failed to run, you won’t necessarily be able to receive its output

or error results. You can, however, take a closer look at the job information. For

more detailed information, you need to format the output in a list as shown in this

example and sample output:

get-job –name logs | format-list

get-job –name logs | format-list

102

CHAPTER 4 Using Sessions, Jobs, and Remoting

HasMoreData : False

StatusMessage :

StatusMessage :

Location : filesvr32

Location : filesvr32

Command : $share = "\\FileServer85\logs"; $logs = "system",

Command : $share = "\\FileServer85\logs"; $logs = "system",

"application","security"; foreach ($log in $logs) { $f

"application","security"; foreach ($log in $logs) { $f

ilename = "$env:computername".ToUpper() + "$log" + "log" + (get-date ilename = "$env:computername".ToUpper() + "$log" + "log" + (get-date

-format yyyyMMdd) + ".log"; Get-Ev

-format yyyyMMdd) + ".log"; Get-Ev

entLog $log | set-content $share\$filename; }

entLog $log | set-content $share\$filename; }

JobStateInfo : Failed

JobStateInfo : Failed

Finished : System.Threading.ManualResetEvent

Finished : System.Threading.ManualResetEvent

InstanceId : 679ed475-4edd-4ba5-ae79-e1e9b3aa590e

InstanceId : 679ed475-4edd-4ba5-ae79-e1e9b3aa590e

Id : 3

Id : 3

Name : Logs

Name : Logs

ChildJobs : {Job4}

ChildJobs : {Job4}

Output : {}

Output : {}

Error : {}

Error : {}

Progress : {}

Progress : {}

Verbose : {}

Verbose : {}

Debug : {}

Debug : {}

Warning : {}

Warning : {}

If you are running several jobs, type get-job to check the status of all jobs as

shown in the following example and sample output:

get-job

get-job

Id Name State HasMoreData Location Command

Id Name State HasMoreData Location Command

-- ---- ----- ----------- -------- -------

-- ----

1 Job1 Completed False localhost $share = "\\FileServer...

1 Job1 Completed False localhost $share = "\\FileServer...

3 Job3 Running True localhost $logs = "system","appl...

3 Job3 Running True localhost $logs = "system","appl...

When a job completes, you can use the Receive-Job cmdlet to get the results of

the job. However, keep in mind that if a job doesn’t produce output or errors to the

PowerShell prompt, there won’t be any results to receive.

You can receive the results of all jobs by typing receive-job, or you can iden-

tify jobs by their name, ID, instance ID, computer name, location, or session, or by

inputting a job object. The following example receives results by name:

receive-job –name Job1, Job3

The following example receives results by ID:

receive-job –id 1, 3

Job results are deleted automatically after you receive them. Use the –Keep

parameter to save the results so that you can receive them again. To delete the job

Using Sessions, Jobs, and Remoting CHAPTER 4

103

results, receive the job results again without the –Keep parameter, close the session, or use the Remove-Job cmdlet to delete the job from the session.

Alternatively, you can write the job results to a fi le. The following example writes

the job results to C:\logs\mylog.txt:

receive-job –name Job1 > c:\logs\mylog.txt

When working with a remote computer, keep in mind that this command runs on

the remote computer. As a result, the fi le is created on the remote computer. If you

are using one log for multiple jobs, be sure to use the append operator as shown in

this example:

receive-job –name Job1 >> c:\logs\mylog.txt

receive-job –name Job1 >> c:\logs\mylog.txt

receive-job –name Job2 >> c:\logs\mylog.txt

receive-job –name Job2 >> c:\logs\mylog.txt

receive-job –name Job3 >> c:\logs\mylog.txt

receive-job –name Job3 >> c:\logs\mylog.txt

While in the current session with the remote computer, you can view the con-

tents of the results fi le by typing the following command:

get-content c:\logs\mylog.txt

If you close the session with the remote computer, you can use Invoke-Command

to view the fi le on the remote computer as shown here:

$ms = new-pssession -computername fileserver84

$ms = new-pssession -computername fileserver84

invoke-command -session $ms -scriptblock {get-content c:\logs\mylog.txt}

invoke-command -session $ms -scriptblock {get-content c:\logs\mylog.txt}

Running Jobs Noninteractively

Rather than working in an interactive session, you can use the Invoke-Command

cmdlet with the –AsJob parameter to start background jobs and return results to the

local computer. When you use the –AsJob parameter, the job object is created on

the local computer, even though the job runs on the remote computer. When the

job completes, the results are returned to the local computer.

In the following example, we create a noninteractive PowerShell session with

three remote computers and then use Invoke-Command to run a background

job that gets the events in the System, Application, and Security logs. This is the

same job created earlier, only now the job runs on all the computers listed in the

–ComputerName parameter. Type the command as a single line:

$s = new-pssession -computername fileserver34, dataserver18, dcserver65

$s = new-pssession -computername fileserver34, dataserver18, dcserver65

Invoke-command –session $s

Invoke-command –session $s

-asjob -scriptblock {$share = "\\FileServer85\logs";

-asjob -scriptblock {$share = "\\FileServer85\logs";

$logs = "system","application","security";

$logs = "system","application","security";

foreach ($log in $logs) {

foreach ($log in $logs) {

$filename = "$env:computername".ToUpper() + "$log" + "log" +

$filename = "$env:computername".ToUpper() + "$log" + "log" +

(get-date -format yyyyMMdd) + ".log";

(get-date -format yyyyMMdd) + ".log";

Get-EventLog $log | set-content $share\$filename; }

Get-EventLog $log | set-content $share\$filename; }

}

104

CHAPTER 4 Using Sessions, Jobs, and Remoting

 Or use the back apostrophe to continue the line as shown here:

$s = new-pssession -computername fileserver34, dataserver18, dcserver65 `

$s = new-pssession -computername fileserver34, dataserver18, dcserver65 Ìnvoke-command –session $s Ìnvoke-command –session $s `

-asjob -scriptblock {$share = "\\FileServer85\logs"; `

-asjob -scriptblock {$share = "\\FileServer85\logs"; `

$logs = "system","application","security"; `

$logs = "system","application","security"; `

foreach ($log in $logs) { `

foreach ($log in $logs) { `

$filename = "$env:computername".ToUpper() + "$log" + "log" + `

$filename = "$env:computername".ToUpper() + "$log" + "log" + `

(get-date -format yyyyMMdd) + ".log"; `

(get-date -format yyyyMMdd) + ".log"; `

Get-EventLog $log | set-content $share\$filename; } `

Get-EventLog $log | set-content $share\$filename; } `

}

Alternatively, you can store the commands as a script on the local computer

and then reference the local script using the –FilePath parameter as shown in the

examples that follow.

 Command line

Command line

$s = new-pssession -computername fileserver34, dataserver18, dcserver65

$s = new-pssession -computername fileserver34, dataserver18, dcserver65

Invoke-command –session $s -asjob -filepath c:\scripts\eventlogs.ps1

Invoke-command –session $s -asjob -filepath c:\scripts\eventlogs.ps1

 Source for Eventlogs.ps1

Source for Eventlogs.ps1

$share = "\\FileServer85\logs"

$share = "\\FileServer85\logs"

$logs = "system","application","security"

$logs = "system","application","security"

foreach ($log in $logs) {

foreach ($log in $logs) {

$filename = "$env:computername".ToUpper() + "$log" + "log" + `

$filename = "$env:computername".ToUpper() + "$log" + "log" + `

(get-date -format yyyyMMdd) + ".log"

(get-date -format yyyyMMdd) + ".log"

Get-EventLog $log | set-content $share\$filename

Get-EventLog $log | set-content $share\$filename

}

The script must reside on the local computer or in a directory that the local com-

puter can access. As before, when you use FilePath, Windows PowerShell converts

the contents of the specifi ed script fi le to a script block and runs the script block as

a background job.

Now, you don’t necessarily have to run Invoke-Command via a noninteractive

session. However, the advantage of doing so is that you can now work with the job

objects running in the session. For example, to get information about the jobs on all

three computers, you type the following command:

get-job

To receive job results you type this command:

receive-job -keep

Using Sessions, Jobs, and Remoting CHAPTER 4

105

Or you can type the following if you want to save the results to a file on the local computer:

receive-job > c:\logs\mylog.txt

A variation on this technique is to use the Invoke-Command cmdlet to run the

Start-Job cmdlet. This technique allows you to run background jobs on multiple

computers and keep the results on the remote computers. Here’s how this works:

1. You use Invoke-Command without the –AsJob parameter to run the Start-

Job cmdlet.

2. A job object is created on each remote computer.

3. Commands in the job are run separately on each remote computer.

4. Job results are maintained separately on each remote computer.

5. You work with the job objects and results on each remote computer

separately.

Here, you use Invoke-Command to start jobs on three computers and store the

Job objects in the $j variable:

$s = new-pssession -computername fileserver34, dataserver18, dcserver65

$j = invoke-command –session $s {start-job -filepath c:\scripts\elogs.ps1}

Again, you don’t necessarily have to run Invoke-Command via a noninteractive

session. However, the advantage of doing so is that you can now work with the job

objects running on all three computers via the session. For example, to get informa-

tion about the jobs on all three computers, you type the following command:

invoke-command -session $s -scriptblock {get-job}

Or, because you stored the Job objects in the $j variable, you also could enter:

$j

To receive job results, you type this command:

invoke-command -session $s -scriptblock { param($j) receive-job –job $j

-keep} –argumentlist $j

Or you can do the following if you want to save the results to a file on each

remote computer:

invoke-command -session $s -command {param($j) receive-job –job $j > c:\

logs\mylog.txt} –argumentlist $j

In both examples, you use Invoke-Command to run a Receive-Job command in

each session in $s. Because $j is a local variable, the script block uses the “param”

keyword to declare the variable in the command and the ArgumentList parameter

to supply the value of $j.

106

 CHAPTER 4 Using Sessions, Jobs, and Remoting

Working Remotely Without WinRM

Some cmdlets have a –ComputerName parameter that lets you work with a remote

computer without using Windows PowerShell remoting. This means you can use the

cmdlet on any computer that is running Windows PowerShell, even if the computer

is not confi gured for Windows PowerShell remoting. These cmdlets include the

following:

Get-WinEvent Get-Counter

Get-EventLog

Clear-EventLog Write-EventLog

Limit-EventLog

Show-EventLog New-EventLog

Remove-EventLog

Get-WmiObject Get-Process Get-Service

Set-Service Get-HotFix

Restart-Computer

Stop-Computer Add-Computer

Remove-Computer

Rename-Computer Reset-ComputerMachinePassword

Because these cmdlets don’t use remoting, you can run any of these cmdlets

on a remote computer in a domain simply by specifying the name of one or more

remote computers in the –ComputerName parameter. However, Windows policies

and confi guration settings must allow remote connections, and you must still have

the appropriate credentials.

The following command runs Get-WinEvent on PrintServer35 and FileServer17:

get-winevent –computername printserver35, fileserver17

When you use ComputerName, these cmdlets return objects that include the

name of the computer that generated the data. The remote computer name is

stored in the MachineName property. Typically, the MachineName property is not

displayed by default. The following example shows how you can use the Format-

Table cmdlet to add the MachineName property to the output:

$procs = {get-process -computername Server56, Server42, Server27 |

$procs = {get-process -computername Server56, Server42, Server27 |

sort-object -property Name}

sort-object -property Name}

&$procs | format-table Name, Handles, WS, CPU, MachineName –auto

&$procs | format-table Name, Handles, WS, CPU, MachineName –auto

Name Handles WS CPU MachineName

Name Handles WS CPU MachineName

---- ------- -- --- --------------

---- ------- -- --- --------------

acrotray 52 3948544 0 Server56

acrotray 52 3948544 0 Server56

AlertService 139 7532544 Server56

AlertService 139 7532544 Server56

csrss 594 20463616 Server56

csrss 594 20463616 Server56

csrss 655 5283840 Server56

csrss 655 5283840 Server56

CtHelper 96 6705152 0.078125 Server56

CtHelper 96 6705152 0.078125 Server56

 . . .

. . .

acrotray 43 3948234 0 Server42

acrotray 43 3948234 0 Server42

AlertService 136 7532244 Server42

AlertService 136 7532244 Server42

Using Sessions, Jobs, and Remoting CHAPTER 4

107

csrss 528 20463755 Server42

csrss 528 20463755 Server42

csrss 644 5283567 Server42

csrss 644 5283567 Server42

CtHelper 95 6705576 0.067885 Server42

CtHelper 95 6705576 0.067885 Server42

acrotray 55 3967544 0 Server27

acrotray 55 3967544 0 Server27

AlertService 141 7566662 Server27

AlertService 141 7566662 Server27

csrss 590 20434342 Server27

csrss 590 20434342 Server27

csrss 654 5242340 Server27

csrss 654 5242340 Server27

CtHelper 92 6705231 0.055522 Server27

CtHelper 92 6705231 0.055522 Server27

You can get a complete list of all cmdlets with a –ComputerName parameter

by typing the following command: get-help * -parameter ComputerName. To

determine whether the –ComputerName parameter of a particular cmdlet requires

Windows PowerShell remoting, display the parameter description by typing

get-help CmdletName -parameter ComputerName, where CmdletName is the actual name of the cmdlet, such as

get-help Reset-ComputerMachinePassword -parameter ComputerName

If the parameter doesn’t require remoting, this is stated explicitly, as shown in

this example:

-ComputerName <string[]>

-ComputerName <string[]>

Resets the password for the specified computers. Specify one or more remote

Resets the password for the specified computers. Specify one or more remote

computers. The default is the local computer.

computers. The default is the local computer.

Type the NetBIOS name, an IP address, or a fully qualifi ed domain name of a

remote computer. To specify the local computer, type the computer name, a dot (.),

or localhost.

This parameter does not rely on Windows PowerShell remoting. You can use the

–ComputerName parameter even if your computer is not confi gured to run remote

commands.

108

CHAPTER 4 Using Sessions, Jobs, and Remoting

C H A P T E R 5

Navigating Core Windows

PowerShell Structures

N

Working with Expressions and Operators 109

N

Working with Variables and Values 122

N

Working with Strings 148

N

Working with Arrays and Collections 159

The core structures of any programming language determine what you can do

with the available options and how you can use the programming language.

The programming language at the heart of Windows PowerShell is C#, and the

core structures of PowerShell include

N Expressions and operators

N Variables, values, and data types

N Strings, arrays, and collections

Whenever you work with Windows PowerShell, you use these core structures.

You’ll want to read this chapter closely to learn the core mechanics and determine

exactly how you can put PowerShell to work. Because we discuss these core

mechanics extensively in this chapter, we won’t rehash these discussions when we

put the core mechanics to work in upcoming chapters.

Working with Expressions and Operators

In Windows PowerShell, an expression is a calculation that evaluates an equation

and returns a result. PowerShell supports many types of expressions, including

arithmetic expressions (which return numerical values), assignment expressions

(which assign or set a value), and comparison expressions (which compare values).

An operator is the element of an expression that tells PowerShell how to

perform the calculation. You use operators as part of expressions to perform

mathematical operations, make assignments, and compare values. The three

109

 common operator types are arithmetic operators, assignment operators, and comparison operators. Windows PowerShell also supports an extended type of operator

used with regular expressions, logical operators, and type operators.

Arithmetic, Grouping, and Assignment Operators

Windows PowerShell supports a standard set of arithmetic operators. These operators

are summarized in Table 5-1.

TABLE 5-1 Arithmetic Operators in Windows PowerShell

OPERATOR

OPERATION

FOR NUMBERS

FOR STRINGS

FOR ARRAYS

EXAMPLE

+

Addition

Returns their

Returns a

Returns a

3 + 4

sum

joined string

joined array

/

Division

Returns their

N/A

N/A

5 / 2

quotient

%

Modulus

Returns the

N/A

N/A

5 % 2

remainder of

their division

*

Multiplication

Returns their

Appends

Appends

6 * 3

product

the string

the array

to itself the

to itself the

number of

number of

times you

times you

specify

specify

–

Subtraction,

Returns their

N/A

N/A

3 – 2

negation

difference

Table 5-2 lists the assignment operators available in PowerShell. Assignment

operators assign one or more values to a variable and can perform numeric opera-

tions on the values before the assignment. PowerShell supports two special assignment

operators that you might not be familiar with: the increment operator (++) and the

decrement operator (--). These operators provide a quick way to add or subtract 1

from the value of a variable, property, or array element.

TABLE 5-2 Windows PowerShell Assignment Operators

OPERATOR

OPERATION

EXAMPLE

MEANING

=

Assign value

$a = 7

$a = 7

+=

Add or append to cur-

$g += $h

$g = $g + $h

rent value

–=

Subtract from current

$g –= $h

$g = $g – $h

value

110

 CHAPTER 5 Navigating Core Windows PowerShell Structures

 TABLE 5-2 Windows PowerShell Assignment Operators

 OPERATOR

OPERATION

EXAMPLE

MEANING

*=

Multiply current value

$g *= $h

$g = $g * $h

/=

Divide current value

$g /= $h

$g = $g / $h

%=

Modulus current value

$g %= $h

$g = $g % $h

++

Increment by 1

$g++ or ++$g

$g = $g + 1

--

Decrement by 1

$g-- or --$g

$g = $g – 1

As you can see in Tables 5-1 and 5-2, there are few surprises when it comes to

PowerShell’s arithmetic and assignment operators. Still, there are a few things worth

mentioning. In PowerShell, you determine remanders using the Modulus function.

In this example, $Remainder is set to 0 (zero):

$Remainder = 12 % 4

However, $Remainder is set to 1 with the following expression:

$Remainder = 10 % 3

You can negate a value using the – operator. In the following example, $Answer

is set to –15:

$Answer = -5 * 3

Command expansion and execution operators bring together sets of elements.

The grouping operators are described in the following list and examples:

N & Used to invoke a script block or the name of a command or function.

$a = {Get-Process –id 0}

$a = {Get-Process –id 0}

&$a

&$a

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

------- ------ ----- ----- ----- ------ -- -----------

----- -----

-- -----------

 0 0 0 24 0 0 Idle

 0 0 0 24 0 0 Idle

N () Used to group expression operators. It returns the result of the

expression.

$a = (5 + 4) * 2; $a

18

18

N $() Used to group collections of statements. The grouped commands are

executed, and then results are returned.

Navigating Core Windows PowerShell Structures CHAPTER 5

111

$($p= "win*"; get-process $p)

$($p= "win*"; get-process $p)

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

------- ------ ----- ----- ----- ------ -- -----------

------- ------ ----- ----- ----- ------ -- -----------

 106 4 1448 4092 46 636 wininit

 106 4 1448 4092 46 636 wininit

 145 4 2360 6536 56 780 winlogon

 145 4 2360 6536 56 780 winlogon

N @(

) Used to group collections of statements, execute them, and insert the

results into an array.

@(get-date;$env:computername;$env:logonserver)

@(get-date;$env:computername;$env:logonserver)

Friday, February 12, 2010 9:01:49 AM

Friday, February 12, 2010 9:01:49 AM

CORSERVER34

CORSERVER34

\\CORDC92

\\CORDC92

 NOTE An array is simply a data structure for storing a series of values. You’ll learn more about arrays in the “Working with Arrays and Collections” section.

If you mix operators, PowerShell performs calculations using the same precedence

order you learned in school. For example, multiplication and division in equations

are carried out before subtraction and addition, which means

5 + 4 * 2 = 13

and

10 / 10 + 6 = 7

Table 5-3 shows the precedence order for arithmetic operators. As the table

shows, the grouping is always evaluated fi rst, and then PowerShell determines

whether any values have been incremented or decremented. Next, PowerShell sets

positive and negative values as such. Then PowerShell performs multiplication and

division before performing any modulus operations. Finally, PowerShell performs

addition and subtraction and then assigns the results as appropriate.

 TABLE 5-3 Operator Precedence in Windows PowerShell

ORDER

OPERATION

1

Grouping () { }

2

Increment ++, Decrement --

3

Unary + -

112

CHAPTER 5 Navigating Core Windows PowerShell Structures

 TABLE 5-3 Operator Precedence in Windows PowerShell

 ORDER

OPERATION

4

Multiplication *, Division /

5

Remainders %

6

Addition +, Subtraction –

7

Assignment =

One of the interesting things about Windows PowerShell is that it supports the

data storage concepts of

N Kilobytes (KB)

N Megabytes (MB)

N Gigabytes (GB)

N Terabytes (TB)

N Petabytes (PB)

Knowing this, you can perform some simple calculations at the prompt. For

example, if you are backing up a drive that uses 1 TB of storage to Blu-Ray DVD,

you might want to fi nd out the maximum number of dual-layer Blu-Ray DVDs you’ll

need, and you can do this simply by entering

1TB / 50GB

The answer is

20.48

In the following example, you list all fi les in the C:\Data directory that are larger

than 100 KB:

get-item c:\data* | where-object {$_.length -gt 100kb}

get-item c:\data* | where-object {$_.length -gt 100kb}

Comparison Operators

When you perform comparisons, you check for certain conditions, such as whether

A is greater than B or whether A is equal to C. You primarily use comparison

operators with conditional statements, such as If and If Else.

Table 5-4 lists the comparison operators available in PowerShell. Most of these

operators are straightforward. By default, PowerShell uses non–case-sensitive

comparisons. However, you can perform case-sensitive and non–case-sensitive

comparisons, respectively, by adding the letter C or I to the operator, such as –ceq

or –ieq.

Navigating Core Windows PowerShell Structures CHAPTER 5

113

TABLE 5-4 Windows PowerShell Comparison Operators

OPERATOR

OPERATION

EXAMPLE

MEANING

OUTPUT

–eq

Equal

$g –eq $h

Is g equal to h?

Boolean

Include string

$g –eq $h

Does g include h?

Boolean

–ne

Not equal

$g –ne $h

Is g not equal to h? Boolean

Different

$g –ne $h

Does g include

Boolean

string

a different value

than h?

–lt

Less than

$g –lt $h

Is g less than h?

Boolean

–gt

Greater than

$g –gt $h

Is g greater than h?

Boolean

–le

Less than or

$g –le $h

Is g less than or

Boolean

equal

equal to h?

–ge

Greater than

$g –ge $h

Is g greater than or Boolean

or equal

equal to h?

–contains

Contains

$g –contains $h

Does g include h?

Boolean

–notcontains

Does not

$g –notcontains $h Does g not

Boolean

contain

include h?

–like

Like

$g –like $h

Does g include a

Boolean

value like h?

–notlike

Not like

$g –notlike $h

Does g not include Boolean

a value like h?

–match

Match

$g –match $h

Does g include any Boolean

matches for the

expression defined

in h?

–notmatch

Not match

$g –notmatch $h

Does g not include Boolean

matches for the

expression defined

in h?

–replace

Replace

$g –replace $h, $i

If g has occurrences String

of h, replace them

with i.

Note that you can use these operators to compare numbers as well as strings

and that there is no set precedence order for comparisons. Comparisons are always

performed from left to right.

114

 CHAPTER 5 Navigating Core Windows PowerShell Structures

 Most of the comparison operators return a Boolean value that indicates whether a match was found in the compared values. In this example and sample output, we

evaluate whether $a equals $b, and the output is False because the values are different:

$a = 5; $b = 6

$a = 5; $b = 6

$a –eq $b

$a –eq $b

False

False

In this example and sample output, we evaluate whether $a does not equal $b,

and the output is True because the values are different:

$a = 5; $b = 6

$a = 5; $b = 6

$a –ne $b

True

True

In this example and sample output, we evaluate whether $a is less than $b, and

the output is True:

$a = 5; $b = 6

$a = 5; $b = 6

$a –lt $b

True

True

When you are working with arrays and collections, the –eq, –ne, –lt, –gt, –le, and

–ge operators return all values that match the given expression. For example, the

–eq operator checks to see if an array of values contains any identical values. If it

does, the output shows all the identical values as shown in this example:

$a = "iexplorer", "iexplorer", "powershell"; $b = "iexplorer"

$a = "iexplorer", "iexplorer", "powershell"; $b = "iexplorer"

$a –eq $b

$a –eq $b

iexplorer

iexplorer

iexplorer

iexplorer

Similarly, when you are working with arrays and collections, the –ne operator

checks to see if an array of values contains values other than a particular value. If it

does, the output shows the different values as shown in this example:

$a = "svchost", "iexplorer", "powershell"; $b = "iexplorer"

$a = "svchost", "iexplorer", "powershell"; $b = "iexplorer"

$a –ne $b

svchost

svchost

powershell

powershell

Navigating Core Windows PowerShell Structures CHAPTER 5

115

You use the –contains and –notcontains operators with strings, arrays, and collections. These operators are used to determine whether there is or is not an identi-

cal match for a value. In the following example, you check to see whether $a has a

resulting match for winlogon:

$a = "svchost", "iexplorer", "powershell"

$a = "svchost", "iexplorer", "powershell"

$a –contains "winlogon"

$a –contains "winlogon"

False

False

The –like, –notlike, –match, and –notmatch operators are used for pattern

matching. With –like and –notlike, you can use wildcard characters to determine

whether a value is like or not like another value. In the following example, you check

to see whether $a has a resulting match for *host:

$a = "svchost"

$a = "svchost"

$a –like "*host"

$a –like "*host"

True

True

In examples in other chapters, I’ve used the match all wildcard (*) to match part

of a string. PowerShell supports several other wildcards as well, including ? and [].

Table 5-5 summarizes these wildcards and their uses.

 TABLE 5-5 Wildcard Characters in Windows PowerShell

WILDCARD

CHARACTER

DESCRIPTION

EXAMPLE

MATCH

*

Matches zero or more

help *-alias

export-alias, import-

characters

alias, get-alias,

new-alias, set-alias

?

Matches exactly

help ??port-alias

export-alias,

one character in the

import-alias

specifi ed position

[]

Matches one character

help [a-z]e[t-w]-

get-alias, new-alias,

in a specifi ed range

alias

set-alias

of characters

[]

Matches one character

help [efg]et-alias

get-alias

in a specifi ed subset

of characters

116

CHAPTER 5 Navigating Core Windows PowerShell Structures

 When you are working with arrays and collections, the –like and –notlike op-

erators return all values that match the given expression. The following example

returns two values that are like 4:

1,1,2,3,4,5,5,6,3,4 -like 4

1,1,2,3,4,5,5,6,3,4 -like 4

4

4

The following example returns fi ve values that are not like 4:

2,3,4,5,5,6,4 -notlike 4

2,3,4,5,5,6,4 -notlike 4

2

3

5

5

6

With –match and –notmatch, you use regular expressions to determine whether

a value does or does not contain a match for an expression. You can think of regular

expressions as an extended set of wildcard characters. In the following example, you

check to see whether $a contains the letter s, t, or u:

$a = "svchost"

$a = "svchost"

$a –match "[stu]"

$a –match "[stu]"

True

Table 5-6 shows the characters you can use with regular expressions. When you

use .NET Framework regular expressions, you also can add .NET Framework quanti-

fi ers to more strictly control what is considered a match.

TABLE 5-6 Characters Used with Regular Expressions

 CHARACTER

DESCRIPTION

RETURNS TRUE…

[chars]

Matches exact characters anywhere

“powershell” –match “er”

in the original value.

.

Matches any single character.

“svchost” –match “s…..t”

[value]

Matches at least one of the characters “get” –match “g[aeiou]t”

in the brackets.

Navigating Core Windows PowerShell Structures CHAPTER 5

117

TABLE 5-6 Characters Used with Regular Expressions

CHARACTER

DESCRIPTION

RETURNS TRUE…

[range]

Matches at least one of the charac-

“out” –match “[o-r]ut”

ters within the range. Use a hyphen

(-) to specify a block of contiguous

characters.

[^]

Matches any character except those “bell” –match “[^tuv]ell”

in brackets.

^

Matches the beginning characters.

“powershell” –match “^po”

$

Matches the end characters.

“powershell” –match “ell$”

*

Matches any pattern in a string.

“powershell” –match “p*”

?

Matches a single character in a

“powershell” –match

string.

“powershel?”

+

Matches repeated instances of the

“zbzbzb” –match “zb+”

preceding characters.

\

Matches the character that follows

“Shell$” –match “Shell\$”

as a literal character. For example,

when \ precedes a double quota-

tion mark, PowerShell interprets the

double quotation mark as a charac-

ter, not as a string delimiter.

.NET REGEX

\p{name}

Matches any character in the named “abcd” –match “\p{Ll}+”

character class specified by {name}.

Supported names are Unicode

groups and block ranges—for

example, Ll, Nd, Z, IsGreek, and

IsBoxDrawing.

\P{name}

Matches text not included in groups 1234 –match “\P{Ll}+”

and block ranges specified in

{name}.

\w

Matches any word character.

“abcd defg” –match “\w+”

Equivalent to the Unicode character

categories [\p{Ll} \p{Lu}\p{Lt}\

p{Lo}\p{Nd}\p{Pc}]. If ECMAScript-

compliant behavior is specified

with the ECMAScript option, \w is

equivalent to [a-zA-Z_0-9].

118

 CHAPTER 5 Navigating Core Windows PowerShell Structures

TABLE 5-6 Characters Used with Regular Expressions

CHARACTER

DESCRIPTION

RETURNS TRUE…

\W

Matches any nonword character.

“abcd defg” –match “\W+”

Equivalent to the Unicode categories

[^\p{Ll}\p{Lu}\p{Lt} \p{Lo}\p{Nd}\

p{Pc}].

\s

Matches any white-space character.

“abcd defg” –match “\s+”

Equivalent to the Unicode character

categories [\f\n\r\t\v\x85\p{Z}].

\S

Matches any non–white-space

“abcd defg” –match “\S+”

character. Equivalent to the Unicode

character categories [^\f\n\r\t\v\

x85\p{Z}].

\d

Matches any decimal digit. Equiva-

12345 –match “\d+”

lent to \p{Nd} for Unicode and [0–9]

for non-Unicode behavior.

\D

Matches any nondigit. Equivalent to “abcd” –match “\D+”

\P{Nd} for Unicode and [^0-9] for

non-Unicode behavior.

.NET FRAMEWORK

QUANTIFER

*

Matches zero or more occurrences

“abc” –match “\w*”

of a pattern specified in a .NET

Framework regex.

?

Matches zero or one occurrences

“abc” –match “\w?”

of a pattern specified in a .NET

Framework regex.

{n}

Matches exactly n occurrences of a

“abc” –match “\w{2}”

pattern specified in a .NET Frame-

work regex.

{n,}

Matches at least n occurrences of a

“abc” –match “\w{2,}”

pattern specified in a .NET Frame-

work regex.

{n,m}

Matches at least n occurrences of a

“abc” –match “\w{2,3}”

pattern specified in a .NET Frame-

work regex, but no more than m.

In addition to using the –match and –notmatch operators with regular expres-

sions, you can explicitly declare regular expressions and then check values against

Navigating Core Windows PowerShell Structures CHAPTER 5

119

the regular expression. The following example declares a regular expression that matches strings with the letters a to z or A to Z:

[regex]$regex="^([a-zA-Z]*)$"

[regex]$regex="^([a-zA-Z]*)$"

When you work with regular expressions, you use the ^ to represent the begin-

ning of a string and $ to represent the end of a string. You then use parentheses to

defi ne a group of characters to match. The value [a-zA-Z]* specifi es that we want

to match zero or more occurrences of the letters a to z or A to Z.

Now that we’ve defi ned a regular expression, we can use the IsMatch() method

of the expression to verify that a value matches or does not match the expression as

shown in the following example:

$a ="Tuesday"

$a ="Tuesday"

[regex]$regex="^([a-zA-Z]*)$"

[regex]$regex="^([a-zA-Z]*)$"

$regex.ismatch($a)

$regex.ismatch($a)

True

True

However, if we use a string with numbers, spaces, punctuation, or other special

characters, the IsMatch test fails as shown in the following example:

$days ="Monday Tuesday"

$days ="Monday Tuesday"

[regex]$regex="^([a-zA-Z]*)$"

[regex]$regex="^([a-zA-Z]*)$"

$regex.ismatch($days)

$regex.ismatch($days)

False

False

 TIP PowerShell also provides operators for splitting, joining, and formatting strings.

These operators are discussed in the “Working with Strings” section later in this

 chapter.

Another comparison operator you can use is –replace. You use this operator to

replace all occurrences of a value in a specifi ed element. In the following example,

you replace all occurrences of “host” in $a with "console":

$a = "svchost", "iexplorer", "loghost"

$a = "svchost", "iexplorer", "loghost"

$a –replace "host", "console"

$a –replace "host", "console"

svcconsole

svcconsole

iexplorer

iexplorer

logconsole

logconsole

120

CHAPTER 5 Navigating Core Windows PowerShell Structures

Other Operators

Windows PowerShell includes several other types of operators, including logical and

type operators. Table 5-7 provides an overview of these additional operators.

TABLE 5-7 Logical and Type Operators in Windows PowerShell

OP

OPERATION

DESCRIPTION

EXAMPLE

–and

Logical AND

True only when both state-

(5 –eq 5) –and (3 –eq 6)

ments are True.

False

–or

Logical OR

True only when either state-

(5 –eq 5) –or (3 –eq 6)

ment or both statements are

True

True.

–xor

Logical XOR

True only when one of the

(5 –eq 5) –xor (3 –eq 6)

statements is True and one is

True

False.

–not, !

Logical NOT

Negates the statement that

–not (5 –eq 5)

follows it. True only when the

False

statement is False. False only

when the statement is True.

! (5 –eq 5)

False

–is

Object

Returns True only when the

(get-date) –is [datetime]

equality

input is an instance of a speci- True

fied .NET Framework type.

–isnot

Object

Returns True only when the

(get-date) –isnot

inequality

input is not an instance of

[datetime]

a specified .NET Framework

False

type.

–as

Object

Converts the input to the

“3/31/10” –as [datetime]

conversion

specified .NET Framework

Wednesday, March 31,

type.

2010 12:00:00 AM

,

Array

Creates an array from the

$a = 1,2,4,6,4,2

constructor

comma-separated values.

..

Range

Establishes a range of values.

$a = 2..24

operator

–band

Binary AND

Performs a binary AND.

–

–bor

Binary OR

Performs a binary OR.

–

–bnot

Binary NOT

Performs a binary

–

complement.

–bxor

Binary XOR

Performs a binary exclusive OR. –

Navigating Core Windows PowerShell Structures CHAPTER 5

121

One operator you should learn about is the special operator Is. You use Is to

compare objects according to their .NET Framework type. If the objects are of the

same type, the result of the comparison is True. If the objects are not of the same

type, the result of the comparison is False.

Table 5-8 shows the expanded precedence order for all available operators. This

precedence order takes into account all the possible combinations of operators and

defines an order of evaluation.

TABLE 5-8 Extended Operator Precedence in Windows PowerShell

ORDER

OPERATION

1

Grouping () { }

2

Command expansion @ $

3

Not !

4

Wildcard expansion []

5

Dot sourcing .

6

Invoke &

7

Increment ++, Decrement --

8

Unary + –

9

Multiplication *, Division /

10

Remainders %

11

Addition +, Subtraction –

12

Comparison operators

13

–and, –or

14

Pipelining |

15

Redirection > >>

16

Assignment =

Working with Variables and Values

Variables are placeholders for values. A value can be a string, a number, or an ob-

ject. You can access this information later simply by referencing the variable name.

With variables that store objects (from the output of commands), you can pass the

stored information down the pipeline to other commands as if it were the output of

the original command.

122

 CHAPTER 5 Navigating Core Windows PowerShell Structures

 Your scripts and command text can use any of the available variables. By default, variables you create exist only in the current session and are lost when you exit or

close the session. To maintain your variables, you must store them in a profi le. For

detailed information on profi les, see Chapter 3, “Managing Your PowerShell Envi-

ronment.”

In scripts, if confi guration information doesn’t need to be hard-coded, you

should consider using variables to represent the information because this makes

scripts easier to update and maintain. Additionally, you should try to defi ne your

variables in one place at the beginning of a script to make it easier to fi nd and

maintain variables.

PowerShell supports four classes of variables: automatic, preference, environ-

ment, and user-created variables. Unlike the command line, where variable values

are stored as text strings, PowerShell stores values as either text strings or objects.

Technically, a string is a type of object as well, and you’ll learn more about strings in

“Working with Strings” later in this chapter.

Variable Essentials

The following cmdlets are available for working with variables:

N Get-Variable Lists all or specifi ed variables set in the current session by

name and value.

Get-Variable [[-Name]

Get-Variable [[-Name] VarNames

 VarNames] [AddtlParams]

] [AddtlParams]

AddtlParams=

AddtlParams=

[-Scope

[-Scope String

 String] [-Exclude

] [-Exclude Strings

 Strings] [-Include

] [-Include Strings

 Strings] [-ValueOnly]

] [-ValueOnly]

N New-Variable Creates a new variable.

New-Variable [[-Value]

New-Variable [[-Value] Object

 Object] [-Name]

] [-Name] VarName

 VarName [AddtlParams]

[AddtlParams]

AddtlParams=

AddtlParams=

[-Description

[-Description String

 String] [-Force] [-Option None | ReadOnly | Constant

] [-Force] [-Option None | ReadOnly | Constant

| Private | AllScope] [-PassThru] [-Scope

| Private | AllScope] [-PassThru] [-Scope String

 String] [-Visibility

] [-Visibility

Public | Private]

Public | Private]

N Set-Variable Creates a new variable or changes the defi nition of an exist-

ing variable.

Set-Variable [[-Value]

Set-Variable [[-Value] Object

 Object] [-Name]

] [-Name] VarNames

 VarNames [AddtlParams]

[AddtlParams]

AddtlParams=

AddtlParams=

[-Description

[-Description String

 String] [-Exclude

] [-Exclude Strings

 Strings] [-Force] [-Include

] [-Force] [-Include

 Strings

 Stri

] [-Option None | ReadOnly | Constant | Private | AllScope]

 ngs] [-Option None | ReadOnly | Constant | Private | AllScope]

[-PassThru] [-Scope

[-PassThru] [

 String

-Scope String] [-Visibility Public | Private]

] [-Visibility Public | Private]

Navigating Core Windows PowerShell Structures CHAPTER 5

123

N Remove-Variable Removes a variable and its value. Use the –Force parameter to remove a read-only variable.

Remove-Variable [-Name] VarNames[AddtlParams]

Remove-Variable [-Name] VarNames[AddtlParams]

AddtlParams=

AddtlParams=

[-Scope

[-Scop

 String

e String] [-Force] [-Exclude

] [-Force] [-Exclud

 Strings

e Strings] [-Include

] [-Include Strings

 Strings]

N Clear-Variable Deletes the value of a variable. The value of the variable is

then set to NULL.

Clear-Variable [-Force] [-PassThru] [-Scope String] [-Exclude

Clear-Variable [-Force] [-PassThru] [-Scope String] [-Exclude

Strings] [-Include Strings] [-Name] VarNames

Strings] [-Include Strings] [-Name] VarNames

Regardless of the class of variable you are working with, you reference variables

by preceding the variable name with a dollar sign ($). This is true whether you are

defi ning a new variable or trying to work with a value stored in an existing variable.

The dollar sign helps distinguish variables from aliases, functions, cmdlets, and other

elements you use with PowerShell. Table 5-9 provides an overview of the options for

defi ning variables.

TABLE 5-9 Windows PowerShell Variable Syntaxes

SYNTAX

DESCRIPTION

$myVar = “Value”

Defi nes a variable with a standard name, which is

prefi xed by $ and can contain the alphanumeric

characters (a to z, A to Z, and 0–9) and the under-

score (_). Variable names are not case sensitive.

${my.var!!!!} = “Value”

Defi nes a variable with a nonstandard name, which

is prefi xed by $, is enclosed in curly braces, and

can contain any character. If curly braces are part

of the name, you must prevent substitution using

the back apostrophe (`).

[type] $myVar = “Value”

Defi nes a strongly typed variable that ensures the

variable can contain only data of the specifi ed

type. PowerShell throws an error if it cannot coerce

the data into the declared type.

$ SCOPE:$myVar = “Value”

Declares a variable with a specifi c scope. Scopes

set the logical boundaries for variables. For more

information, see “Managing Variable Scopes” later

in the chapter.

New-Item Variable:\myVar

Creates a new variable using the variable provider.

–Value Valu e

For more on providers, see the “Using Providers”

section in Chapter 3.

124

CHAPTER 5 Navigating Core Windows PowerShell Structures

TABLE 5-9 Windows PowerShell Variable Syntaxes

 SYNTAX

DESCRIPTION

Get-Item Variable:\myVar

Gets a variable using the variable provider or the

Get-Variable myVar

Get-Variable cmdlet.

${ path\fi lename.ext}

Defi nes a variable using the Get-Content and

Set-Content syntax. If the path\fi lename.ext value

points to a valid path, you can get and set the

content of the item by reading and writing to the

variable.

To defi ne a variable, you must assign the variable a name and a value using the

equals operator (=). Standard variable names are not case sensitive and can contain

any combination of alphanumeric characters (a to z, A to Z, and 0–9) and the under-

score (_) character. Following these rules, these are all valid and separate variables:

$myString = "String 1"

$myString = "String 1"

$myVar = "String 2"

$myVar = "String 2"

$myObjects = "String 3"

$myObjects = "String 3"

$s = "String 4"

$s = "String 4"

To access the value stored in a variable, you simply reference the variable name.

For example, to display the contents of the $myString variable defi ned earlier, you

type $myString at the PowerShell prompt, and you get the following output:

String 1

String 1

You can list available variables by typing get-variable at the PowerShell prompt.

The output includes variables you’ve defi ned as well as current automatic and pref-

erence variables. Because environment variables are accessed through the environ-

ment provider, you must reference $env: and then the name of the variable you

want to work with. For example, to display the value of the %UserName% variable,

you must enter $env:username.

Variables can have nonstandard names that include special characters, such

as dashes, periods, colons, and parentheses, but you must enclose nonstandard

variable names in curly braces. Enclosing the variable name in curly braces forces

PowerShell to interpret the variable name literally. Following these rules, these are

all valid and separate variables:

${my.var} = "String 1"

${my.var} = "String 1"

${my-var} = "String 2"

${my-var} = "String 2"

${my:var} = "String 3"

${my:var} = "String 3"

${my(var)} = "String 4"

${my(var)} = "String 4"

Navigating Core Windows PowerShell Structures CHAPTER 5

125

To refer to a variable name that includes braces, you must enclose the variable name in braces and use the back apostrophe character (`) to force PowerShell to

interpret the brace characters literally when used as part of the variable name. For

example, you can create a variable named “my{var}string” with a value of “String 5”

by typing

${my`{var`}string} = "String 5"

${my`{var`}string} = "String 5"

In previous examples, we assigned string values to variables, but you can just as

easily assign numeric, array, and object values. Numeric values are values entered

as numbers rather than strings. Arrays are data structures for storing collections of

like-typed data items. The values stored in an array can be delimited with a comma

or initialized using the range operator (..). A collection of objects can be obtained by

assigning the output of a cmdlet to a variable. Consider the following examples:

$myFirstNumber = 10

$myFirstNumber = 10

$mySecondNumber = 500

$mySecondNumber = 500

$myFirstArray = 0,1,2,3,4,8,13,21

$myFirstArray = 0,1,2,3,4,8,13,21

$mySecondArray = 1..9

$mySecondArray = 1..9

$myString = "Hello!"

$myString = "Hello!"

$myObjectCollection1 = get-service

$myObjectCollection2 = get-process –name svchost

$myObjectCollection2 = get-process –name svchost

Here, you create variables to store integer values, arrays of values, strings, and

collections of objects. You can then work with the values stored in the variable just

as you would the original values. For example, you can count the number of service

objects stored in $myObjectCollection1 by typing the following:

$myObjectCollection1.Count

$myObjectCollection1.Count

You even can sort the service objects by status and display the sorted output by

typing the following command:

$myObjectCollection1 | sort-object –property status

$myObjectCollection1 | sort-object –property status

You aren’t limited to values of these data types. You can assign any .NET Frame-

work data type as a value, including the common data types listed in Table 5-10.

TABLE 5-10 Data Type Aliases

DATA TYPE ALIAS

DATA TYPE

[adsi]

An Active Directory Services Interface (ADSI) object

[array]

An array of values

[bool]

A Boolean value (True/False)

126

CHAPTER 5 Navigating Core Windows PowerShell Structures

 TABLE 5-10 Data Type Aliases

 DATA TYPE ALIAS

DATA TYPE

[byte]

An 8-bit unsigned integer in the range 0 to 255

[char]

A Unicode 16-bit character

[datetime]

A datetime value

[decimal]

A 128-bit decimal value

[double]

A double-precision, 64-bit fl oating-point number

[fl oat]

A single-precision, 32-bit fl oating-point number

[hashtable]

An associative array defi ned in a hashtable object

[int]

A 32-bit signed integer

[long]

A 64-bit signed integer

[psobject]

A common object type that can encapsulate any base object

[regex]

A regular expression

[scriptblock]

A series of commands

[single]

A single-precision, 32-bit fl oating-point number

[string]

A fi xed-length string value with Unicode characters

[wmi]

A Windows Management Instrumentation (WMI) object

[xml]

An XML object

Variables also can be used to store the results of evaluated expressions. Consider

the following example and result:

$theFirstResult = 10 + 10 + 10

$theFirstResult = 10 + 10 + 10

$theSecondResult = $(if($theFirstResult –gt 25) {$true} else {$false})

$theSecondResult = $(if($theFirstResult –gt 25) {$true} else {$false})

write-host "$theFirstResult is greater than 25? `t $theSecondResult"

write-host "$theFirstResult is greater than 25? `t $theSecondResult"

30 is greater than 25? True

30 is greater than 25? True

Here, Windows PowerShell evaluates the fi rst expression and stores the result in

the fi rst variable. Next PowerShell evaluates the second expression and stores the

result in the second variable. The expression determines whether the fi rst variable

is greater than 25. If it is, PowerShell sets the second variable to True. Otherwise,

PowerShell sets the second variable to False. Finally, PowerShell displays output to

the console containing the results.

In these examples, the fi rst variable is defi ned as the Integer data type, and the

second is defi ned as the Boolean data type. Generally, if you use whole numbers

(such as 3 or 5) with a variable, PowerShell creates the variable as an Integer.

Navigating Core Windows PowerShell Structures CHAPTER 5

127

 Variables with values that use decimal points, such as 6.87 or 3.2, are generally assigned as Doubles—that is, double-precision, floating-point values. Variables

with values entered with a mixture of alphabetical and numeric characters, such as

Hello or S35, are created as Strings.

In PowerShell, you use Boolean values quite frequently. Whenever PowerShell

evaluates variables as part of a Boolean expression, such as in an If statement,

PowerShell maps the result to a Boolean representation. A Boolean value is always

either Tue or False, and it can be represented literally using the values $true for True

or $false for False.

Table 5-11 shows examples of items and results and how they are represented as

Booleans by PowerShell. Note that a reference to any object is represented as True

whereas a reference to $null is represented as False.

TABLE 5-11 Results Represented as Boolean Values

ITEM OR RESULT

BOOLEAN REPRESENTATION

$true

True

$false

False

$null

False

Object reference

True

Nonzero number

True

Zero

False

Nonempty string

True

Empty string

False

Nonempty array

True

Empty array

False

Empty associative array

True

Nonempty associative array

True

Assigning and Converting Data Types

You can directly assign values without declaring the data type because PowerShell

has the built-in capability to automatically determine the data type. If you ever have

a question about a variable’s data type, you can display the data type using the fol-

lowing syntax:

VariableName.GetType()

where VariableName is the actual name of the variable as shown in the following

example and sample output:

128

 CHAPTER 5 Navigating Core Windows PowerShell Structures

$myFirstNumber.GetType()

$myFirstNumber.GetType()

IsPublic IsSerial Name BaseType

IsPublic IsSerial Name BaseType

-------- -------- ---- --------

-------- -------- ---- --------

True True Int32 System.ValueType

True True Int32 System.ValueType

Note that the base type is listed as System.ValueType, and the name is listed as

Int32. Based on this output, you know the base type for the variable is a valid type

in the System namespace and that the specifi c value type is Int32, meaning a 32-bit

integer value.

Although the easiest way to declare a variable type is to use an alias, you also

can declare variable types using the following:

N Fully qualifi ed class names, such as [System.Array], [System.String], or

[System.Diagnostics.Service]

N Class names under the System namespace, such as [Array], [String], or

[Diagnostics.Service]

Be careful though: PowerShell throws an error if it cannot coerce the data into

the specifi ed data type. This is why you’ll typically want to allow PowerShell to

determine the data type for you. That way, you don’t have to worry about Power-

Shell throwing errors if data cannot be coerced into a specifi ed data type. However,

after the data type is set, PowerShell tries to coerce any subsequent values you add

to a variable to be of this type and throws an error if data types are mismatched.

Consider the following example:

$myNumber = 52

$myNumber = 52

$myNumber += "William"

$myNumber += "William"

Here, you create a variable and assign an integer value of 52. Next, you try to

add a string value to the existing value using the increment operator (+=). This

causes PowerShell to throw the following type mismatch error:

Cannot convert value "William" to type "System.Int32". Error: "Input

Cannot convert value "William" to type "System.Int32". Error: "Input

string was not in a correct format."

string was not in a correct format."

At line:1 char:13

At line:1 char:13

+ $myNumber += <<<< "William"

+ $myNumber += <<<< "William"

+ CategoryInfo : NotSpecified: (:) [], RuntimeException

+ CategoryInfo : NotSpecified: (:) [], RuntimeException

+ FullyQualifiedErrorId : RuntimeException

+ FullyQualifiedErrorId : RuntimeException

This error occurs because PowerShell cannot automatically convert the string

value to a numeric value. However, in other cases, PowerShell silently converts value

types for you. Consider the following example:

$myNumber = "William"

$myNumber = "William"

$myNumber += 52

$myNumber += 52

Navigating Core Windows PowerShell Structures CHAPTER 5

129

Here, you create a variable and assign a string value. Next, you try to add the numeric value 52 to the existing string value using the increment operator (+=). This

causes PowerShell to silently convert a numeric value to a string, and the result is

that the value of $myNumber is then set to “William52”.

When you create variables, you can specify the value type using any of the data

type aliases listed previously in Table 5-1. These data type aliases are used in the

same way whenever you declare a data type in PowerShell.

In the following example, you declare the data type as a 32-bit integer, specify

the variable name as $myNumber, and assign a value of 10:

[int]$myNumber = 10

[int]$myNumber = 10

This creates a strongly typed variable and ensures that the variable can contain

only the data of the type you declare. PowerShell throws an error if it cannot coerce

the data to this type when you assign it. For more information about data types, see

the “Object Types” section in Chapter 6, “Mastering Aliases, Functions, and Objects.”

To explicitly assign a number as a long integer or decimal, you can use the suf-

fi xes L and D, respectively. Here are examples:

$myLongInt = 52432424L

$myLongInt = 52432424L

$myDecimal = 2.2425D

$myDecimal = 2.2425D

Windows PowerShell also supports scientifi c notation. For example,

$mathPi = 3141592653e-9

sets the value for $mathPi as 3.141592653.

 TIP In Windows PowerShell, you can reference the mathematical constants Pi

and E via the static properties of the [System.Math] class. [System.Math]::Pi equals

3.14159265358979. [System.Math]::E equals 2.71828182845905.

You can enter hexadecimal numbers using the 0x prefi x, and PowerShell stores

the hexadecimal number as an integer. If you enter the following statement

$ErrorCode = 0xAEB4

PowerShell converts the hexadecimal value AEB4 and then stores that value as

44724.

PowerShell does not natively support other number bases. However, you can

use the [Convert] class in the .NET Framework to perform many types of data

conversions. The [Convert] class supports the static conversion methods shown in

Table 5-12.

130

CHAPTER 5 Navigating Core Windows PowerShell Structures

 TABLE 5-12 Commonly Used Static Methods of the [Convert] Class

 STATIC METHOD

DESCRIPTION

ToBase64CharArray()

Converts the value to a base64 character array

ToBase64String()

Converts the value to a base64 string

ToBoolean()

Converts the value to a Boolean

ToByte()

Converts the value to an 8-bit unsigned integer

ToChar()

Converts the value to a Unicode 16-bit char

ToDateTime()

Converts the value to a datetime value

ToDecimal()

Converts the value to a decimal value

ToDouble()

Converts the value to a double-precision, 64-bit

fl oating-point number

ToInt16()

Converts the value to a 16-bit integer

ToInt32()

Converts the value to a 32-bit integer

ToInt64()

Converts the value to a 64-bit integer

ToSByte()

Converts the value to an 8-bit signed integer

ToSingle()

Converts the value to a single-precision, 32-bit fl oating-

point number

ToString()

Converts the value to a string

ToUInt16()

Converts the value to an unsigned 16-bit integer

ToUInt32()

Converts the value to an unsigned 32-bit integer

ToUInt64()

Converts the value to an unsigned 64-bit integer

You can use the [Convert] class methods to convert to and from binary, octal,

decimal, and hexadecimal values. The following example converts the binary value

to a 32-bit integer:

$myBinary = [Convert]::ToInt32("1011111011110001", 2)

$myBinary = [Convert]::ToInt32("1011111011110001", 2)

The result is 48881. The following example converts an octal value to a 32-bit

integer:

$myOctal = [Convert]::ToInt32("7452", 8)

$myOctal = [Convert]::ToInt32("7452", 8)

The result is 3882. The following example converts a hexadecimal value to a 32-

bit integer:

$myHex = [Convert]::ToInt32("FEA07E", 16)

$myHex = [Convert]::ToInt32("FEA07E", 16)

Navigating Core Windows PowerShell Structures CHAPTER 5

131

The result is 16687230. You can just as easily convert an integer value to binary, octal, or hexadecimal. The following example takes the value 16687230 and converts

it to a string containing a hexadecimal value:

$myString = [Convert]::ToString(16687230, 16)

$myString = [Convert]::ToString(16687230, 16)

The result is “FEA07E”.

Although PowerShell can convert between some variable types, you might

sometimes want to force PowerShell to use a variable value as a string rather than

another data type. To do this, you can use the ToString() method to convert a vari-

able value to a string. This works with Boolean, Byte, Char, and Datetime objects, as

well as any of the numeric data types. It does not work with most other data types.

To convert a value to a string, just pass the value to the ToString() method as

shown in this example and sample output:

$myNumber = 505

$myNumber = 505

$myString = $myNumber.ToString()

$myString = $myNumber.ToString()

$myString.GetType()

$myString.GetType()

IsPublic IsSerial Name BaseType

IsPublic IsSerial Name BaseType

-------- -------- ---- --------

-------- -------- ----

True True String System.Object

True True String System.Object

In the [System.Datetime] and [System.Math] classes, you fi nd other useful static

methods and properties. Table 5-13 lists the class members you’ll use most often.

TABLE 5-13 Commonly Used Static Members of the [DateTime] and [Math] Classes

 CLASS/MEMBERS

DESCRIPTION

SYNTAX

[Datetime]

Compare()

Compares two date objects.

[Datetime]::Compare(d1,d2)

Returns 0 if they are equal and

–1 otherwise.

DaysInMonth()

Returns the number of days in [Datetime]::DaysInMonth(year,

a given year and month.

month)

Equals

Determines if two date objects [Datetime]::Equals(d1,d2)

are equal. Returns True if they

are equal.

IsLeapYear

Returns True if the specifi ed

[Datetime]::IsLeapYear(year)

year is a leap year.

Now

Returns the current date and

[Datetime]::Now

time.

132

CHAPTER 5 Navigating Core Windows PowerShell Structures

TABLE 5-13 Commonly Used Static Members of the [DateTime] and [Math] Classes CLASS/MEMBERS

DESCRIPTION

SYNTAX

Today

Returns the current date as of

[Datetime]::Today

12:00 A.M.

[MATH]

Abs()

Returns the absolute value.

[Math]::Abs(value1)

Acos()

Returns the arccosine of the

[Math]::Acos(value1)

value.

Asin()

Returns the arcsine of the

[Math]::Asin(value1)

value.

Atan()

Returns the arctangent of the

[Math]::Atan(value1)

value.

Atan2()

Returns the inverse arccosine

[Math]::Atan2(value1)

of the value.

BigMul()

Returns the multiple as a 64-

[Math]::BigMul(val1,val2)

bit integer.

Ceiling()

Returns the mathematical ceil- [Math]::Ceiling(val1)

ing of the value.

Cos()

Returns the cosine of the

[Math]::Cos(val1)

value.

Cosh()

Returns the inverse cosine of

[Math]::Cosh(val1)

the value.

DivRem()

Returns the dividend remain-

[Math]::DivRem(val1,val2)

der for value1 / value2.

Equals()

Evaluates whether object1

[Math]::Equals(obj1,obj2)

equals object2.

Exp()

Returns the exponent.

[Math]::Exp(value1)

Floor()

Returns the mathematical

[Math]::Floor(val1)

floor of the value.

Log()

Returns the Log of the value.

[Math]::Log(value1)

Log10()

Returns the Log10 of the

[Math]::Log10(value1)

value.

Max()

Returns the larger of two

[Math]::Max(val1,val2)

values.

Navigating Core Windows PowerShell Structures CHAPTER 5

133

TABLE 5-13 Commonly Used Static Members of the [DateTime] and [Math] Classes CLASS/MEMBERS

DESCRIPTION

SYNTAX

Min()

Returns the smaller of two

[Math]::Min(val1,val2)

values.

Pow()

Returns the value to the power [Math]::Pow(val1,val2)

of the exponent.

Round()

Returns the rounded value.

[Math]::Round(val1)

Sign()

Returns a signed 16-bit inte-

[Math]::Sign(val1)

ger value.

Sin()

Returns the sine of the value.

[Math]::Sin(value1)

Sinh()

Returns the inverse sine of the [Math]::Sinh(value1)

value.

Sqrt()

Returns the square root of the [Math]::Sqrt(value1)

value.

Tan()

Returns the tangent of the

[Math]::Tan(value1)

value.

Tanh()

Returns the inverse tangent of [Math]::Tanh(value1)

the value.

Truncate()

Truncates the decimal value.

[Math]::Truncate(value1)

E

Returns the mathematical

[Math]::E

constant E.

Pi

Returns the mathematical

[Math]::Pi

constant Pi.

Table 5-14 provides an overview of the instance methods and properties of

the String object. You’ll use the String object often when working with values in

PowerShell.

TABLE 5-14 Commonly Used Instance Methods and Properties of String Objects

INSTANCE MEMBER

DESCRIPTION

EXAMPLE

Length

Returns the character length $s.Length

of the string.

Contains()

Returns True if string2 is

$s.Contains(“string2”)

contained within string1.

EndsWith()

Returns True if string1 ends

$s.EndsWith(“string2”)

with string2.

134

 CHAPTER 5 Navigating Core Windows PowerShell Structures

TABLE 5-14 Commonly Used Instance Methods and Properties of String Objects INSTANCE MEMBER

DESCRIPTION

EXAMPLE

Insert()

Inserts string2 into string1

$s.Insert(0,“string2”)

at the specified character

$s.Insert($s.Length,“string2”)

position.

Remove()

Removes characters from

$s.Remove(5,3)

string1 based on a start-

$s.Remove(5)

ing position and length. If

no length is provided, all

characters after the starting

position are removed.

Replace()

Replaces occurrences of

$s.Replace(“this”,”that”)

substr1 in the string with the

substr2 value.

StartsWith()

Returns True if string1 starts $s.StartsWith(“string2”)

with string2.

SubString()

Gets a substring from

$s.Substring(3,5)

string1 based on a start-

$s.Substring(3)

ing position and length. If

no length is provided, all

characters after the starting

position are returned.

ToLower()

Converts the string to lower- $s.ToLower()

case letters.

ToString()

Converts an object to a

$s.ToString()

string.

ToUpper()

Converts the string to up-

$s.ToUpper()

percase letters.

Managing Variable Scopes

The scope of a variable determines its logical boundaries. You can set variable scope

as global, local, script, or private. The scopes exist in a logical hierarchy in which

scope information is accessible downward in this order:

 global > script/local > private

Following this, you can see that the local and script scopes can read information

from the global scope, but the global scope cannot read a local or script scope.

Further, private scopes can read information from higher-level scopes, but other

scopes cannot read the contents of a private scope.

Navigating Core Windows PowerShell Structures CHAPTER 5

135

 REAL WORLD Scope applies to aliases, functions, and PowerShell drives as well as to variables. You can think of the global scope as the parent or root scope and script/

local scripts as child scopes of the global scope. Child scopes can always read informa-

tion from parent scopes. Technically speaking, variables, aliases, and functions in a

parent scope are not part of the child scope. A child scope does not inherit the vari-

ables, aliases, or functions from the parent scope. However, a child scope can view the

variables, aliases, or functions from the parent scope, and it can change these items in

the parent scope by explicitly specifying the parent scope.

The default scope for a script is a script scope that exists only for that script. The

 default scope for a function is a local scope that exists only for that function, even if

the function is defi ned in a script.

Regardless of whether you are working with variables, aliases, functions, or PowerShell

drives, scopes work the same. An item you include in a scope is visible in the scope

in which it was created and any child scopes, unless you explicitly make it private.

An item in a particular scope can be changed only in that scope, unless you explicitly

specify a different scope. If you create an item in a child scope and that item already

exists in another scope, the original item is not accessible in the child scope, but it is

not overridden or changed in the original (parent) scope.

You can create a new scope by running a script or function, by defi ning a script

block, by creating a local or remote session, or by starting a new instance of Power-

Shell. When you create a new scope through a script, function, script block, or nest-

ing of instances, the scope is a child scope of the original (parent) scope. However,

when you create a new session, the session is not a child scope of the original scope.

The session starts with its own global scope, and that global scope is independent

from the original scope.

You can explicitly or implicitly set the scope of a variable. You explicitly set scope

by adding the Global, Local, Script, or Private keyword prefi x to the variable name.

The following example creates a global variable:

$Global:myVar = 55

$Global:myVar = 55

You implicitly set scope whenever you defi ne a variable at the prompt, in a script,

or in a function. A variable with an implicit scope resides in the scope in which it is

defi ned.

The default scope is the current scope and is determined as follows:

N Global when defi ned interactively at the PowerShell prompt

N Script when defi ned outside functions or script blocks in a script

N Local within functions, script blocks, or anywhere else

The global scope applies to an entire PowerShell instance. Because data defi ned

in the global scope is inherited by all child scopes, this means any commands, func-

tions, or scripts that you run can make use of variables defi ned in the global scope.

Global scopes are not shared across instances of PowerShell. With regard to

the PowerShell console, this means the variables you defi ne in one console are not

136

CHAPTER 5 Navigating Core Windows PowerShell Structures

available in another console (unless you defi ne them in that console session). With regard to the PowerShell application, this means variables you defi ne in one tab are

not available in another tab (unless you defi ne them in that tab session).

Local scopes are created automatically each time a function, script, or fi lter runs.

A local scope can read information from the global scope, but it can make changes

to global information only by explicitly declaring the scope. After a function, script,

or fi lter has fi nished running, the information in the related local scope is discarded.

To learn more about scopes, consider the following example and sample output:

function numservices {$serv = get-service}

function numservices {$serv = get-service}

numservices

numservices

write-host "The number of services is: `t" $serv.count

write-host "The number of services is: `t" $serv.count

The number of services is:

The number of services is:

Here, $serv is created as a variable inside the numservices function. As a result,

when you run the function, a local variable instance is created. When you then try

to access the $s variable in the global scope, the variable has no value. In contrast, if

you explicitly declare the variable as global, you can access the variable in the global

scope as shown in the following example and sample output:

function numservices {$Global:serv = get-service}

function numservices {$Global:serv = get-service}

numservices

numservices

write-host "The number of services is: `t" $serv.count

write-host "The number of services is: `t" $serv.count

The number of services is: 157

The number of services is: 157

Script scopes are created whenever a script runs. Only commands in a script run

in the script scope; to these commands, the script scope is the local scope. As func-

tions in a script run in their own local scope, any variables set in a script function are

not accessible to the script itself. To remedy this, you can set the scope of variables

defi ned in a script function explicitly as shown in this example:

function numservices {$Script:serv1 = get-service}

function numservices {$Script:serv1 = get-service}

numservices

numservices

write-host "The number of services is: `t" $serv1.count

write-host "The number of services is: `t" $serv1.count

Normally, when a function or script fi nishes running, the related scope and all

related information is discarded. However, you can use dot sourcing to tell Power-

Shell to load a function’s or script’s scope into the calling parent’s scope rather

than creating a new local scope for the function or script. To do this, simply prefi x

the function or script name with a period (.) when running the function or script, as

shown in this example:

. c:\scripts\runtasks.ps1

. c:\scripts\runtasks.ps1

Navigating Core Windows PowerShell Structures CHAPTER 5

137

The fi nal scope type you can use is the private scope. You must create privately scoped items explicitly. Because any information in a private scope is not available

to any other scopes, including child scopes, a privately scoped variable is available

only in the scope in which it is created. The following example and sample output

shows this:

function numservices {$Private:serv = get-service

function numservices {$Private:serv = get-service

write-host "The number of services is: `t" $serv.count

write-host "The number of services is: `t" $serv.count

&{write-host "Again, the number of services is: `t" $serv.count}

&{write-host "Again, the number of services is: `t" $serv.count}

}

numservices

numservices

The number of services is: 157

The number of services is: 157

Again, the number of services is:

Again, the number of services is:

Here, you create a function with a private variable and then defi ne a script block

within the function. Within the function, you have access to the private variable, and

this is why you can write the number of services when you call the function. Because

the script block automatically runs in its own local scope, you cannot access the pri-

vate variable in the script block. This is why you cannot write the number of services

from within the script block when you call the function.

Automatic, Preference, and Environment Variables

In addition to user-created variables, PowerShell supports automatic, preference,

and environment variables. Automatic variables are fi xed and used to store state

information. Preference variables are changeable and used to store working values

for PowerShell confi guration settings. Environment variables store the working

environment for the current user and the operating system.

Table 5-15 lists the common automatic variables in PowerShell. You’ll use many

of these variables when you are working with PowerShell, especially $_, $Args,

$Error, $Input, and $MyInvocation.

 TABLE 5-15 Common Automatic Variables in Windows PowerShell

 AUTOMATIC VARIABLE

DESCRIPTION

$$

Stores the last token in the last line received by the

PowerShell session.

$?

Stores the execution status of the last operation as TRUE

if the last operation succeeded or as FALSE if it failed.

$^

Stores the fi rst token in the last line received by the session.

138

CHAPTER 5 Navigating Core Windows PowerShell Structures

TABLE 5-15 Common Automatic Variables in Windows PowerShell

AUTOMATIC VARIABLE

DESCRIPTION

$_

Stores the current object in the pipeline object set. Use

this variable in commands that perform an action on every

object or on selected objects in a pipeline.

$Args

Stores an array of the undeclared parameters, parameter

values, or both that are passed to a function, script, or

script block.

$ConsoleFileName

Stores the path of the console file (.psc1) that was most

recently used in the session.

$Error

Stores an array of error objects that represent the most

recent errors. $Error[0] references the most recent error in

the array.

$ExecutionContext

Stores an EngineIntrinsics object that represents the

execution context of the Windows PowerShell host.

$False

Stores FALSE. It can be used instead of the string “false”.

$ForEach

Stores the enumerator of a ForEach-Object loop.

$Home

Stores the full path of the user’s home directory.

$Host

Stores an object that represents the current host

application.

$Input

Stores the input that is passed to a function or script block.

The $Input variable is case sensitive. When the Process

block is completed, the value of $Input is NULL. If the

function does not have a Process block, the value of

$Input is available to the End block, and it stores all the

input to the function.

$LastExitCode

Stores the exit code of the last Windows-based program

that was run.

$Matches

Stores a hash table of any string values that were matched

when you use the –Match operator.

$MyInvocation

Stores an object with information about the current

command, including the run path and file name for scripts.

$NestedPromptLevel

Stores the current prompt level. A value of 0 (zero) indi-

cates the original prompt level. The value is incremented

when you enter a nested level and decremented when you

exit nested levels.

Navigating Core Windows PowerShell Structures CHAPTER 5

139

 TABLE 5-15 Common Automatic Variables in Windows PowerShell

AUTOMATIC VARIABLE

DESCRIPTION

$NULL

Stores a NULL or empty value. It can be used instead of

the string “NULL”.

$PID

Stores the process identifi er (PID) of the process that is

hosting the current Windows PowerShell session.

$Profi le

Stores the full path of the Windows PowerShell profi le for

the current user and the current host application.

$PSBoundParameters

Stores a hash table of the active parameters and their

current values.

$PsCulture

Stores the name of the culture setting currently in use in

the operating system.

$PSDebugContext

Stores information about the debugging environment (if

applicable). Otherwise, it stores a NULL value.

$PsHome

Stores the full path of the installation directory for

Windows PowerShell.

$PsUICulture

Stores the name of the user interface (UI) culture that is

currently in use in the operating system.

$PsVersionTable

Stores a read-only hash table with the following items:

PSVersion (the Windows PowerShell version number),

BuildVersion (the build number of the current version),

CLRVersion (the version of the common language

runtime), and PSCompatibleVersions (versions of Windows

PowerShell that are compatible with the current version).

$Pwd

Stores a path object representing the full path of the current

working directory.

$ShellID

Stores the identifi er of the current shell.

$This

Defi nes a script property or script method within a script

block. Refers to the object that is being extended.

$True

Stores TRUE. It can be used instead of the string “true”.

You use $_ with the Where-Object cmdlet to perform an action on every object

or on selected objects in a pipeline. The basic syntax is

where-object {$_. PropertyName

where-object {$_. PropertyName –

– ComparisonOp

 p "

" Value

 Value"}

140

CHAPTER 5 Navigating Core Windows PowerShell Structures

 where PropertyName is the name of the object property to examine, –ComparisonOp specifi es the type of comparison to perform, and Value sets the value to compare—

for example:

get-process | where-object {$_.Name –match "svchost"}

get-process | where-object {$_.Name –match "svchost"}

Here, you use $_ to examine the Name property of each object passed in the

pipeline. If the Name property is set to “svchost”, you pass the related object along

the pipeline.

You can extend this example using a regular expression, such as:

get-process | where-object {$_.Name –match "^s.*"}

get-process | where-object {$_.Name –match "^s.*"}

Here, you examine the Name property of each object passed in the pipeline. If

the Name property begins with the letter S, you pass the related object along the

pipeline. You can just as easily use any other comparison operator listed previously

in Table 5-4, such as –eq, –ne, –gt, –lt, –le, –ge, –contains, –notcontains, –like, or

–notlike.

Another useful automatic variable is $Error. You use $Error to list all error objects

for the current session and $Error[0] to access the most recent error object. Simply

type $Error or $Error[0]. Because errors are represented in objects, you can format the properties of error objects as you would any other output, such as

$error[0] | format-list -property * -force

$error[0] | format-list -property * -force

Error objects have the following properties:

N CategoryInfo Indicates the category under which an error is classifi ed,

such as InvalidArgument or PSArgumentException

N Exception Provides detailed information about the error that occurred

N FullyQualifi edErrorId Identifi es the exact error that occurred, such as

Argument

N InvocationInfo Provides detailed information about the command that

caused an error

N PipelineIterationInfo Provides detailed information about the pipeline

iteration

N PSMessageDetails Provides PowerShell message details, if applicable

N TargetObject Indicates the object being operated on

You can access any of these properties via a specifi ed error object. To list de-

tailed information about the command that caused the last error, you can use the

InvocationInfo property as shown in the following example and sample output:

$currError = $error[0]

$currError = $error[0]

$currError.InvocationInfo

$currError.InvocationInfo

Navigating Core Windows PowerShell Structures CHAPTER 5

141

MyCommand : Sort-Object

MyCommand : Sort-Object

BoundParameters : {}

BoundParameters : {}

UnboundArguments : {}

UnboundArguments : {}

ScriptLineNumber : 1

ScriptLineNumber : 1

OffsetInLine : 25

OffsetInLine : 25

ScriptName :

ScriptName :

Line : $p | sort-object -status

Line : $p | sort-object -status

PositionMessage :

PositionMessage :

 At line:1 char:25

 At line:1 char:25

 + $p | sort-object -status <<<<

 + $p | sort-object -status <<<<

InvocationName : sort-object

InvocationName : sort-object

PipelineLength : 0

PipelineLength : 0

PipelinePosition : 0

ExpectingInput : False

ExpectingInput : False

CommandOrigin : Internal

CommandOrigin : Internal

You can clear all the errors in the current sessions by entering the following

command:

$error.clear()

$error.clear()

Another handy automatic variable is $Args. You can access command-line

arguments using the array stored in this variable—for example:

$argCount = $args.Count

$argCount = $args.Count

$firstArg = $args[0]

$firstArg = $args[0]

$secondArg = $args[1]

$secondArg = $args[1]

$lastArg = $args[$args.Count -1]

$lastArg = $args[$args.Count -1]

Here, you determine the number of arguments passed in the command line

using $args.Count. You get the fi rst argument using $args[0], the second argument

using $args[1], and the last argument using $args[$args.Count -1].

Data being passed to a function or script block via the pipeline is stored in the

$Input variable. This variable is a .NET Framework enumerator. With enumerators,

you can access the input stream but not an arbitrary element as you can with an

array. After you process the input stream, you must call the Reset() method on the

$Input enumerator before you can process the elements again. One way to access

the input stream is in a For Each loop, such as

foreach($element in $input) { "The input was: `t $element" }

foreach($element in $input) { "The input was: `t $element" }

Or you can store the input element in an array, such as

$iArray = @($input)

$iArray = @($input)

142

CHAPTER 5 Navigating Core Windows PowerShell Structures

You can access information about the context under which you are running a

script using $MyInvocation. In a script, you can access detailed information about

the current command through $MyInvocation.MyCommand. To access the path

and file name of the script, use $MyInvocation.MyCommand.Path. Use $MyInvoca-

tion.MyCommand.Name to identify the name of a function. Use $MyInvocation.

ScriptName to display the name of the script.

Table 5-16 provides a summary of the common preference variables. As you use

these variables to customize how PowerShell works, you should familiarize yourself

with them. Some of these variables were discussed previously in the “Writing to Out-

put Streams” section in Chapter 2, “Getting the Most from Windows PowerShell.”

TABLE 5-16 Common Preference Variables in Windows PowerShell

PREFERENCE VARIABLE

DESCRIPTION

DEFAULT

$ConfirmPreference

Controls whether cmdlet actions request

High

confirmation from the user before they are

performed. Acceptable values are High

(actions with a high risk are confirmed),

Medium (actions with a medium or high

risk are confirmed), Low (actions with a

low, medium, or high risk are confirmed),

or None (no actions are confirmed;

use the –Confirm parameter to request

confirmation).

$DebugPreference

Controls how PowerShell responds to

Silently

debugging messages.

Continue

$ErrorAction

Controls how PowerShell responds to

Continue

Preference

an error that does not stop the cmdlet

processing.

$ErrorView

Controls the display format of error mes-

Normal

sages in PowerShell. Acceptable values are View

NormalView (the detailed normal view) or

CategoryView (a streamlined view).

$FormatEnumeration-

Controls how many enumerated items are 4

Limit

included in a grouped display. Acceptable

values are Integers.

$LogCommand

Controls whether errors and exceptions

$false

HealthEvent

in command initialization and processing

are written to the PowerShell event log.

Acceptable values are $true (logged) or

$false (not logged).

Navigating Core Windows PowerShell Structures CHAPTER 5

143

TABLE 5-16 Common Preference Variables in Windows PowerShell

PREFERENCE VARIABLE

DESCRIPTION

DEFAULT

$LogCommand

Controls whether PowerShell logs the

$false

LifecycleEvent

starting and stopping of commands and

command pipelines and security excep-

tions in command discovery. Acceptable

values are $true (logged) or $false (not

logged).

$LogEngine

Controls whether PowerShell logs errors

$true

HealthEvent

and failures of sessions. Acceptable values

are $true (logged) or $false (not logged).

$LogEngine

Controls whether PowerShell logs the

$true

LifecycleEvent

opening and closing of sessions. Accept-

able values are $true (logged) or $false

(not logged).

$LogProvider

Controls whether PowerShell logs provider $true

HealthEvent

errors, such as read and write errors,

lookup errors, and invocation errors.

Acceptable values are $true (logged) or

$false (not logged).

$LogProvider

Controls whether PowerShell logs adding

$true

LifecycleEvent

and removing of PowerShell providers.

Acceptable values are $true (logged) or

$false (not logged).

$MaximumAlias

Specifies how many aliases are permitted

4096

Count

in a PowerShell session. Valid values are

1024–32768. Count aliases using (get-

alias).count.

$MaximumDrive

Specifies how many PowerShell drives are

4096

Count

permitted in a session. This includes file

system drives and data stores that are ex-

posed by providers and appear as drives.

Valid values are 1024–32768. Count drives

using (get-psdrive).count.

$MaximumError

Specifies how many errors are saved in the 256

Count

error history for the session. Valid values

are 256–32768. Objects that represent

each retained error are stored in the $Error

automatic variable. Count errors using

$Error.count.

144

 CHAPTER 5 Navigating Core Windows PowerShell Structures

TABLE 5-16 Common Preference Variables in Windows PowerShell

PREFERENCE VARIABLE

DESCRIPTION

DEFAULT

$MaximumFunction

Specifies how many functions are permit-

4096

Count

ted in a given session. Valid values are

1024–32768. Count functions using (get-

childitem function:).count.

$MaximumHistory

Specifies how many commands are saved

64

Count

in the command history for the current

session. Valid values are 1–32768. Count

commands saved using (get-history).count.

$MaximumVariable

Specifies how many variables are permit-

4096

Count

ted in a given session, including auto-

matic variables, preference variables, and

user-created variables. Valid values are

1024–32768. Count variables using (get-

variable).count.

$OFS

Sets the Output Field Separator. This

“ “

determines the character that separates

the elements of an array when the array is

converted to a string. Valid values are Any

string, such as “+” instead of “ “.

$OutputEncoding

Sets the character encoding method

ASCII

used by PowerShell when it sends text to

Encoding

other applications. Valid values are ASCII-

Encoding, SBCSCodePageEncoding,

UTF7Encoding, UTF8Encoding,

UTF32Encoding, and UnicodeEncoding.

$ProgressPreference

Specifies how PowerShell responds to

Continue

progress updates generated by Write-

Progress. Valid values are Stop (displays

an error and stops executing), Inquire

(prompts for permission to continue),

Continue (displays the progress bar and

continues), and SilentlyContinue (ex-

ecutes the command but does not display

the progress bar).

$PSMaximumReceived

Limits the size of any single object that a

10 MB for

ObjectSizeMB

command returns. Apply only to com-

remote, no

mands that use PowerShell remoting.

limit local

Navigating Core Windows PowerShell Structures CHAPTER 5

145

TABLE 5-16 Common Preference Variables in Windows PowerShell

PREFERENCE VARIABLE

DESCRIPTION

DEFAULT

$PSMaximumReceived

Limits the size of the data set that any

50 MB for

DataSizePer-

single command returns. Apply only to

remote, no

CommandMB

commands that use PowerShell remoting.

limit local

$PSSessionApplication

Specifi es the default application that is

WSMAN

Name

used when you identify a remote compu-

ter by an HTTP endpoint. Internet Infor-

mation Services (IIS) forwards requests to

WSMAN by default.

$PSSession

Specifi es the default session confi guration Microsoft.

Confi gurationName

for remote sessions. The value must be a

PowerShell

name that appears in the WinRM custom

remote session table and that is associated

with the executable fi le that runs the ses-

sion and a URI for the session resource.

$VerbosePreference

Controls how PowerShell responds to

Silently

verbose messages.

Continue

$WarningPreference

Controls how PowerShell responds to

Continue

warning messages.

$WhatIfPreference

Specifi es whether the –WhatIf parameter is 0

automatically enabled for every command

that supports it. When –WhatIf is enabled,

the cmdlet reports the expected effect of

the command, but it does not execute the

command. Valid values are 0 (disabled)

and 1 (enabled).

$WsmanMax

Controls how many times PowerShell

5

RedirectionCount

redirects a connection to an alternate URI

before the connection fails. A value of 0

prevents redirection.

You can view the value of automatic and preference variables simply by typing

their name at the PowerShell prompt. For example, to see the current value of the

$pshome variable, type $pshome at the PowerShell prompt. Although you cannot

change the value of automatic variables, you can change the value of preference

variables. To do so, you use the basic assignment syntax as with user-created vari-

ables. For example, if you want to set $WarningPreference to SilentlyContinue, you

can do this by typing the following command:

$warningpreference = "silentlycontinue"

$warningpreference = "silentlycontinue"

146

CHAPTER 5 Navigating Core Windows PowerShell Structures

 With environment variables, you must work within the context of the environ-

ment provider. One way to do this is to reference the $env: provider drive and then

reference the name of the variable, such as

$env:logonserver

$env:logonserver

You also can get or set the location with respect to the env: provider drive. For

example, if you set the location to the env: provider drive as shown in this example

set-location env:

set-location env:

the PowerShell prompt changes to

PS Env:\>

PS Env:\>

You can then work with any or all environment variables. To list all environment

variables you type the following command:

get-childitem

get-childitem

To list a particular environment variable, you use Get-ChildItem and type the

variable name or part of the variable name with wildcards, such as

get-childitem userdomain

get-childitem userdomain

get-childitem user*

get-childitem user*

When you are fi nished working with the environment provider, you can return to

the fi le system drive you were using by typing set-location and the drive designa-

tor, such as

set-location c:

set-location c:

Another way to work with the environment provider is to use the Get-Item cmdlet

to examine its path values. If you do this, you don’t need to switch to the environ-

ment provider drive. For example, regardless of which provider drive you are working

with, you can type the following command to list all environment variables:

get-item -path env:*

get-item -path env:*

You also can get an environment variable by name:

get-item -path env:username

get-item -path env:username

Or you can get it by using a wildcard:

get-item -path env:user*

get-item -path env:user*

Navigating Core Windows PowerShell Structures CHAPTER 5

147

You can change environment variables using the Set-Item cmdlet. The basic

syntax is

set-item –path env:

set-item –path env VariableName

: VariableName –value

–value NewValue

 NewValue

where VariableName is the name of the environment variable you want to change,

and NewValue sets the desired value, such as

set-item –path env:homedrive –value D:

set-item –path env:homedrive –value D:

You also can change the value of an environment variable using simple assign-

ment, such as

$env:homedrive = D:

$env:homedrive = D:

When you change environment variables using either technique, the change is

made only for the current session. To permanently change environment variables,

you can use the Setx command-line utility.

Working with Strings

Although we’ve used strings in some previous examples, we haven’t really talked

about what exactly a string is and isn’t. A string is a series of alphanumeric or non-

alphanumeric characters. PowerShell has several parsing rules for strings, and these

rules modify the way values are handled. You need a good understanding of how

strings are parsed to be successful with PowerShell, whether you enter commands at

the PowerShell prompt or use PowerShell scripts.

Single-Quoted and Double-Quoted Strings

You use quotation marks to denote the beginning and ending of literal string

expressions. You can enclose strings in single quotation marks (‘ ‘) or double quota-

tion marks (“ “). However, PowerShell parses values within single-quoted strings and

double-quoted strings differently.

When you enclose a string in single-quotation marks, the string is passed to the

command exactly as you type it. No substitution is performed. Consider the follow-

ing example and output:

$varA = 200

$varA = 200

Write-Host 'The value of $varA is $varA.'

Write-Host 'The value of $varA is $varA.'

The output of this command is

The value $varA is $varA.

The value $varA is $varA.

148

CHAPTER 5 Navigating Core Windows PowerShell Structures

 Similarly, expressions in single-quoted strings are not evaluated. They are interpreted as literals—for example:

'The value of $(2+3) is 5.'

'The value of $(2+3) is 5.'

The output of this command is

The value of $(2+3) is 5.

The value of $(2+3) is 5.

When you enclose a string in double quotation marks, variable names that are

preceded by a dollar sign ($) are replaced with the variable’s value before the string

is passed to the command for processing. Consider the following example:

$varA = 200

$varA = 200

Write-Host "The value of $varA is $varA."

Write-Host "The value of $varA is $varA."

The output of this command is

The value 200 is 200.

The value 200 is 200.

To prevent the substitution of a variable value in a double-quoted string, use the

back apostrophe character (`), which serves as the escape character as well as the

line-continuation character. Consider following example:

$varA = 200

$varA = 200

Write-Host "The value of `$varA is $varA."

Write-Host "The value of `$varA is $varA."

Here, the back apostrophe character that precedes the fi rst variable reference

prevents Windows PowerShell from replacing the variable name with its value. This

means the output is

The value $varA is 200.

The value $varA is 200.

Additionally, in a double-quoted string, expressions are evaluated, and the result

is inserted in the string. Consider the following example:

"The value of $(100+100) is 200."

"The value of $(100+100) is 200."

The output of this command is

The value of 200 is 200.

The value of 200 is 200.

You can make double quotation marks appear in a string by enclosing the entire

string in single quotation marks or by using double quotation marks, such as

'He said, "Hello, Bob"'

'He said, "Hello, Bob"'

Navigating Core Windows PowerShell Structures CHAPTER 5

149

or

"He said, ""Hello, Bob"""

"He said, ""Hello, Bob"""

You can include a single quotation mark in a single-quoted string as well. Simply

use a second single quote, such as

'He won''t go to the store.'

'He won''t go to the store.'

Finally, you can use the back apostrophe (`) character to force PowerShell to

interpret a single quotation mark or a double quotation mark literally, such as

"You use a double quotation mark (`") with expandable strings."

"You use a double quotation mark (`") with expandable strings."

Escape Codes and Wildcards

In several previous examples, we used the back apostrophe (`) as an escape char-

acter to force PowerShell to interpret a single quotation mark, a double quotation

mark, or a variable literally. When an escape character precedes a single or double

quotation mark, Windows PowerShell interprets the single or double quotation

mark as a literal character, not as a string delimiter. When an escape character

precedes a variable, it prevents a value from being substituted for the variable.

Within a string, the escape character also can indicate a special character. Power-

Shell recognizes the special characters listed in Table 5-17. To see how you can use a

tab character in a string, review the following example and sample output:

$s = "Please specify the computer namèt []"

$s = "Please specify the computer namèt []"

$c = read-host $s

$c = read-host $s

write-host "You entered: `t $c"

write-host "You entered: `t $c"

Please specify the computer name []: corpserver45

Please specify the computer name []: corpserver45

You entered: corpserver45

You entered: corpserver45

Here, you create a string with a tab character. You then use the Read-Host cmdlet

to display the string while waiting for input from the user. You store the input from

the user in a variable for later user, and then you use the Write-Host cmdlet to dis-

play a string with a tab character and the value the user entered.

TABLE 5-17 Escape Codes in Windows PowerShell

ESCAPE CODE

MEANING

`’

Single quotation mark

`”

Double quotation mark

150

CHAPTER 5 Navigating Core Windows PowerShell Structures

 TABLE 5-17 Escape Codes in Windows PowerShell

 ESCAPE CODE

MEANING

`0

Null character

à

Alert (sends a bell or beep signal to the computer speaker)

`b

Backspacèf

Form feed (used with printer output)

`n

New linèr

Carriage return

`t

Horizontal tab (eight spaces)

`v

Vertical tab (used with printer output)

Often when you are working with strings, you might need to match part of a

string to get a desired result. To do this, you use the wildcards listed previously in

Table 5-5. When you work with character ranges and subsets, keep in mind the

characters can be in these ranges:

N [a to z] or [A to Z] for alphabetic characters

N [0-9] for numeric characters

Generally, PowerShell matches characters whether they are uppercase or low-

ercase. Because of this, in most instances, these ranges are interpreted the same

whether you use uppercase or lowercase letters—for example:

N [a-c] and [A-C] are the same.

N [abc] and [ABC] are the same.

However, when you get into regular expressions, there are times when Power-

Shell performs case-sensitive matches. As you’ve seen in past examples, wildcards

are useful when you want to perform pattern matching within strings, especially

when you are passing string values to cmdlet parameters. Although some cmdlet

parameters support wildcards being passed in values, not all do, and you’ll want to

confi rm whether a parameter supports wildcards using the –Full help details. For

example, if you type get-help get-alias –full, you see the full help details for the

Get-Alias cmdlet as shown partially in this example:

NAME

NAME

Get-Alias

Get-Alias

SYNOPSIS

SYNOPSIS

Gets the aliases for the current session.

Gets the aliases for the current session.

SYNTAX

SYNTAX

Get-Alias [-Exclude <string[]>] [-Name <string[]>] [-Scope <string>]

Get-Alias [-Exclude <string[]>] [-Name <string[]>] [-Scope <string>]

[<CommonParameters>]

[<CommonParameters>]

Navigating Core Windows PowerShell Structures CHAPTER 5

151

DETAILED DESCRIPTION

The Get-Alias cmdlet gets the aliases (alternate names for commands

The Get-Alias cmdlet gets the aliases (alternate names for commands

and executable files) in the current session.

and executable files) in the current session.

PARAMETERS

PARAMETERS

-Definition <string[]>

-Definition <string[]>

Gets the aliases for the specified item. Enter the name of a

Gets the aliases for the specified item. Enter the name of a

cmdlet, function, script, file, or executable file.

cmdlet, function, script, file, or executable file.

Required? false

Required? false

Position? named

Position? named

Default value

Default value

Accept pipeline input? false

Accept pipeline input? false

Accept wildcard characters? true

Accept wildcard characters? true

Here, you know the –Defi nition parameter accepts wildcards being passed in

values because Accept WildCard Characters is set to True. If the parameter does not

accept wildcards, Accept WildCard Characters is set to False.

Multiline Strings

When you want a string to have multiple lines, precede and follow the string value

with @. This type of string is referred to as a here-string, and the same rules for single quotes and double quotes apply. Consider the following example and sample output:

$myString = @"

$myString = @"

=========================

$env:computername

$env:computername

=========================

"@

write-host $myString

write-host $myString

=========================

EngPC85

EngPC85

=========================

Data strings are another type of multiline string. PowerShell supports data strings

primarily for script internationalization because data strings make it easier to sepa-

rate data and code by isolating strings that might be translated into other languages.

There’s no reason, however, that you can’t use data strings for other purposes, and

they are much more versatile than other types of strings. Primarily, this is because

data strings are referenced with a variable name and can include programming logic.

The basic syntax for a data string is

DATA StringName {

DATA StringName {

StringText

}

152

CHAPTER 5 Navigating Core Windows PowerShell Structures

 where StringName sets the name for the data string as a variable, and StringText can include the following: one or more single-quoted strings, double-quoted strings,

here-strings, or any combination thereof. Note that the DATA keyword is not case

sensitive, meaning you can use DATA, data, or even Data to denote the beginning of

the data string.

The following example declares a data string named MyValues:

DATA MyValues {

DATA MyValues {

"This is a data string."

"This is a data string."

"You can use data strings in many different ways."

"You can use data strings in many different ways."

}

You use or reference the MyValues string by its name. To display the data string’s

contents at the prompt, type the following command:

Write-Host $MyValues

You can also type

$MyValues

The extended syntax for data strings is

DATA

DATA StringName

 StringName [-supportedCommand

[-supportedCommand CmdletNames

 CmdletNames] {

] {

 PermittedContent

 PermittedContent

}

Here, CmdletName provides a comma-separated list of cmdlets that you use in

the data string, and PermittedContent includes any of the following elements:

N Strings and string literals

N Any PowerShell operators, except –match

N If, Else, and ElseIf statements

N Certain automatic variables, including $PsCulture, $PsUICulture, $True,

$False, and $Null

N Statements separated by semicolons, comments, and pipelines

Adding cmdlets and programming elements to data strings makes them work

much like functions, and in many cases you’ll fi nd it easier to simply use a func-

tion than to treat a data string like a function. For more information on functions,

see the “Creating and Using Functions” section in Chapter 6, “Mastering Aliases,

Functions, and Objects.”

Strings that contain prohibited elements, such as variables or subexpressions,

must be enclosed in single-quoted strings or here-strings so that the variables

are not expanded and subexpressions are not executable. The only cmdlet you

don’t have to declare as supported is ConvertFrom-StringData. The ConvertFrom-

StringData cmdlet converts strings that contain one or more “name=value” pairs

Navigating Core Windows PowerShell Structures CHAPTER 5

153

into associative arrays. Because each “name=value” pair must be on a separate line, you typically use here-strings as the input format. However, PowerShell allows you

to use single-quoted or double-quoted strings or here-strings.

The following example shows how the ConvertFrom-StringData cmdlet can be

used with data strings:

DATA DisplayNotes {

DATA DisplayNotes {

ConvertFrom-StringData -stringdata @'

ConvertFrom-StringData -stringdata @'

Note1 = This appears to be the wrong syntax.

Note1 = This appears to be the wrong syntax.

Note2 = There is a value missing.

Note2 = There is a value missing.

Note3 = Cannot connect at this time.

Note3 = Cannot connect at this time.

'@

'@

}

In this example, you create a data string called DisplayNotes and use ConvertFrom-

StringData to create a related associative array with three separate strings: Note1,

Note2, and Note3. You are then able to reference the strings using dot notation.

To display the fi rst string, you use $DisplayNotes.Note1; for the second string, you

use $DisplayNotes.Note2; and for the third string, you use $DisplayNotes.Note3. To

display all the notes, you simply type $DisplayNotes.

With a here-string, you can use a similar technique to create an array of strings—

for example:

$string = @'

$string = @'

Note1 = This appears to be the wrong syntax.

Note1 = This appears to be the wrong syntax.

Note2 = There is a value missing.

Note2 = There is a value missing.

Note3 = Cannot connect at this time.

Note3 = Cannot connect at this time.

'@

'@

$strArray = $string | convertfrom-stringdata

$strArray = $string | convertfrom-stringdata

The here-string defi ned in this example contains the same strings as the previous

example. You then use a pipeline operator (|) to send the value of the here-string

to ConvertFrom-StringData. The command saves the result in the $strArray variable,

and you can use the same techniques discussed previously to access the strings.

String Operators

As you learned in “Comparison Operators” earlier in the chapter, you can use many

operators with strings and arrays. These include –eq, –ne, –lt, –gt, –le, –ge, –like,

–notlike, –match, –notmatch, –contains, –notcontains, and –replace.

You also can use the following special operators with strings:

N = Assigns a string value to a variable

N +

Concatenates strings by adding them together

N *

Repeats a string some number of times

154

CHAPTER 5 Navigating Core Windows PowerShell Structures

N –Join Joins strings by adding them together with or without delimiters N –Split Splits a string on spaces or a specifi ed delimiter

N –f Formats a string using the extended formatting syntax

The most common string operations you’ll want to perform are assignment and

concatenation. As you’ve seen in previous examples, you assign values to strings

using the equal sign, such as

$myString = "This is a String."

$myString = "This is a String."

Concatenation is the technical term for adding strings together. The normal

operator for string concatenation is the + operator. Using the + operator, you can

add strings together as follows:

$streetAdd = "123 Main St."

$streetAdd = "123 Main St."

$cityState = "Anywhere, NY"

$cityState = "Anywhere, NY"

$zipCode = "12345"

$zipCode = "12345"

$custAddress = $streetAdd + " " + $cityState + " " + $zipCode

$custAddress = $streetAdd + " " + $cityState + " " + $zipCode

$custAddress

$custAddress

123 Main St. Anywhere, NY 12345

123 Main St. Anywhere, NY 12345

Sometimes you might also want to add a string stored in a variable to output you

are displaying. You can do this simply by referencing the variable containing the

string as part of the double-quoted output string as shown here:

$company = "XYZ Company"

$company = "XYZ Company"

Write-Host "The company is: $company"

Write-Host "The company is: $company"

The company is: XYZ Company

The company is: XYZ Company

Concatenation of arrays works much like concatenation of strings. Using the +

operator, you can add arrays together as shown in this example:

$array1 = "PC85", "PC25", "PC92"

$array1 = "PC85", "PC25", "PC92"

$array2 = "SERVER41", "SERVER32", "SERVER87"

$array2 = "SERVER41", "SERVER32", "SERVER87"

$joinedArray = $array1 + $array2

$joinedArray = $array1 + $array2

$joinedArray

$joinedArray

PC85

PC25

PC92

SERVER41

SERVER32

SERVER32

SERVER87

Navigating Core Windows PowerShell Structures CHAPTER 5

155

Multiplication of strings and arrays can be handy when you want to repeat the

character in a string or the values in an array a specifi ed number of times. For ex-

ample, if you have a string with the + character stored in it, you might want to make

an 80-character string of + characters act as a dividing line in output. You can do

this as shown in the following example and sample output:

$separator = "+"

$separator = "+"

$sepLine = $separator * 60

$sepLine = $separator * 60

$sepLine

$sepLine

++

++

You use the –Join and –Split operators to join and split strings, respectively. The

basic syntaxes for joining strings are

-Join (

-

 String1, String2, String3

Join (

…)

 3

 String1, String2, String3 … -Join "

 String1, String2, String3

 3 … -Join " Delimiter

 Delimiter"

The fi rst syntax simply joins a collection of strings together. The second syntax

joins a collection of strings while specifying a delimiter to use between them. To see

how you can join strings without delimiters, consider the following example and

sample output:

$a = -join ("abc", "def", "ghi")

$a = -join ("abc", "def", "ghi")

$a

$a

abcdefghi

abcdefghi

To see how you can join strings with delimiters, consider the following example

and sample output:

$a = "abc", "def", "ghi" –join ":"

$a = "abc", "def", "ghi" –join ":"

$a

abc:def:ghi

abc:def:ghi

The basic syntaxes for splitting strings are

-Split

-

 String

Split String

 String -Split "

 String

 g -Split " Delimiter

 Delimiter" [,MaxSubStrings]

" [,MaxSubStrings]

156

CHAPTER 5 Navigating Core Windows PowerShell Structures

 With the fi rst syntax, you can split a string using the spaces between words as delimiters. To see how, consider the following example and sample output:

$a = "abc def ghi"

$a = "abc def ghi"

-Split $a

-Split $a

abc

abc

def

def

ghi

ghi

You also can split strings based on a delimiter as shown in this example:

$a = "jkl:mno:pqr"

$a = "jkl:mno:pqr"

$a -Split ":"

$a -Split ":"

jkl

jkl

mno

mno

pqr

pqr

You use the –f operator to format a string using the extended formatting syntax.

With this syntax, you specify exactly how you want to format a series of numeric,

alphabetic, or alphanumeric values.

The basic structure is to specify the desired formatting on the left of the –f

operator and the values to format in a comma-separated list on the right, as shown

in this example:

' FormatingInstructions

 FormatingInstruction ' –f "

 s' –f " Value1

 Value1", "

", " Value2

 Value2", "

", " Value3

 Value3", …

", …

In the formatting instructions, {0} represents the fi rst value, {1} the second value,

and so on. Knowing this, you can use the formatting instructions to modify the or-

der of values, convert values to different formats, or both. In the following example

and sample output, you reverse the order of the values in the output:

'{2} {1} {0}' -f "Monday", "Tuesday", "Wednesday"

'{2} {1} {0}' -f "Monday", "Tuesday", "Wednesday"

Wednesday Tuesday Monday

Wednesday Tuesday Monday

You are not limited to forward or reverse order. You control the output order

and can specify any desired order, such as

'{2} {0} {1}' -f "Cloudy", "Sunny", "Rainy"

'{2} {0} {1}' -f "Cloudy", "Sunny", "Rainy"

Rainy Cloudy Sunny

Rainy Cloudy Sunny

Navigating Core Windows PowerShell Structures CHAPTER 5

157

The number of formatting instructions must exactly match the number of values

to format. Otherwise, values will be omitted, which is fi ne if this is your intention. In

the following example, you omit the second value:

'{0} {2}' -f "Server15", "Server16", "Server17"

'{0} {2}' -f "Server15", "Server16", "Server17"

Server15 Server17

Server15 Server17

To each individual formatting instruction, you can add one of the conversion

indicators listed in Table 5-18.

 TABLE 5-18 Conversion Indicators for Formatting

 FORMAT

SPECIFIER

DESCRIPTION

EXAMPLE

OUTPUT

:c or :C

Converts a numeric format to

‘{0:c}’ –f 145.50

$145.50

currency format (based on the

computer’s locale).

:e or :E

Converts to scientifi c

‘{0:e4}’ –f

3.1416e+000

(exponential) notation. Add

[Math]::Pi

a numeric value to specify

precision (the number of digits

past the decimal point).

:f or :F

Converts to fi xed-point nota-

‘{0:f4}’ –f

3.1426

tion. Add a numeric value to

[Math]::Pi

specify precision (the number of

digits past the decimal point).

:g or :G

Converts to the most compact

‘{0:g3}’ –f

3.14

notation, either fi xed-point

[Math]::Pi

or scientifi c notation. Add a

numeric value to specify the

number of signifi cant digits.

:n or :N

Converts to a number with

‘{0:n2}’ –f 1GB

1,073,741,824.00

culture-specifi c separators

between number groups. Add a

numeric value to specify preci-

sion (the number of digits past

the decimal point).

:p or :P

Converts a numeric value to

‘{0:p2}’ –f .112

11.20 %

a percentage. Add a numeric

value to specify precision (the

number of digits past the

decimal point).

158

CHAPTER 5 Navigating Core Windows PowerShell Structures

TABLE 5-18 Conversion Indicators for Formatting

FORMAT

SPECIFIER

DESCRIPTION

EXAMPLE

OUTPUT

:r or :R

Converts a number with

‘{0:r}’ –f

536870912

precision to guarantee the

(1GB/2.0)

Note:

original value is returned if

(536870912 * 2) =

parsing is reversed.

1,073,741,824

:x or :X

Converts the numeric value to

‘{0:x}’ –f

bc614e

hexadecimal format.

12345678

{ N:hh} :

Converts a datetime object to

‘{0:hh:0:mm}’ –f

12:35

{ N:mm} :

a two-digit hour, minute, and

(get-date)

{ N:ss}

second format. You can omit

any portion to get a subset.

{ N:ddd}

Converts a datetime object to

‘{0:ddd}

Mon 12:57

a day of the week. It can be

{0:hh:0:mm}’ –f

combined with the previous

(get-date)

format listed.

Working with Arrays and Collections

In Windows PowerShell, the terms array and collection are interchangeable. Arrays are data structures for storing a series of values. Using arrays, you can group related

sets of data together, and PowerShell doesn’t care whether the data you group is

like-typed or not. For example, although you can group sets of numbers, strings,

or objects in separate arrays, you also can combine values of different types in the

same array.

The most common type of array you’ll use is a one-dimensional array. A

one-dimensional array is like a column of tabular data, a two-dimensional array is

like a spreadsheet with rows and columns, and a three-dimensional (3-D) array is

like a 3-D grid.

Elements in an array are indexed and can be accessed by referencing their index

position. With a one-dimensional array, you access elements in the array by specify-

ing a single index value. You also can create arrays with multiple dimensions if you

want to. With multidimensional arrays, you access elements in the array by specify-

ing multiple index values.

 NOTE Windows PowerShell also supports associative arrays, which are name-value

pairs stored in arrays. For more information, see the “Multiline Strings” section earlier

in this chapter.

Navigating Core Windows PowerShell Structures CHAPTER 5

159

Creating and Using One-Dimensional Arrays

Windows PowerShell has several operators for working with arrays. The one

you’ll use most is the comma. You use the comma to separate elements in a one-

dimensional array. The basic syntax for this type of array is

$ VarName

$ VarNam =

 e = Element1

 Element1,

, Element2

 Element2,

, Element3

 Element3, …

, …

where VarName is the variable in which the array will be stored, Element1 is the fi rst item in the array, Element2 is the second, and so on.

The following example creates an array of numbers:

$myArray = 2, 4, 6, 8, 10, 12, 14

$myArray = 2, 4, 6, 8, 10, 12, 14

You can just as easily create an array of strings, such as

$myStringArray = "This", "That", "Why", "When", "How", "Where"

$myStringArray = "This", "That", "Why", "When", "How", "Where"

You access the elements in the array by passing the index position to the []

operator. PowerShell numbers the array elements starting from zero. This means

the fi rst element has an index position of 0, the second has an index position of 1,

and so on. The basic syntax is

$ VarName

$ VarNam [

 e Index

 Index]

where VarName is the variable in which the array is stored, and Index is the index position you want to work with. Knowing this, you can return the fi rst element in the

$myStringArray as shown here:

$myStringArray[0]

$myStringArray[0]

This

You can work with the index in several ways. You can use an index value of –1 to

reference the last element of the array, –2 to reference the second to last, and so on.

This example returns the last element in the array:

$myStringArray[-1]

$myStringArray[-1]

Where

Where

160

CHAPTER 5 Navigating Core Windows PowerShell Structures

 You also can access ranges of elements in an array using the range operator (..).

The following example returns elements 1, 2, and 3:

$myStringArray[0..2]

$myStringArray[0..2]

This

This

That

That

Why

Why

By mixing these techniques, you can work with arrays in different ways. For example,

the following statement returns the last, fi rst, and second elements in the array:

$myStringArray[-1..1]

$myStringArray[-1..1]

Where

Where

This

This

That

That

This example goes through the array backward from the last to the second-to-

last to the third-to-last:

$myStringArray[-1..-3]

Where

Where

How

How

When

When

However, to return both a series of elements and a range of elements, you must

separate the series and the range using the + operator. The following example

returns element 1, element 2, and elements 4 to 6:

$myStringArray[0,1+3..5]

$myStringArray[0,1+3..5]

This

This

That

That

When

When

How

How

Where

Where

Using the Length property, you can determine the number of elements in an

array. For example, typing $myArray.Length returns a value of 7. You can use

Navigating Core Windows PowerShell Structures CHAPTER 5

161

the Length property when accessing elements in the array as well. The following example returns elements 5 to 6:

$myStringArray[4..($myArray.Length-1)]

$myStringArray[4..($myArray.Length-1)]

How

How

Where

Where

Using the Cast Array Structure

Another way to create an array is to use the array cast structure. The basic syntax is

$VarName = @(Element1, Element2, Element3, …)

$VarName = @(Element1, Element2, Element3, …)

where VarName is the variable in which the array will be stored, Element1 is the fi rst item in the array, Element2 is the second, and so on.

The following example creates an array of numbers:

$myArray = @(3, 6, 9, 12, 15, 18, 21)

$myArray = @(3, 6, 9, 12, 15, 18, 21)

The advantage of the cast array syntax is that if you use semicolons instead of

commas to separate values, PowerShell treats each value as command text. This

means PowerShell executes the value as if you typed it at the prompt and then

stores the result. Consider the following example:

$myArray = @(14; "This"; get-process)

$myArray = @(14; "This"; get-process)

As shown in the following example and sample output, the fi rst element is cre-

ated as an integer:

$myArray[0].gettype()

$myArray[0].gettype()

IsPublic IsSerial Name BaseType

IsPublic IsSerial Name BaseType

-------- -------- ---- --------

-------- -------- ---- --------

True True Int32 System.ValueType

True True Int32 System.ValueType

The second element is created as a string:

$myArray[1].gettype()

$myArray[1].gettype()

IsPublic IsSerial Name BaseType

IsPublic IsSerial Name BaseType

-------- -------- ---- --------

-------- -------- ---- --------

True True String System.Object

True True String System.Object

162

CHAPTER 5 Navigating Core Windows PowerShell Structures

 And the third element is created as a collection of Process objects:

$myArray[2].gettype()

$myArray[2].gettype()

IsPublic IsSerial Name BaseType

IsPublic IsSerial Name BaseType

-------- -------- ---- --------

-------- -------- ---- --------

True False Process System.ComponentModel.Component

True False Process System.ComponentModel.Component

Assigning and Removing Values

After you create an array, you can change the array’s values through a simple as-

signment. For example, if you defi ne the following array,

$myArray = @(3, 6, 9, 12, 15, 18, 21)

$myArray = @(3, 6, 9, 12, 15, 18, 21)

you can change the value of the second element in $myArray using the following

assignment:

$myArray[1] = 27

$myArray[1] = 27

You also can use the SetValue() method to change a value in an array. The syntax is

$ VarName

 VarNam .SetValue(

 e.SetValue(NewValue

 NewValue, IndexPos

 IndexPos)

where VarName is the variable in which the array was stored, NewValue is the new value you want to assign, and IndexPos is the index position of the value to change.

Following this, you can change the value of the fi rst element in $myArray using

the following assignment:

$myArray.SetValue(52,0)

$myArray.SetValue(52,0)

To add elements to an existing array, you can use the += operator to assign a

new value. For example, to append an element to $myArray with a value of 75, you

type the following command:

$myArray += 75

$myArray += 75

PowerShell won’t let you easily delete elements in an array, but you can cre-

ate a new array that contains only a subset of elements from an existing array. For

example, to create the $myNewArray array with all elements in $myArray, except for

the value at index position 3, you type

$myNewArray = $myArray[0..2+4..($myArray.length - 1)]

$myNewArray = $myArray[0..2+4..($myArray.length - 1)]

Navigating Core Windows PowerShell Structures CHAPTER 5

163

You can combine multiple arrays into a single array using the plus operator (+).

The following example creates three arrays and then combines them into one array:

$array1 = 1,2,3,4

$array1 = 1,2,3,4

$array2 = 5,6,7,8

$array2 = 5,6,7,8

$array3 = 9,10,11,12

$array3 = 9,10,11,12

$cArray = $array1 + $array2 + $array3

$cArray = $array1 + $array2 + $array3

Because large arrays can use up memory, you might want to delete an array

when you are fi nished working with it. To delete an array, use the Remove-Item

cmdlet to delete the variable that contains the array. The following command

deletes $myArray:

remove-item variable:myArray

remove-item variable:myArray

Using Strict Types in Arrays

Sometimes when you are working with arrays, you might want to ensure an array

can store only strings, numbers, or objects of a particular type. The way to do this is

to declare the array’s type when you create the array.

You can declare an array of any type, but the declared type uses the [] operator

as shown here:

N [int32[]]$myArray Creates an array of integers

N [bool[]]$myArray Creates an array of Booleans

N [object[]]$myArray Creates an array of objects

N [string[]]$myArray Creates an array of strings

For example, if you want to create an array of integers and assign integer values,

you can use the following declaration:

[int32[]]$myArray = 5,10,15,20,25,30,35

[int32[]]$myArray = 5,10,15,20,25,30,35

Because the array is strictly typed, you can use only the declared value type with

it. For example, if you try to change a value to a string, you get an error as shown in

the following example and sample output:

$myArray[0]= "Kansas"

$myArray[0]= "Kansas"

Array assignment to [0] failed: Cannot convert value "Kansas" to type

Array assignment to [0] failed: Cannot convert value "Kansas" to type

"System.Int32". Error: "Input string was not in a correct format.".

"System.Int32". Error: "Input string was not in a correct format.".

At line:1 char:10

At line:1 char:10

+ $myArray[<<<< 0]= "Kansas"

+ $myArray[<<<< 0]= "Kansas"

 + CategoryInfo : InvalidOperation: (Kansas:String) [], RuntimeException

 + CategoryInfo : InvalidOperation: (Kansas:String) [], RuntimeException

 + FullyQualifiedErrorId : ArrayAssignmentFailed

 + FullyQualifiedErrorId : ArrayAssignmentFailed

164

CHAPTER 5 Navigating Core Windows PowerShell Structures

Using Multidimensional Arrays

Multidimensional arrays are arrays that support multiple index positions. With a

two-dimensional array, you create a table with rows and columns. Because you

access any row using the fi rst index and any column using the second index, these

can be thought of as x-coordinates and y-coordinates as well.

Consider the following example.

 INDEX

COLUMN 0

COLUMN 1

COLUMN 2

 ROW 0

Red

Green

Blue

 ROW 1

Washington

Ohio

Florida

 ROW 2

Ocean

Lake

Stream

 ROW 3

Sky

Clouds

Rain

Here, you have a table with rows and columns that you want to store in an array.

The convention is to reference the row index and then the column index. The value

in row 0, column 0 is Red. The value in row 0, column 1 is Green, and so on.

Although you can create one-dimensional arrays with simple constructors, PowerShell

handles arrays of two or more dimensions as objects. Because of this, you must fi rst create

the array and then populate the array. The syntax for creating a two-dimensional array is

$ VarName

 VarNam = new-object 'object[,]'

 e = new-object 'object[,]' numRows

 numRows, numColumns

 numColumns

where VarName is the variable in which the array will be stored, object[,] specifi es you are creating a two-dimensional array, numRows sets the number of rows, and

 numColumns sets the number of columns.

The following example creates an array with 4 rows and 3 columns:

$myArray = new-object 'object[,]' 4,3

$myArray = new-object 'object[,]' 4,3

After you create the array, you can populate each value according to its row and

column index position as shown in this example:

$myArray[0,0] = "Red"

$myArray[0,0] = "Red"

$myArray[0,1] = "Green"

$myArray[0,1] = "Green"

$myArray[0,2] = "Blue"

$myArray[0,2] = "Blue"

$myArray[1,0] = "Washington"

$myArray[1,0] = "Washington"

$myArray[1,1] = "Ohio"

$myArray[1,1] = "Ohio"

$myArray[1,2] = "Florida"

$myArray[1,2] = "Florida"

$myArray[2,0] = "Ocean"

$myArray[2,0] = "Ocean"

$myArray[2,1] = "Lake"

$myArray[2,1] = "Lake"

$myArray[2,2] = "Stream"

$myArray[2,2] = "Stream"

$myArray[3,0] = "Sky"

$myArray[3,0] = "Sky"

$myArray[3,1] = "Clouds"

$myArray[3,1] = "Clouds"

$myArray[3,2] = "Rain"

$myArray[3,2] = "Rain"

Navigating Core Windows PowerShell Structures CHAPTER 5

165

After you populate the array, you can return a value at a row/column position, such as

$myArray[0,1]

$myArray[0,1]

Green

Green

Creating an array of three or more dimensions works in much the same way.

The difference is that you must accommodate dimension. The syntax for creating a

three-dimensional array is

$ VarName

$ VarNam = new-object 'object[,,]'

 e = new-object 'object[,,]' numX

 numX, numY

 numY, numZ

 numZ

where VarName is the variable in which the array will be stored, object[,,] specifi es you are creating a three-dimensional array, and numX, numY, and numZ set the X, Y, and Z grid coordinates.

The following example creates an array with 5 rows, 5 columns, and 3 levels:

$a = new-object 'object[,,]' 5,5,3

$a = new-object 'object[,,]' 5,5,3

This array is like 3 tables, each of 5 rows and 5 columns, stacked on top of each

other. Knowing this, you can set the value for the 0, 0, 0 coordinate as

$a[0,0,0] = "Texas"

$a[0,0,0] = "Texas"

At the time of this writing, PowerShell supports up to 17 dimensions, and you can

create an array of 17 dimensions, using 16 commas for the object[] constructor and

then entering 17 coordinate values, as in the following example:

$myHugeArray = new-object 'object[,,,,,,,,,,,,,,,]'

$myHugeArray = new-object 'object[,,,,,,,,,,,,,,,]'

5,5,5,5,3,3,3,3,3,3,3,3,3,3,3,4

5,5,5,5,3,3,3,3,3,3,3,3,3,3,3,4

If you create such a large array, be sure to remove it when you are fi nished, to

free up memory.

166

CHAPTER 5 Navigating Core Windows PowerShell Structures

C H A P T E R 6

Mastering Aliases, Functions,

and Objects

N

Creating and Using Aliases 168

N

Creating and Using Functions 175

N

Working with Objects 185

N

Working with COM and .NET Framework Objects 197

N

Working with WMI Objects and Queries 206

Beyond the core structures discussed in the previous chapter, you’ll find a number

of other essential elements you’ll use whenever you work with Windows

PowerShell. These include

N Aliases

N Functions

N Objects

Whenever you work with Windows PowerShell, you’ll use these essential elements

to help you do more with less and to help you use PowerShell to perform any

conceivable administrative task. Because the discussion in this chapter ties in

closely with the discussion in previous chapters, you should read those chapters

before continuing with this chapter. Also, as with the core structures, once we

examine these essential elements, we won’t rehash these discussions when we put

these essential elements to work in upcoming chapters. For example, if we use

Get-WmiObject to access Windows Management Instrumentation (WMI) objects

on a computer and retrieve the Win32_Processor object, we won’t go into detail

on how this works (because this is already discussed here); instead, we’ll focus on

the new concept we are introducing, such as how to evaluate the clock speed of

a computer’s processor or how to take an inventory of all computers running a

specified version of Windows.

167

Creating and Using Aliases

PowerShell aliases provide alternate names for commands, functions, scripts, files,

executables, and other command elements. PowerShell has many default aliases

that map to commands, and you can create your own aliases as well. Aliases are

designed to save you keystrokes, and each command can have multiple aliases. For

example, ls is also an alias of Get-ChildItem. In UNIX environments, ls is used to list

the contents of a directory and, in fact, the output of Get-ChildItem is more similar

to UNIX ls than to Windows dir.

Using the Built-In Aliases

Table 6-1 shows some of the default aliases. Although there are many other default

aliases, you’ll use these aliases most frequently.

TABLE 6-1 Commonly Used Aliases

ALIAS

ASSOCIATED CMDLET

clear, cls

Clear-Host

diff

Compare-Object

cp, copy

Copy-Item

epal

Export-Alias

epcsv

Export-Csv

foreach

ForEach-Object

fl

Format-List

ft

Format-Table

fw

Format-Wide

gal

Get-Alias

ls, dir

Get-ChildItem

gcm

Get-Command

cat, type

Get-Content

h, history

Get-History

gl, pwd

Get-Location

gps, ps

Get-Process

gsv

Get-Service

gv

Get-Variable

168

 CHAPTER 6 Mastering Aliases, Functions, and Objects

TABLE 6-1 Commonly Used Aliases

ALIAS

ASSOCIATED CMDLET

group

Group-Object

ipal

Import-Alias

ipcsv

Import-Csv

r

Invoke-History

ni

New-Item

mount

New-MshDrive

nv

New-Variable

rd, rm, rmdir, del, erase

Remove-Item

rv

Remove-Variable

sal

Set-Alias

sl, cd, chdir

Set-Location

sv, set

Set-Variable

sort

Sort-Object

sasv

Start-Service

sleep

Start-Sleep

spps, kill

Stop-Process

spsv

Stop-Service

write, echo

Write-Output

Table 6-2 lists commands that exist internally within the Windows command

shell (cmd.exe) and do not have separate executable files. Each internal command

is followed by a brief description. Because cmdlets behave differently from these

commands, you must know exactly what you are executing. For this reason, I also

provide a notation when a default alias precludes use of the command. You can run

commands internal to the Windows command shell at the PowerShell prompt or in

a PowerShell script. To do so, invoke the command shell with appropriate parameters

followed by the name of the internal command to execute. Typically, you’ll want

to use the /c parameter, which tells the command shell to carry out the specified

command and then terminate. For example, if you want to use the internal dir

command, you can type the following at the PowerShell prompt:

cmd /c dir

Mastering Aliases, Functions, and Objects CHAPTER 6

169

TABLE 6-2 Internal Commands for the Windows Command Shell

NAME

DESCRIPTION

OVERRIDDEN BY

assoc

Displays or modifies the current file

extension associations.

break

Sets breaks for debugging.

call

Calls a procedure or another script from

within a script.

cd (chdir)

Displays the current directory name,

Set-Location

or changes the location of the current

directory.

cls

Clears the command window and erases

Clear-Host

the screen buffer.

color

Sets the text and background colors of the

command-shell window.

copy

Copies files from one location to another,

Copy-Item

or concatenates files.

date

Displays or sets the system date.

del (erase)

Deletes the specified file, files, or directory.

Remove-Item

dir

Displays a list of subdirectories and files in

Get-ChildItem

the current or specified directory.

dpath

Allows programs to open data files in

specified directories as if they were in the

current directory.

echo

Displays text strings to PowerShell; sets

Write-Output

command echoing state (on | off).

endlocal

Ends localization of variables.

exit

Exits the command shell.

for

Runs a specified command for each file in

a set of files.

ftype

Displays current file types, or modifies file

types used in file extension associations.

goto

Directs the command interpreter to a

labeled line in a batch script.

if

Performs conditional execution of

commands.

170

 CHAPTER 6 Mastering Aliases, Functions, and Objects

TABLE 6-2 Internal Commands for the Windows Command Shell

NAME

DESCRIPTION

OVERRIDDEN BY

md (mkdir)

Creates a subdirectory in the current or

*md invokes mkdir

specified directory.

(via cmd.exe)

mklink

Creates either a symbolic link or a hard

link, for either a file or a directory.

move

Moves a file or files from the current or

Move-Item

designated source directory to a desig-

nated target directory. It can also be used

to rename a directory.

path

Displays or sets the command path the

operating system uses when searching for

executables and scripts.

pause

Suspends processing of a batch file, and

waits for keyboard input.

popd

Makes the directory saved by PUSHD the

Pop-Location

current directory.

prompt

Sets the text for the command prompt.

pushd

Saves the current directory location and

Push-Location

then optionally changes to the specified

directory.

rd (rmdir)

Removes a directory or a directory and its

Remove-Item

subdirectories.

rem

Sets a remark in batch scripts or Config.sys.

ren (rename)

Renames a file or files.

Rename-Item (for ren

only)

set

Displays current environment variables, or

Set-Variable

sets temporary variables for the current

command shell.

setlocal

Marks the start of variable localization in

batch scripts.

shift

Shifts the position of replaceable param-

eters in batch scripts.

start

Starts a separate window to run a specified Start-Process

program or command.

time

Displays or sets the system time.

Mastering Aliases, Functions, and Objects CHAPTER 6

171

TABLE 6-2 Internal Commands for the Windows Command Shell

NAME

DESCRIPTION

OVERRIDDEN BY

title

Sets the title for the command-shell

window.

type

Displays the contents of a text fi le.

Get-Content

verify

Causes the operating system to verify fi les

after writing fi les to disk.

vol

Displays the disk’s volume label and serial

number.

Creating Aliases

The following cmdlets are available for working with aliases:

N Get-Alias Lists all or specifi ed aliases set in the current session by name

and defi nition.

Get-Alias [[-Name | -Definition]

Get-Alias [[-Name | -Definition] Strings

 Strings] [AddtlParams]

] [AddtlParams]

AddtlParams=

AddtlParams=

[-Exclude

[-Exclude Strings

 Strings] [-Scope

] [-Scope String

 String]

N New-Alias Creates a new alias.

New-Alias [-Description

New-Alias [-Description String

 String] [-Name]

] [-Name] String [-Value]

[-Value]

 g

 String

 String

[AddtlParams]

[AddtlParams]

AddtlParams=

AddtlParams=

[-Force] [-PassThru] [-Scope

[-Force] [-PassThru] [-Scope String

 String] [-Option None | ReadOnly |

] [-Option None | ReadOnly |

Constant | Private | AllScope]

Constant | Private | AllScope]

N Set-Alias Creates a new alias, or changes the defi nition of an existing alias.

Set-Alias [-Description

Set-Alias [-Description String

 String] [-Name] String [-Value]

[-Value]

 g

 String

 String

[AddtlParams]

[AddtlParams]

AddtlParams=

AddtlParams=

[-Force] [-PassThru] [-Scope

[-Force] [-PassThru] [-Scope String

 String] [-Option None | ReadOnly |

] [-Option None | ReadOnly |

Constant | Private | AllScope]

Constant | Private | AllScope]

N Export-Alias Exports all the aliases that are currently in use in the Power-

Shell console to an alias fi le. This includes the built-in aliases as well as aliases

you’ve created.

172

CHAPTER 6 Mastering Aliases, Functions, and Objects

Export-Alias [-Append] [-As Csv | Script] [-Path]

Export-Alias [-Append] [-As Csv | Script] [-Path] String

 String

[AddtlParams]

[AddtlParams]

AddtlParams=

AddtlParams=

[-Description

[-Description String

 String] [-Force] [-NoClobber] [-PassThru]

] [-Force] [-NoClobber] [-PassThru]

[-Scope

[-Scope String

 String] [[-Name]

] [[-Name] Strings

 Strings]

N Import-Alias Imports an alias fi le into a PowerShell console. The aliases

can then be used in that PowerShell session. You must reload the aliases

each time you open a PowerShell console.

Import-Alias [-Path]

Import-Alias [-Path] String [AddtlParams]

 g

AddtlParams=

AddtlParams=

[-PassThru] [-Force] [-Scope

[-PassThru] [-Force] [-Scop

 String

e String]

As mentioned previously, you can use the Get-Alias cmdlet to list all of the avail-

able aliases. To get particular aliases, use the –Name parameter of the Get-Alias

cmdlet. For example, to get aliases that begin with “a”, use the following command:

get-alias -name a*

get-alias -name a*

To get aliases according to their values, use the –Defi nition parameter. For ex-

ample, to get aliases for the Remove-Item cmdlet, type the following command:

get-alias -definition Remove-Item

get-alias -definition Remove-Item

You can create aliases using either the New-Alias cmdlet or the Set-Alias cmdlet.

The primary difference between them is that New-Alias creates an alias only if a

like-named alias does not yet exist, while Set-Alias overwrites an existing alias with

the new association you provide. The basic syntax is

set-alias –name

set-alias –name AliasName

 AliasName –value

–value CommandName

 CommandName

where AliasName is the alias you want to use or modify, and CommandName is the cmdlet you want to associate with the alias. The following example creates a “cm”

alias for Computer Management:

set-alias -name cm -value c:\windows\system32\compmgmt.msc

set-alias -name cm -value c:\windows\system32\compmgmt.msc

Because the –Name and –Value parameters are position sensitive, you pass the

related values in order without having to specify the parameter name, as shown in

this example:

set-alias cm c:\windows\system32\compmgmt.msc

set-alias cm c:\windows\system32\compmgmt.msc

Mastering Aliases, Functions, and Objects CHAPTER 6

173

 MORE INFO Sometimes, you might want to use the –Option parameter to set optional properties of an alias. Valid values are None, ReadOnly, Constant, Private, and

AllScope. The default, None, sets no options. ReadOnly specifi es that the alias cannot

be changed unless you use the –Force parameter. Constant specifi es that the alias

 cannot be changed, even by using the –Force parameter. Private specifi es that the alias

is available only within the scope specifi ed by the –Scope parameter. AllScope specifi es

that the alias is available in all scopes.

You can use the alias with any applicable parameters just as you would the full

command name. If you always want to use certain startup parameters, external

utilities, or applications, you can defi ne those as well as part of the alias. To do this,

enclose the value in double quotation marks as shown in this example:

set-alias cm "c:\windows\system32\compmgmt.msc /computer=engpc57"

set-alias cm "c:\windows\system32\compmgmt.msc /computer=engpc57"

However, you cannot defi ne startup parameters for cmdlets in this way. For

example, you can create an alias of gs for Get-Service, but you cannot create an

alias with the following defi nition: get-service –name winrm. The workaround is to

create a function that includes the command as discussed in the “Creating and Using

Functions” section later in this chapter.

Importing and Exporting Aliases

Normally, you save the aliases you want to use by typing the related commands into

a profi le fi le. If you create a number of aliases in a PowerShell session and want to

save those aliases, you also can use the Export-Alias cmdlet to do so. This cmdlet

exports all the aliases that are currently in use in the PowerShell console to an alias

fi le. You can export aliases as a list of comma-separated values or a list of Set-Alias

commands in a PowerShell script.

The basic syntax for Export-Alias is

export-alias –path

export-alias –path AliasFileName

 AliasFileName

where AliasFileName is the full fi le path to the alias fi le you want to create, such as export-alias –path myaliases.csv

export-alias –path myaliases.csv

The default output format is a list of comma-separated values. You can use the

–As parameter to set the output format as a script containing Set-Alias commands

as shown in this example:

export-alias –as script –path myaliases.ps1

export-alias –as script –path myaliases.ps1

Other parameters you can use include

N –Append, to write the output to the end of an existing fi le rather than over-

write the fi le as per the default setting

174

CHAPTER 6 Mastering Aliases, Functions, and Objects

N –Force, to force overwriting an existing alias fi le if the read-only attribute is set N –Noclobber, to prevent automatic overwriting of an existing alias fi le

The Import-Alias cmdlet imports an alias fi le into the PowerShell console. The

basic syntax for Import-Alias is

import-alias –path

import-alias –path AliasFileName

 AliasFileName

where AliasFileName is the full fi le path to the alias fi le you want to import, such as import-alias –path c:\powershell\myaliases.csv

import-alias –path c:\powershell\myaliases.csv

Use the –Force parameter to import aliases that are already defi ned and set as

read-only.

Creating and Using Functions

Windows PowerShell functions are named sets of commands that can accept input

from the pipeline. When you call a function by its name, the related commands run

just as if you had typed them at the command line. Normally, you save functions

that you want to use frequently by typing the related commands into a profi le fi le.

You also can add functions to scripts.

Creating Functions

To create a function, type the word function followed by a name for the function.

Type your command text, and enclose it in braces ({ }). For example, the following

command creates the getwinrm function. This function represents the “get-service

-name winrm” command:

function getwinrm {get-service -name winrm}

function getwinrm {get-service -name winrm}

The braces ({ }) create a code block that the function uses. You can now type

getwinrm instead of the command. And you can even create aliases for the

getwinrm function. For example, you can create a gr alias for the getwinrm function

using the following command:

new-alias gr getwinrm

new-alias gr getwinrm

Because functions use code blocks, you can create functions with multiple

commands. Functions also can use piping, redirection, and other coding techniques.

For example, you can use piping to format the output of Get-Service as shown in

this example:

function getwinrm {get-service -name winrm | format-list}

function getwinrm {get-service -name winrm | format-list}

Mastering Aliases, Functions, and Objects CHAPTER 6

175

Functions are very powerful because you can defi ne parameters for them and use the parameter names to pass in values. The basic syntax for using parameters with

functions is

function

function FunctionName

 FunctionName {

{

param (

param $Parameter1Name

($Parameter1Name, $

, $ Parameter2Name

 Parameter2Name, ...)

, ...)

 Commands

 Command }

 s }

where FunctionName sets the name of the function, $Parameter1Name sets the

name of the fi rst parameter, $Parameter2Name sets the name of the second

parameter, and so on. Consider the following example:

function ss {param ($status) get-service | where { $_.status -eq $status} }

function ss {param ($status) get-service | where { $_.status -eq $status} }

This line of code defi nes an ss function with a parameter called status. The ss function examines all the confi gured services on the computer and uses the Where-Object cmdlet to return a formatted list of services with the status you specify. To

return a list of all services with a status of Stopped, you type

ss –status stopped

ss –status stopped

To return a list of all services with a status of Running, you type

ss –status running

ss –status running

Because the name of the parameter is optional, you also can simply specify the

value to check, such as

ss stopped

ss stopped

or

ss running

ss running

Keep in mind that functions run within the context of their own local scope.

The items created in a function, such as variables, exist only in the function scope.

Additionally, if a function is part of a script, the function is available only to state-

ments within that script. This means a function in a script is not available at the

command prompt by default. When you defi ne a function in the global scope, you

can use the function in scripts, in functions, and at the command line.

To set the scope for a function, simply prefi x the name of the function with the

desired scope. This example sets the scope of the function to global:

function global:getwinrm {get-service -name winrm}

176

CHAPTER 6 Mastering Aliases, Functions, and Objects

Using Extended Functions

Now that you know the basics, let’s look at the extended syntax for functions:

function $

function $ FunctionName

 FunctionName {

{

param ($

p

 Parameter1Name

aram ($ Parameter1Nam , $

 e, $ Parameter2Name

 Parameter2Name, ...)

, ...)

Begin {

Begin {

<one-time, pre-processing commands>

<one-time, pre-processing commands>

}

}

Process{

Process{

<commands to execute on each object>

<commands to execute on each object>

}

}

End{

End{

<one-time, post-processing commands>

<one-time, post-processing commands>

}

}

}

In the extended syntax, you can add Begin, Process, and End code blocks to

make a function behave exactly like a cmdlet. The Begin block is optional and used

to specify one-time preprocessing commands. Statements in the Begin block are

executed before any objects in the pipeline are evaluated by the function. This

means no pipeline objects are available.

The Process block is required if you want to process input. In the basic syntax,

the Process block is implied. However, when you use the other optional blocks and

want to process input, you must explicitly declare the Process block. Statements in

the Process block are executed once for each object in the pipeline.

The End block is optional and used to specify one-time postprocessing com-

mands. Statements in the End block are executed after all objects in the pipeline are

evaluated by the function. As with the Begin block, this means no pipeline objects

are available.

The following example uses Begin, Process, and End code blocks:

function scheck {

function scheck {

param ($status)

param ($status)

Begin {

Begin {

Write-Warning "############### Services on $env:computername"

Write-Warning "############### Services on $env:computername"

}

}

Process {

Process {

get-service | where { $_.status -eq $status}

get-service | where { $_.status -eq $status}

}

}

End {

End {

Write-Warning "##"

Write-Warning "##"

}

}

}

Mastering Aliases, Functions, and Objects CHAPTER 6

177

If you defi ne this function at the prompt or use it in a script, you can return a list of all services with a status of Stopped by typing

scheck stopped

To return a list of all services with a status of Running, you type

ss –status running

Using Filter Functions

Filters are a type of function that run on each object in the pipeline. You can think of

a fi lter as a function with all its statements in a Process block.

The basic syntax for a fi lter is

filter FilterName

filter FilterName {

{

param (

param $Parameter1Name

($Parameter1Name, $

, $ Parameter2Name

 Parameter2Name, ...)

, ...)

 Commands

 Comman

}

 ds }

where FilterName sets the name of the fi lter, $Parameter1Name sets the name of the fi rst parameter, $Parameter2Name sets the name of the second parameter, and

so on.

The power of a fi lter is that it processes a single pipeline object at a time. This

makes a fi lter ideal for working with large amounts of data and returning an

appropriate subset of the pipeline data. As with functions, you can specify a scope

for a fi lter. Simply prefi x the name of the function with the desired scope.

When you work with fi lters, you’ll often use the $_ automatic variable to operate

on the current object in the pipeline as shown in this example:

filter Name { $_.Name }

filter Name { $_.Name }

Here, you defi ne a fi lter that outputs the name property of any object sent to

the fi lter. For example, if you pipeline the output of Get-PSDrive to the function as

shown here:

get-psdrive | name

get-psdrive | name

the fi lter returns the name of each PSDrive that is available. Because a fi lter is

essentially a function with only a Process block, the following function works the

same as the previously defi ned fi lter:

function Name {

function Name {

Process { $_.Name }

Process { $_.Name }

}

178

CHAPTER 6 Mastering Aliases, Functions, and Objects

Digging Deeper into Functions

You can extend the function concepts we’ve discussed previously in many ways. For

example, you can set a default value for a parameter by assigning an initial value as

shown in this example:

function ss {param ($status = "stopped") get-service |

function ss {param ($status = "stopped") get-service |

where { $_.status -eq $status} }

where { $_.status -eq $status} }

Now the –Status parameter is set to Stopped by default. You can override the

default by specifying a different value.

When you create functions, you can specify the parameter value type using any

of the data type aliases listed previously in Table 6-1. These data type aliases are

used in the same way whenever you declare a data type in PowerShell.

In the following example, you create a function to dynamically set the

PowerShell window size:

function set-windowsize {

function set-windowsize {

param([int]$width=$host.ui.rawui.windowsize.width,

param([int]$width=$host.ui.rawui.windowsize.width,

[int]$height=$host.ui.rawui.windowsize.height)

[int]$height=$host.ui.rawui.windowsize.height)

$size=New-Object System.Management.Automation.Host.Size($width,$height);

$size=New-Object System.Management.Automation.Host.Size($width,$height);

$host.ui.rawui.WindowSize=$size

$host.ui.rawui.WindowSize=$size

}

The function defi nes two parameters: $width and $height. Both parameters

are defi ned as having 32-bit integer values. Because of this, PowerShell expects

the parameters to be in this format when you call the function. If you pass values

in another format, PowerShell attempts to convert the values you provide to the

correct format. If PowerShell cannot do this, an error is returned stating that the

value cannot be converted to the specifi ed type and that the input string was not in

the correct format.

The Get-Command cmdlet lists all currently defi ned cmdlets and functions. If

you want to see only the available functions, you can fi lter the output using the

Where-Object cmdlet as shown in the following example:

get-command | where {$_.commandtype -eq "function"}

get-command | where {$_.commandtype -eq "function"}

Here, you look for command objects where CommandType is set as Function.

This lists all the functions that currently are defi ned. Add | format-list to see the

extended defi nition of each function, such as

get-command | where {$_.commandtype -eq "function"} | format-list

get-command | where {$_.commandtype -eq "function"} | format-list

Mastering Aliases, Functions, and Objects CHAPTER 6

179

The technique of calling a function and passing parameter values directly works great when you want to do either of the following:

N Defi ne a function at the prompt and then run the function from the prompt.

N Defi ne a function in a script and then run the function in the script.

However, this technique won’t work if you want to pass parameter values to a

function in a script from the prompt. The reason for this is that values passed to

a script are read as arguments. For example, if you save a library of functions in a

script and then want to run the functions from the prompt, you have to design the

function to understand script-passed arguments or modify the script to work with

arguments. One solution is shown in this example script:

Contents of CheckIt.ps1

function scheck {param ($status)

function scheck {param ($status)

Begin {

Begin {

Write-Warning "############### Services on $env:computername"

Write-Warning "############### Services on $env:computername"

}

}

Process {

Process {

get-service | where { $_.status -eq $status}

get-service | where { $_.status -eq $status}

}

}

End {

End {

Write-Warning "##"

Write-Warning "##"

}

}

}

if ($args[0] = "scheck") {scheck $args[1]}

if ($args[0] = "scheck") {scheck $args[1]}

Note that the last line of the script determines whether the Scheck function

is called. If you call the script with the fi rst argument as scheck and the second

argument as the status to check, the Scheck function is called and you get a list of

services with that status. An alternative solution is to simply set the Status parameter

to the value of the fi rst argument passed to the script, as shown in the example that

follows. You can then call the script with the fi rst argument as the status to check.

Note that the last line of the script invokes the function.

 Contents of CheckIt2.ps1

function scheck {param ($status = $args[0])

function scheck {param ($status = $args[0])

Begin {

Begin {

Write-Warning "############### Services on $env:computername"

Write-Warning "############### Services on $env:computername"

}

}

Process {

Process {

get-service | where { $_.status -eq $status}

get-service | where { $_.status -eq $status}

}

}

End {

End {

Write-Warning "##"

Write-Warning "##"

}

}

}

scheck

scheck

180

CHAPTER 6 Mastering Aliases, Functions, and Objects

Examining Function Defi nitions

If desired, you can work with functions via the function: provider drive. For example, if you set the location to the function: provider drive as shown in this example

set-location function:

set-location function:

the PowerShell prompt changes to

PS Function:\>

PS Function:\>

You can then work with any function or all functions. To list all functions by name

and defi nition, you type

get-childitem

get-childitem

To list a particular function by name and defi nition, you use Get-ChildItem and

type the function name or part of the function name with wildcards, such as

get-childitem enable-psremoting

get-childitem enable-psremoting

get-childitem *psremoting

get-childitem *psremoting

When you are fi nished working with the function: provider drive, you can return

to the fi le system drive you were using by typing set-location and the drive desig-

nator, such as

set-location c:

set-location c:

Another way to work with the function: provider drive is to use the Get-Item

cmdlet to examine its defi nitions. If you do this, you don’t need to switch to the

function: provider drive. For example, regardless of which provider drive you are

working with, you can type the following command to list all functions:

get-item -path function:*

get-item -path function:*

You also can get a function by name:

get-item -path function:prompt

get-item -path function:prompt

Or you can get it by wildcard:

get-item -path function:pr*

get-item -path function:pr*

Using the Built-In Functions

Table 6-3 shows the default functions. As you can see, most of the default functions

are created to allow you to access drives and fi le paths, and the defi nition for these

Mastering Aliases, Functions, and Objects CHAPTER 6

181

matches the definition set in the actual function. For other functions, the definition shows the essential command text at the heart of the function when possible.

TABLE 6-3 Default Functions

FUNCTION NAME

DEFINITION

PURPOSE

A:, B:, C:, D:, E:, F:, G:, Set-Location DriveLetter,

Allows you to change to

H:, I:, J:, K:, L:, M:, N:, where DriveLetter is the

a particular drive letter.

O:, P:, Q:, R:, S:, T:, U:, letter of the drive you

Thus, rather than having

V:, W:, X:, Y:, Z:

want to access.

to type Set-Location C:,

you can simply type C:.

CD..

Set-Location ..

Allows you to go back

one directory level. Thus,

rather than having to type

Set-Location .. , you can

simply type CD.. .

CD\

Set-Location \

Allows you to go to

the root directory of

the current drive. Thus,

rather than having to type

Set-Location \, you can

simply type CD\.

Clear-Host

$space = New-Object System.

Clears the history buffer

Management. Automation.

in the PowerShell console.

Host. BufferCell

Thus, rather than having

$space.Character = ‘ ‘

to invoke the host run

space and clear the buffer,

you can simply type

Clear-Host.

Disable-PSRemoting Disable-PSSessionConfiguration Disables the PowerShell

* –force:$force

remoting capabilities.

Thus, rather than having

to try several approaches

to disabling remoting,

you can simply type

Disable-PSRemoting.

Enable-PSRemoting

Enable-PSSessionConfiguration Enables the PowerShell

* –force:$force

remoting capabilities.

Thus, rather than having

to try several approaches

to enabling remoting,

you can simply type

Enable-PSRemoting.

182

 CHAPTER 6 Mastering Aliases, Functions, and Objects

TABLE 6-3 Default Functions

FUNCTION NAME

DEFINITION

PURPOSE

Help

Get-help | More

Gets the help text for a

cmdlet and pages it one

screen at a time. Thus,

rather than having to type

get-help CmdletName |

More, you can simply type

Help CmdletName.

Mkdir

New-Item –path Path –name

Creates a directory with

 Name –type directory

a specified name along

a specified path. Thus,

rather than having to

use New-Item to create a

directory in a named path,

you can simply type mkdir

 DirName.

More

| More

Pages file contents or out-

put one screen at a time.

Thus, rather than having

to type CommandText |

More, you can simply type

More CommandText.

Prompt

$(if (test-path variable:/

Displays the PowerShell

PSDebugContext)

prompt. By default, the

{ ‘[DBG]: ‘ } else { ‘’ }) +

prompt displays PS, a

‘PS ‘ + $(Get-Location) + $(if

space, and then the cur-

($nestedpromptlevel –ge 1)

rent directory. The prompt

{ ‘>>’ }) + ‘> ‘

changes to >> when you

do not terminate a line

properly and PowerShell

is looking for more input

to complete the command

entry.

TabExpansion

*

Enables tab expansion of

command and parameter

names. When you are

typing part of a name

value, press Tab to expand.

Mastering Aliases, Functions, and Objects CHAPTER 6

183

Practice using these functions because they provide handy shortcuts for many

common tasks, especially the Prompt and TabExpansion functions. By default,

the prompt displays PS, a space, and then the current directory. Also, the prompt

changes to >> when you do not terminate a line properly and PowerShell is looking

for more input to complete the command entry. When you are in debugging mode,

the prompt changes to [DBG]:.

You can create your own Prompt function. If you do, your Prompt function

simply overwrites and takes the place of the default prompt function. For example, if

you want to the prompt to display the date instead of the current location, you can

defi ne the Prompt function as

function prompt {"$(get-date)> "}

function prompt {"$(get-date)> "}

Or to display the computer name, defi ne the prompt as

function prompt {"PS [$env:computername]> "}

function prompt {"PS [$env:computername]> "}

To maintain the original behavior of the prompt, copy the original defi nition and

then modify it to meet your needs. The original prompt is created using the follow-

ing function entered as a single line of code:

function prompt {

function prompt {

$(if (test-path variable:/PSDebugContext) { '[DBG]: ' }

$(if (test-path variable:/PSDebugContext) { '[DBG]: ' }

else { '' }) +

else { '' }) + 'PS ' + $(Get-Location)

'PS ' + $(Get-Location)

+ $(if ($nestedpromptlevel -ge 1) { '>>' }) + '> '

+ $(if ($nestedpromptlevel -ge 1) { '>>' }) + '> '

}

Typically, you’ll want to replace the bold text with the desired value. For example,

to display the date, you enter the following defi nition as a single line:

function prompt {

function prompt {

$(if (test-path variable:/PSDebugContext) { '[DBG]: ' }

$(if (test-path variable:/PSDebugContext) { '[DBG]: ' }

else { '' }) + "$(get-date)> "

else { '' }) + "$(get-date)> "

+ $(if ($nestedpromptlevel -ge 1) { '>>' }) + '> '

+ $(if ($nestedpromptlevel -ge 1) { '>>' }) + '> '

}

To display the computer name, you enter the following defi nition as a single line:

function prompt {

function prompt {

$(if (test-path variable:/PSDebugContext) { '[DBG]: ' }

$(if (test-path variable:/PSDebugContext) { '[DBG]: ' }

else { '' }) + "PS [$env:computername]> "

else { '' }) + "PS [$env:computername]> "

+ $(if ($nestedpromptlevel -ge 1) { '>>' }) + '> '

+ $(if ($nestedpromptlevel -ge 1) { '>>' }) + '> '

}

While the Prompt function is a nice extra, the TabExpansion function is one you

won’t be able to live without once you start using it. The TabExpansion function

184

CHAPTER 6 Mastering Aliases, Functions, and Objects

allows you to complete cmdlet names, parameter names, and even parameter

values using the Tab key. Here’s how it works:

N When you are typing a cmdlet name, type the first few letters of the name

and then press the Tab key to cycle through matching cmdlet names in

alphabetical order. For example, if you know the cmdlet you want to use

begins with Get-, you can type Get- and then press Tab to cycle through

the matching cmdlets. Here, Get-Acl is listed first, followed by Get-Alias,

Get-AuthenticateSignature, and so on. Similarly, if you know the cmdlet verb

is Get and the cmdlet noun begins with C, you can type Get-C and then

press Tab to cycle through possible values. A little-known secret is that you

can press Shift+Tab to go through the values backwards, such as when you

know the value you are looking for is later in the alphabet.

N After you type a cmdlet name, you can use tab expansion to select parameter

names as well. If you don’t know what parameter to use, type a hyphen (-)

and then press Tab to cycle through all available parameter names. If you

know a parameter begins with a certain letter, type a hyphen (-) followed by

the letters you know and then press Tab. Again, you can press Shift+Tab to

go through the values backward.

 NOTE Pressing Tab on a blank line inserts the tab character. If you press Tab when a parameter value is expected, PowerShell cycles through file and folder names in the

current directory.

Working with Objects

Every action you take in Windows PowerShell occurs within the context of objects.

Objects are the fundamental unit in object-oriented programming. Programming

languages that follow object-oriented concepts describe the interaction among

objects, and PowerShell uses objects in exactly the same way.

Object Essentials

In Windows PowerShell, objects do the real work. As data moves from one command

to the next, it moves as it does within objects. Essentially, this means that objects are

simply collections of data that represent items in defined namespaces.

All objects have a type, state, and behavior. The type provides details about what

the object represents. For example, an object that represents a system process is a

Process object. The state of an object pertains to data elements and their associated

values. Everything the object knows about these elements and values describes the

state of the object. Data elements associated with objects are stored in properties.

The behavior of an object depends on the actions the object can perform on

the item that the object represents. In object-oriented terminology, this construct

is called a method. A method belongs to the object class it is a member of, and you

Mastering Aliases, Functions, and Objects CHAPTER 6

185

use a method when you need to perform a specifi c action on an object. For example, the Process object includes a method for stopping the process. You can use this

method to halt execution of the process that the object represents.

Putting this together, you can see that the state of an object depends on the

things the object knows, and the behavior of the object depends on the actions

the object can perform. Objects encapsulate properties and related methods into a

single identifi able unit. Therefore, objects are easy to reuse, update, and maintain.

Object classes encapsulate objects. A single class can be used to instantiate

multiple objects. This means that you can have many active objects or instances of a

class. By encapsulating objects within a class structure, you can group sets of objects

by type. For example, when you type get-process at the PowerShell prompt,

Power Shell returns a collection of objects representing all processing that are run-

ning on the computer. Although all the objects are returned together in a single

collection, each object is separate, retaining its own states and behaviors.

PowerShell supports several dozen object types. When you combine commands

in a pipeline, the commands pass information to each other as objects. When the fi rst

command runs, it sends one or more objects of a particular class along the pipeline

to the second command. The second command receives the collection of objects

from the fi rst command, processes the objects, and then either displays output or

passes new or modifi ed objects to the next command in the pipeline. This continues

until all commands in the pipeline run and the fi nal command’s output is displayed.

You can examine the properties and methods of any object by sending the out-

put through the Get-Member cmdlet. For example, system processes and services

are represented by the Process and Service objects, respectively. To determine the

properties and methods of a Process object, you type get-process | get-member.

To determine the properties and methods of a Service object, you type get-service |

get-member. In both instances, the pipe character (|) sends the output of the fi rst

cmdlet to the Get-Member cmdlet, and Get-Member shows you the formal type of

the object class and a complete listing of its members, as shown in the following

example and sample output:

get-service | get-member

get-service | get-member

 TypeName: System.ServiceProcess.ServiceController

 TypeName: System.ServiceProcess.ServiceController

Name MemberType Definition

Name MemberType Definition

---- ---------- ----------

---- ---------- ----------

Name AliasProperty Name = ServiceName

Name AliasProperty Name = ServiceName

Disposed Event System.EventHandler Disposed

Disposed Event System.EventHandler Disposed

Close Method System.Void Close()

Close Method System.Void Close()

. . .

. . .

CanPauseAndContinue Property System.Boolean CanPauseAndCo

CanPauseAndContinue Property System.Boolean CanPauseAndCo

. . .

. . .

Status Property System.ServiceProcess.Service

Status Property System.ServiceProcess.Service

186

CHAPTER 6 Mastering Aliases, Functions, and Objects

 TIP By default, the Get-Member cmdlet does not show you the static methods and static properties of object classes. To get the static members of an object class, type

get-member –static. For example, to get the static members of the ServiceProcess

object, you’d enter get-service | get-member –static.

In the output, note that each facet of the Service object is listed by member

type. You can make better sense of the list of available information when you fi lter

for elements you want to see by adding the –MemberType parameter. The allowed

values of –MemberType include

N AliasProperty, CodeProperty, NoteProperty, ParameterizedProperty,

Property, PropertySet, ScriptProperty, CodeMethod, MemberSet, Method,

and ScriptMethod, for examining elements of a particular type

N Properties, for examining all property-related elements

N Methods, for examining all method-related elements

N All, for examining all properties and methods (the default)

When you examine an object using Get-Member, note the alias properties.

Aliases to properties work the same as other aliases. They’re friendly names that

you can use as shortcuts when you are working with an object. Whereas Service

objects have only one alias property (Name), most well-known objects have several

alias properties. For example, Process objects have the alias properties shown in the

following example and sample output:

get-process | get-member

get-process | get-member

 TypeName: System.Diagnostics.Process

 TypeName: System.Diagnostics.Process

Name MemberType Definition

Name MemberType Definition

---- ---------- ----------

Handles AliasProperty Handles = Handlecount

Handles AliasProperty Handles = Handlecount

Name AliasProperty Name = ProcessName

Name AliasProperty Name = ProcessName

NPM AliasProperty NPM = NonpagedSystemMemory

NPM AliasProperty NPM = NonpagedSystemMemory

PM AliasProperty PM = PagedMemorySize

PM AliasProperty PM = PagedMemorySize

VM AliasProperty VM = VirtualMemorySize

VM AliasProperty VM = VirtualMemorySize

WS AliasProperty WS = WorkingSet

WS AliasProperty WS = WorkingSet

And these aliases are displayed when you list running processes, as shown in the

following example and sample output:

get-process

get-process

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

------- ------ ----- ----- ----- ------ -- -----------

----- -----

-- -----------

 52 3 1296 3844 51 0.00 3004 acrotray

 52 3 1296 3844 51 0.00 3004 acrotray

 139 4 2560 7344 75 1292 AlertService

 139 4 2560 7344 75 1292 AlertService

 573 14 14680 11028 120 7.41 2764 aolsoftware

 573 14 14680 11028 120 7.41 2764 aolsoftware

 97 4 2872 4476 53 1512 AppleMobil...

 97 4 2872 4476 53 1512 AppleMobil...

Mastering Aliases, Functions, and Objects CHAPTER 6

187

When you type get-process | get-member and see that Process objects have dozens of other properties not listed, you might wonder what happened to these

other properties and why they aren’t listed. This occurs because PowerShell shows

only streamlined views of well-known objects as part of the standard output.

Typically, this output includes only the most important properties of an object.

PowerShell determines how to display an object of a particular type by using

information stored in XML fi les that have names ending in .format.ps1xml. The

formatting defi nitions for many well-known objects are in the types.ps1xml fi le. This

fi le is stored in the $pshome directory.

The properties you don’t see are still part of the object, and you have full access to

them. For example, if you type get-process winlogon | format-list –property *, you

get complete details on every property of the Winlogon process by name and value.

Object Methods and Properties

Some methods and properties relate only to actual instances of an object, and this

is why they are called instance methods and instance properties. The term instance is simply another word for object.

Often you will want to reference the methods and properties of objects through a vari-

able in which the object is stored. To see how this works, consider the following example:

$myString = "THIS IS A TEST!"

$myString = "THIS IS A TEST!"

Here, you store a character string in a variable named $myString. In PowerShell,

the string is represented as a String object. String objects have a Length property

that stores the length of the string. Therefore, you can determine the length of the

string created previously by typing the following command:

$myString.Length

$myString.Length

In this example, the length of the string is 15 characters, so the output is 15.

Although String objects have only one property, they have a number of methods,

including ToUpper() and ToLower(). You use the ToUpper() method to display all

the characters in the string in uppercase letters. You use the ToLower() method to

display all the characters in the string in lowercase letters. For example, to change

the previously created string to “this is a test!”, you type the following command:

$myString.ToLower()

From these examples, you can see that you access a property of an object

by placing a dot between the variable name that represents the object and the

property name as shown here:

$ ObjectName

$ Obj

.

 ectName PropertyName

 PropertyName

$ ObjectName

$ Obj

.

 ectName PropertyName =

= Value

 Value

188

CHAPTER 6 Mastering Aliases, Functions, and Objects

 And you can see that you access a method of an object by placing a dot between the variable name that represents the object and the method name, such as

$ ObjectName

 ObjectNam .

 e MethodName

 MethodName()

Because methods perform actions on objects, you often need to pass parameter

values in the method call. The syntax for passing parameters in a method call is

$ ObjectName

 ObjectNam .

 e MethodName

 MethodName(parameter1

 parameter1,

, parameter2

 parameter2, …)

, …)

So far the techniques we’ve discussed for working with methods and properties are

for actual instances of an object. However, you won’t always be working with a tangible

instance of an object. Sometimes, you’ll want to work directly with the static methods

and static properties that apply to a particular .NET Framework class type as a whole.

The .NET Framework includes a wide range of class types. Generally, .NET Frame-

work class names are always enclosed in brackets. Examples of class type names

include [System.Datetime], for working with dates and times, and [System.Diagnostics

.Process], for working with system processes. However, PowerShell automatically

prepends System. to type names, so you can also use [Datetime] for working with

dates and times and [Diagnostics.Process] for working with system processes.

Static methods and static properties of a .NET Framework class are always

available when you are working with an object class. However, if you try to display

them with the Get-Member cmdlet, you won’t see them unless you use the –Static

parameter as well, such as

[System.Datetime] | get-member -Static

[System.Datetime] | get-member -Static

You access a static property of a .NET Framework class by placing two colon

characters (::) between the bracketed class name and the property name as shown here:

[ClassName]::

]:: PropertyName

 PropertyName

[ClassName]::

]:: PropertyName

 PropertyName =

= Value

 Value

In this example, you use a static property of the [System.Datetime] class to

display the current date and time:

[System.Datetime]::Now

[System.Datetime]::Now

Monday, February 15, 2010 11:05:22 PM

Monday, February 15, 2010 11:05:22 PM

You access a static method of a .NET Framework class by placing two colon

characters (::) between the bracketed class name and the method name, such as

[ClassName

 Cl

]::

 assName]:: MethodName

 MethodName()

Mastering Aliases, Functions, and Objects CHAPTER 6

189

The syntax for passing parameters in a call to a static method is

[ClassName

[Cl

]::

 assName]:: MethodName

 MethodName(parameter1

 parameter1,

, parameter2

 parameter2, …)

, …)

In this example, you use a static method of the [System.Diagnostics.Process] class

to display information about a process:

[System.Diagnostics.Process]::GetProcessById(0)

[System.Diagnostics.Process]::GetProcessById(0)

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

------- ------ ----- ----- ----- ------ -- -----------

------- ------ ----- ----- ----- ------ -- -----------

0 0 0 24 0 0 Idle

0 0 0 24 0 0 Idle

Object Types

By default, all object types that are used by PowerShell are defi ned in .ps1xml fi les in

the $pshome directory. The default formatting and type fi les include the following:

N Certifi cate.Format.ps1xml Provides formatting guidelines for certifi cate

objects and X.509 certifi cates

N Diagnostics.Format.ps1xml Provides formatting guidelines for objects

created when you are working with performance counters and diagnostics in

PowerShell

N DotNetTypes.Format.ps1xml Provides formatting guidelines for

.NET Framework objects not covered in other formatting fi les, including

CultureInfo, FileVersionInfo, and EventLogEntry objects

N FileSystem.Format.ps1xml Provides formatting guidelines for fi le system

objects

N GetEvent.Types.ps1xml Provides formatting guidelines for event log

confi guration, event log records, and performance counters

N Help.Format.ps1xml Provides formatting guidelines for the views

PowerShell uses to display help fi le content

N PowerShellCore.Format.ps1xml Provides formatting guidelines for

objects that are created by the PowerShell core cmdlets

N PowerShellTrace.Format.ps1xml Provides formatting guidelines for

PSTraceSource objects generated when you are performing traces in

PowerShell

N Registry.Format.ps1xml Provides formatting guidelines for Registry

objects

N Types.ps1xml Provides formatting guidelines for System objects

N WSMan.Format.ps1xml Provides formatting guidelines for objects

created when you are working with WS Management confi gurations in

PowerShell

190

CHAPTER 6 Mastering Aliases, Functions, and Objects

 PowerShell accomplishes automatic typing by using a common object that has

the capability to state its type dynamically, add members dynamically, and interact

with other objects through a consistent abstraction layer. This object is the PSObject.

The PSObject can encapsulate any base object, whether it is a system object, a WMI

object, a Component Object Model (COM) object, or an Active Directory Service

Interfaces (ADSI) object.

By acting as a wrapper for an existing base object, the PSObject can be used

to access adapted views of a base object or to extend a base object. Although an

adapted view of a base object exposes only members that are directly accessible,

you can access alternate views of a base object, and those alternate views can

provide access to the extended members of a base object. Available views for base

objects include the following:

N PSBase Used to access the original properties of the object without

extension or adaptation

N PSAdapted Used to access an adapted view of the object

N PSExtended Used to access the extended properties and methods

of the object that were added in the Types.ps1xml fi les or by using the

Add- Member cmdlet

N PSObject Used to access the adapter that converts the base object to a

PSObject

N PSTypeNames Used to access a list of types that describe the object

By default, PowerShell returns information only from the PSObject, PSExtended,

and PSTypeNames views. However, you can use dot notation to access alternate

views. In the following example, you obtain a Win32_Process object representing

the winlogon.exe process:

$pr = Get-WmiObject Win32_Process | where-object { $_.ProcessName -eq

$pr = Get-WmiObject Win32_Process | where-object { $_.ProcessName -eq

"winlogon.exe" }

"winlogon.exe" }

If you then type $pr at the PowerShell prompt, you see all the information for

this process from the PSObject, PSExtended, and PSTypeNames views. You can then

access the PSBase view to expose the members of the base object as shown in this

example:

$pr.PSBase.Properties

$pr.PSBase.Properties

Because there might be times when you want to extend an object yourself, you

can do this using a custom Types.ps1xml fi le or by using the Add-Member cmdlet.

The three most common extensions you’ll want to use are

N ScriptProperty Allows you to add properties to types, including those that

are based on a calculation

N AliasProperty Allows you to defi ne an alias for a property

N ScriptMethod Allows you to defi ne an action to take on an object

Mastering Aliases, Functions, and Objects CHAPTER 6

191

In custom Types.ps1xml fi les, you can defi ne these extensions using XML

elements, and there are many examples available in the $pshome directory. These

extensions also can be added dynamically at the prompt or in your scripts. For

example, a ScriptProperty is a type of object member that uses a block of code to

process or extract information related to an object. The basic syntax is

$ ObjectName

$ Obj

| add-member -membertype scriptproperty -name

 ectName | add-member -membertype scriptproperty -name Name

 N

-value

 ame -value

 {CodeBlock}

 {CodeBlock}

Because the –Name and –Value parameters are position sensitive, you don’t have

to specify them explicitly. Knowing this, consider the following example and sample

output:

$proc = get-process powershell;

$proc = get-process powershell;

$proc | add-member -Type scriptproperty "UpTime" {return ((date) -

$proc | add-member -Type scriptproperty "UpTime" {return ((date) -

($this.starttime))};

($this.starttime))};

$proc | select Name, @{name='Uptime'; Expression={"{0:n0}" -f

$proc | select Name, @{name='Uptime'; Expression={"{0:n0}" -f

$_.UpTime.TotalMinutes}};

$_.UpTime.TotalMinutes}};

Name Uptime

Name Uptime

---- ------

---- ------

powershell 242

powershell 242

Here, you obtain a process object for any Powershell.exe processes running

on the computer. You then use the Add-Member cmdlet to extend the standard

process object by adding a ScriptProperty. The script block defi ned in the Script-

Property is used to calculate the time that a process has been running. Then you

get the process object and format its output to include the process name and new

Uptime property. Using a regular expression, you convert the output value of the

Uptime property to a value in minutes. The result is as shown.

What you don’t see happening here is that the fi rst time you assign a value to

$proc, you are adding a collection of process objects. You then generate a second

collection of process objects because you use the Add-Member cmdlet to wrap the

original Process objects in a new PSObject instance that includes the new property

you’ve defi ned.

While a ScriptProperty extends an object, an AliasProperty simply makes it easier

to work with an object. To see how, let’s access the C: drive using the Get-PSDrive

cmdlet and then create a new PSDriveInfo object so that we can access information

about the C: drive. Here’s an example:

$myDrive = get-psdrive C

$myDrive = get-psdrive C

$myDriveInfo = New-Object System.IO.DriveInfo $myDrive

$myDriveInfo = New-Object System.IO.DriveInfo $myDrive

192

CHAPTER 6 Mastering Aliases, Functions, and Objects

 Now that you have an object you can work with, you can display information

about the C: drive simply by typing $myDriveInfo. The output you see provides

information about the drive, its status, its size, and its free space, and it will be

similar to the following:

Name : C:\

Name : C:\

DriveType : Fixed

DriveType : Fixed

DriveFormat : NTFS

DriveFormat : NTFS

IsReady : True

IsReady : True

AvailableFreeSpace : 302748798976

AvailableFreeSpace : 302748798976

TotalFreeSpace : 302748798976

TotalFreeSpace : 302748798976

TotalSize : 490580373504

TotalSize : 490580373504

RootDirectory : C:\

RootDirectory : C:\

VolumeLabel :

VolumeLabel :

Although the default format is a list, you can also view the information in

table format, such as when you are working with multiple drives. When you type

$ myDriveInfo | format-table –property *, the output you get isn’t pretty (unless

you have a very wide console window). To clean up the output, you might want

to create aliases for properties, such as AvailableFreeSpace, TotalFreeSpace, and

RootDirectory. You can do this using the Add-Member cmdlet as well. The basic

syntax is

$ ObjectName

 ObjectNam | add-member -membertype aliasproperty -name

 e | add-member -membertype aliasproperty -name AliasName

 Ali

-value

 asName -value

 PropertyName

 PropertyName

where ObjectName is the name of the object you are working with, AliasName is the new alias for the property, and PropertyName is the original name of the property,

such as

$myDriveInfo | add-member -membertype aliasproperty -name Free -value

$myDriveInfo | add-member -membertype aliasproperty -name Free -value

AvailableFreeSpace

AvailableFreeSpace

$myDriveInfo | add-member -membertype aliasproperty -name Format -value

$myDriveInfo | add-member -membertype aliasproperty -name Format -value

DriveFormat

DriveFormat

You can access an alias property as you would any other property. For example,

to display the value of the AvailableFreeSpace property, you can type either

$myDriveInfo.AvailableFreeSpace

$myDriveInfo.AvailableFreeSpace

or

$myDriveInfo.Free

$myDriveInfo.Free

Mastering Aliases, Functions, and Objects CHAPTER 6

193

You can use alias properties in formatted output as well. An example is shown in the following command and sample output:

$myDriveInfo | format-table –property Name, Free, Format

$myDriveInfo | format-table –property Name, Free, Format

Name Free Format

Name Free Format

---- ---- ------

C:\ 302748483584 NTFS

C:\ 302748483584 NTFS

You use ScriptMethod extensions to defi ne additional methods for an object. The

basic syntax is

$ ObjectName

$ Obj

| add-member -membertype scriptmethod -name

 ectName | add-member -membertype scriptmethod -name Name

 Name

-value

-value {CodeBlock}

 {CodeBlock}

Because the –Name and –Value parameters are position sensitive, you don’t have

to specify them explicitly. Knowing this, consider the following example:

$myDrive = get-psdrive C

$myDrive = get-psdrive C

$myDrive | add-member -membertype scriptmethod -name Remove

$myDrive | add-member -membertype scriptmethod -name Remove

-value { $force = [bool] $args[0]

-value { $force = [bool] $args[0]

if ($force) {$this | Remove-PSDrive }

if ($force) {$this | Remove-PSDrive }

else {$this | Remove-PSDrive -Confirm}

else {$this | Remove-PSDrive -Confirm}

}

Here you defi ne a Remote method for a PSDrive object. If you call the method

without passing any argument values, PowerShell prompts you to confi rm that

you want to remove the drive from the current session. If you call the method and

pass $true or 0 (zero) as the fi rst argument, PowerShell removes the drive from the

current session without requiring confi rmation.

Digging Deeper into Objects

To dig a bit deeper into objects, let’s look at the $host object. As discussed in

the “Confi guring Windows PowerShell Console Properties” section in Chapter 1,

“ Introducing Windows PowerShell,” you can use the PowerShell console’s Properties

dialog box to specify the options, fonts, layouts, and colors to use. The $host object

also gives you access to the underlying user interface, which can be either the

PowerShell console or the PowerShell application.

To view the current settings of the $host object, type the following command:

$host.ui.rawui | format-list –property *

194

CHAPTER 6 Mastering Aliases, Functions, and Objects

 The output you see will be similar to the following:

ForegroundColor : DarkYellow

ForegroundColor : DarkYellow

BackgroundColor : DarkMagenta

BackgroundColor : DarkMagenta

CursorPosition : 0,1050

CursorPosition : 0,1050

WindowPosition : 0,1001

WindowPosition : 0,1001

CursorSize : 25

CursorSize : 25

BufferSize : 120,3000

BufferSize : 120,3000

WindowSize : 120,50

WindowSize : 120,50

MaxWindowSize : 120,95

MaxWindowSize : 120,95

MaxPhysicalWindowSize : 240,95

MaxPhysicalWindowSize : 240,95

eyAvailable : False

eyAvailable : False

WindowTitle : Windows PowerShell V2

WindowTitle : Windows PowerShell V2

In the output, you see a number of properties, including the following:

N ForegroundColor, which sets the color of the prompt and text

N BackgroundColor, which sets the background color of the window

N WindowTitle, which sets the name of the PowerShell window

To work with the PowerShell window, you must obtain a reference to the $host

object. The easiest way to do this is to store the $host object in a variable, such as

$myHostWin = $host.ui.rawui

$myHostWin = $host.ui.rawui

After you have a reference to an object, you can work with the object through

the available properties and methods. You can set the foreground or background

color to any of the following default color values:

N Black, DarkBlue, DarkGreen, DarkCyan

N DarkRed, DarkMagenta, DarkYellow, Gray

N DarkGray, Blue, Green, Cyan

N Red, Magenta, Yellow, White

To do so, reference the host window object with the property name and the

desired value, such as

$myHostWin.ForegroundColor = "White"

$myHostWin.ForegroundColor = "White"

or

$myHostWin.BackgroundColor = "DarkGray"

$myHostWin.BackgroundColor = "DarkGray"

Similarly, you can use the WindowTitle property to specify the title for the

window. Here’s an example:

$myHostWin.WindowTitle = "PowerShell on $env.computername"

$myHostWin.WindowTitle = "PowerShell on $env.computername"

Mastering Aliases, Functions, and Objects CHAPTER 6

195

Here, you set the window title to a value based on the computer name. Thus, if you are logged on to TechPC32, the window title is set to

PowerShell on TechPC32

PowerShell on TechPC32

Take a look back at the output values for the properties of the $host object.

Several of properties have values separated by commas. This tells you the value is

an array of subproperties. To view the subproperties of a property, you can examine

that property separately and format the output as a list. For example, to examine

the subproperties of CursorPosition, you can type the following command:

$host.ui.rawui.CursorPosition | format-list –property *

$host.ui.rawui.CursorPosition | format-list –property *

The output will look similar to the following:

X : 0

X : 0

Y : 2999

Y : 2999

This tells you the CursorPosition property has two subproperties: X and Y. You

reference subproperties of properties by extending the dot notation as shown in

these examples:

$host.ui.rawui.CursorPosition.X

or

$host.ui.rawui.CursorPosition.Y

$host.ui.rawui.CursorPosition.Y

If you continue examining subproperties of properties, you’ll fi nd both Cursor-

Position and WindowPosition have X and Y subproperties. You’ll also fi nd that

BufferSize, WindowSize, MaxWindowSize, and MaxPhysicalWindowSize have Width

and Height properties.

After you know what the subproperties are, you can examine their values in the

same way you examine the values of standard properties. However, in this case the

subproperties cannot be set directly; you must create an instance of the $host object

using the New-Object cmdlet and then modify the properties of the object instance.

This means you must fi rst get a reference to the $host object as shown here:

$myHost = $host.ui.rawui

$myHost = $host.ui.rawui

Then you create a new object instance and set the desired subproperties on the

new instance as shown here:

$myHostWindowSize = New-Object

$myHostWindowSize = New-Object

System.Management.Automation.Host.Size(150,100)

System.Management.Automation.Host.Size(150,100)

196

CHAPTER 6 Mastering Aliases, Functions, and Objects

 In this example, you dynamically set the host window size. The fi rst value passed is the desired width. The second value passed is the desired height.

Working with COM and .NET Framework Objects

The Component Object Model (COM) and the .NET Framework are two object

models you’ll work with frequently in PowerShell. Although many applications

provide scripting and administrative objects through COM, .NET Framework and

even PowerShell cmdlets are becoming increasingly prevalent.

Creating and Using COM Objects

You can create instances of COM objects using the New-Object cmdlet. The basic

syntax is

New-Object [-Set

New-Object [-Set AssocArray

 AssocArray] [-Strict] [-ComObject]

] [-Strict] [-ComObject] String

 String

When creating the object, set the –ComObject parameter to the object’s

programmatic identifi er (ProgID). Most well-known COM objects can be used within

PowerShell, including those for Windows Script Host (WSH). The following example

creates a shortcut on your desktop:

$WshShell = New-Object -ComObject WScript.Shell

$WshShell = New-Object -ComObject WScript.Shell

$scut = $WshShell.CreateShortcut("$Home\Desktop\PowerShellHome.lnk")

$scut = $WshShell.CreateShortcut("$Home\Desktop\PowerShellHome.lnk")

$scut.TargetPath = $PSHome

$scut.TargetPath = $PSHome

$scut.Save()

$scut.Save()

This shortcut is called PowerShellHome, and it links to the $PSHome directory.

 TIP After you’ve attached to a COM, you can use tab expansion to view available

options. For example, if $a is your object, type $a. and then press Tab or Shift+Tab to

browse available methods and properties.

Beyond WSH, there are many other COM objects you can use. Table 6-4 lists

some of these by their ProgID.

 TABLE 6-4 Common COM Objects for Use with Windows PowerShell

 PROGID

DESCRIPTION

Access.Application

Accesses Microsoft Offi ce Access

CEnroll.Cenroll

Accesses certifi cate enrollment services

Excel.Application

Accesses Microsoft Offi ce Excel

Excel.Sheet

Accesses worksheets in Excel

HNetCfg.FwMgr

Accesses Windows Firewall

Mastering Aliases, Functions, and Objects CHAPTER 6

197

TABLE 6-4 Common COM Objects for Use with Windows PowerShell

PROGID

DESCRIPTION

InternetExplorer.Application

Accesses Internet Explorer

MAPI.Session

Accesses Messaging Application Programming

Interface (MAPI) sessions

Messenger.MessengerApp

Accesses Windows Messenger

Microsoft.Update.AutoUpdate

Accesses the autoupdate schedule for Microsoft

Update

Microsoft.Update.Installer

Allows you to install updates from Microsoft

Update

Microsoft.Update.Searches

Allows you to search for updates from Microsoft

Update

Microsoft.Update.Session

Accesses the update history for Microsoft Update

Microsoft.Update.SystemInfo

Accesses system information for Microsoft

Update

Outlook.Application

Accesses Microsoft Office Outlook

OutlookExpress.MessageList

Allows for automation of e-mail in Microsoft

Office Outlook Express

PowerPoint.Application

Accesses Microsoft Office PowerPoint

Publisher.Application

Accesses Microsoft Office Publisher

SAPI.SpVoice

Accesses the Microsoft Speech application

programming interface (API)

Scripting.FileSystemObject

Accesses the computer’s file system

SharePoint.OpenDocuments

Accesses Microsoft SharePoint Services

Shell.Application

Accesses the Windows Explorer shell

Shell.LocalMachine

Accesses information about the Windows shell

on the local computer

SQLDMO.SQLServer

Accesses the management features of Microsoft

SQL Server

WMPlayer.OCX

Accesses Windows Media Player

Word.Application

Accesses Microsoft Office Word

Word.Document

Accesses documents in Word

To show you how easy it is to work with COM objects, I’ll work through a series of

basic examples with Windows Explorer, Internet Explorer, and Excel. The following

198

 CHAPTER 6 Mastering Aliases, Functions, and Objects

example creates an instance of the Windows Explorer shell and then uses its

Windows() method to display the location name of all open instances of Windows

Explorer and Internet Explorer:

$shell = new-object -comobject shell.application

$shell = new-object -comobject shell.application

$shell.windows() | select-object locationname

$shell.windows() | select-object locationname

Data

Data

Computer

Computer

Network

Network

Robert Stanek's Bugville Critters

Robert Stanek's Bugville Critters

Robert Stanek – Ruin Mist: The Lost Ages

Robert Stanek – Ruin Mist: The Lost Ages

Windows Nation: Home of Technology Author William Stanek

Windows Nation: Home of Technology Author William Stanek

By piping the output to Select-Object LocationName, you display the value of

the LocationName property for each shell object. Windows Explorer windows are

listed by name or folder, such as Computer or Network. Internet Explorer windows

are listed by Web page title. With Internet Explorer 7 and later, you get a listing for

each page opened in a tabbed window as well. You get details about both Windows

Explorer and Internet Explorer because both applications use the Windows Explorer

shell.

If you want to know all the properties available for each shell object, pipe the

output to Select-Object without specifying properties to display, as shown in this

example and sample output:

$shell = new-object -comobject shell.application

$shell = new-object -comobject shell.application

$shell.windows() | select-object

$shell.windows() | select-object

Application : System.__ComObject

Application : System.__ComObject

Parent : System.__ComObject

Parent : System.__ComObject

Container :

Container :

Document : mshtml.HTMLDocumentClass

Document : mshtml.HTMLDocumentClass

TopLevelContainer : True

TopLevelContainer : True

Type : HTML Document

Type : HTML Document

Left : 959

Left : 959

Top : 1

Top : 1

Width : 961

Height : 1169

Height : 1169

LocationName : Windows Nation: Home of Tech Author William Stanek

LocationName : Windows Nation: Home of Tech Author William Stanek

LocationURL : http://www.williamstanek.com/

LocationURL : http://www.williamstanek.com/

Busy : False

Busy : False

Name : Windows Internet Explorer

Name : Windows Internet Explorer

HWND : 854818

HWND : 854818

FullName : C:\Program Files\Internet Explorer\iexplore.exe

FullName : C:\Program Files\Internet Explorer\iexplore.exe

Path : C:\Program Files\Internet Explorer\

Path : C:\Program Files\Internet Explorer\

Visible : True

Visible : True

Mastering Aliases, Functions, and Objects CHAPTER 6

199

StatusBar : True

StatusBar : True

StatusText : Done

StatusText : Done

ToolBar : 1

ToolBar : 1

MenuBar : True

MenuBar : True

FullScreen : False

FullScreen : False

ReadyState : 4

ReadyState : 4

Offline : False

Offline : False

Silent : False

Silent : False

RegisterAsBrowser : False

RegisterAsBrowser : False

RegisterAsDropTarget : True

RegisterAsDropTarget : True

TheaterMode : False

TheaterMode : False

AddressBar : True

AddressBar : True

Resizable : True

Resizable : True

 REAL WORLD Some COM objects have a .NET Framework wrapper that connects

them to the .NET Framework. Because the behavior of the wrapper might be different

from the behavior of the normal COM object, New-Object has a –Strict parameter

to warn you about wrappers. When you use this fl ag, PowerShell displays a warning

 message to tell you that you are not working with a standard COM object. The COM

object is still created, however.

The following example opens Internet Explorer to www.williamstanek.com:

$iexp = new-object –comobject "InternetExplorer.Application"

$iexp = new-object –comobject "InternetExplorer.Application"

$iexp.navigate("www.williamstanek.com")

$iexp.navigate("www.williamstanek.com")

$iexp.visible = $true

$iexp.visible = $true

Here, you create a new COM object for Internet Explorer. The new object

has the same properties as those for the shell window listed previously. You use

the Navigate() method to set the location to browse and the Visible property

to display the window. To see a list of all methods and properties you can work

with, enter the example and then type $iexp | get-member. You can call any

method listed as shown in the example. You can modify properties that you can

get and set.

The following example accesses the Microsoft Speech API and talks to you:

$v = new-object -comobject "SAPI.SPVoice"

$v = new-object -comobject "SAPI.SPVoice"

$v.speak("Well, hello there. How are you?")

$v.speak("Well, hello there. How are you?")

Here, you create a new COM object for the Speech API. You use the Speak()

method to say something. To see a list of all methods and properties you can work

with, enter the example and then enter $v | get-member. You can call any method

listed as shown in the example. You can modify any property that you can get

and set.

200

CHAPTER 6 Mastering Aliases, Functions, and Objects

 The following example works with Microsoft Excel:

$a = New-Object -comobject "Excel.Application"

$a = New-Object -comobject "Excel.Application"

$a.Visible = $True

$a.Visible = $True

$wb = $a.workbooks.add()

$wb = $a.workbooks.add()

$ws = $wb.worksheets.item(1)

$ws = $wb.worksheets.item(1)

$ws.cells.item(1,1) = "Computer Name"

$ws.cells.item(1,1) = "Computer Name"

$ws.cells.item(1,2) = "Location"

$ws.cells.item(1,2) = "Location"

$ws.cells.item(1,3) = "OS Type"

$ws.cells.item(1,3) = "OS Type"

$ws.cells.item(2,1) = "TechPC84"

$ws.cells.item(2,1) = "TechPC84"

$ws.cells.item(2,2) = "5th Floor"

$ws.cells.item(2,2) = "5th Floor"

$ws.cells.item(2,3) = "Windows Vista"

$ws.cells.item(2,3) = "Windows Vista"

$a.activeworkbook.saveas("c:\data\myws.xls")

$a.activeworkbook.saveas("c:\data\myws.xls")

Here, you create a new COM object for Excel and then you display the Excel win-

dow by setting the Visible property. When you instantiate the Excel object, you have

a number of methods and properties available for working with the Excel application

and a number of related subobjects that represent workbooks, worksheets, and indi-

vidual table cells. To view the default values for properties of the Excel object, enter

the example and then enter $a. To view the methods and properties available for

working with the top-level Excel application object, enter $a | get-member.

After you create the Excel object, you add a workbook to the application window

by using the Add() method of the Workbooks object. This creates a Workbook

object, which also has methods and properties as well as a related Worksheets

object array. To view the default values for properties of the Workbook object, enter

$wb. To view the methods and properties available for working with the Workbook

object, type $wb | get-member.

Next, you specify that you want to work with the fi rst worksheet in the workbook

you just created. You do this by using the Item() method of the Worksheets object

array. This creates a Worksheet object, which also has methods and properties

as well as a related Cells object array. To view the default values for properties of

the Worksheet object, enter $ws. To view the methods and properties available for

working with the Worksheet object, enter $ws | get-member.

Once you’ve created a worksheet, you can add data to the worksheet. You do

this by using the Item() method of the Cells object array. When you call the Item()

method, you specify the column and row position of the cell you want to write to

and then specify the value you want. To view the default values for properties of

the Cells object, enter $ws.cells. To view the methods and properties available for

working with the Cells object, enter $ws.cells | get-member.

Individual table cells are represented by Cell objects. To view the default values

for properties of the cell in column 1 row 1, enter $ws.cells.item(1,1). To view the

methods and properties available for working with the Cell object in column 1 row

1, enter $ws.cells.item(1,1) | get-member.

Mastering Aliases, Functions, and Objects CHAPTER 6

201

Working with .NET Framework Classes and Objects

The .NET Framework is so tightly integrated with PowerShell that it is diffi cult to

talk about PowerShell and not talk about .NET as well. We’ve used .NET classes and

.NET objects in this and other chapters.

One way to instantiate and use a .NET Framework object is to make a direct

invocation to a static class. To do this, you enclose the class name in square brack-

ets, insert two colon characters, and then add a method or property call. This is the

same technique we previously used to work with instances of [System.Datetime],

[System.Math], and other classes.

The following example creates an instance of the [System.Environment] class and

gets the current directory:

[system.environment]::CurrentDirectory

[system.environment]::CurrentDirectory

C:\data\scripts\myscripts

C:\data\scripts\myscripts

 TIP You can use tab expansion to view static members of a .NET Framework class.

Type the class name in brackets, type :: and then press Tab or Shift+Tab to browse

available methods and properties.

You also can create a reference to an instance of a .NET Framework object using

the New-Object cmdlet. The basic syntax is

New-Object [-Set

New-Obj

 AssocArray

ect [-Set AssocArray] [-TypePath Strings

 Strings] [[-ArgumentList]

] [[-ArgumentList]

 Objects

 Object] [-TypeName]

 s

 String

 String

The following example creates a reference object for the Application log through

the System.Diagnostic.Eventlog object:

$log = new-object -type system.diagnostics.eventlog -argumentlist

$log = new-object -type system.diagnostics.eventlog -argumentlist

application

application

Max(K) Retain OverflowAction Entries Name

Max(K) Retain OverflowAction Entries Name

------ ------ -------------- ------- ----

------ ------ -------------- ------- ----

20,480 0 OverwriteAsNeeded 45,061 application

20,480 0 OverwriteAsNeeded 45,061 application

 TIP After you’ve attached to a .NET Framework class instance, you can use tab

expansion to view instance members. For example, if you store the object in $log, you

type $log, type a dot (.), and then press Tab or Shift+Tab to browse available methods

and properties.

202

CHAPTER 6 Mastering Aliases, Functions, and Objects

Although we’ve looked at many .NET Framework classes in this chapter, there are many more available. Table 6-5 lists some of these by their class name.

TABLE 6-5 Common .NET Framework Objects for Use with Windows PowerShell

CLASS

DESCRIPTION

Microsoft.Win32.Registry

Provides Registry objects for working with

root keys

Microsoft.Win32.RegistryKey

Represents keys in the registry

System.AppDomain

Represents the environment where

applications execute

System.Array

Provides interaction with arrays

System.Console

Represents the standard input, output, and

error streams for the console

System.Convert

Provides static methods and a property for

converting data types

System.Datetime

Represents a datetime value

System.Diagnostics.Debug

Provides methods and properties for

debugging

System.Diagnostics.EventLog

Provides interaction with Windows event logs

System.Diagnostics.Process

Provides interaction with Windows processes

System.Drawing.Bitmap

Represents pixel data for images

System.Drawing.Image

Provides methods and properties for working

with images

System.Environment

Provides information about the working

environment and platform

System.Guid

Represents a globally unique identifier (GUID)

System.IO.Stream

Represents IO streams

System.Management.

Represents a PowerShell object to which you

Automation.PowerShell

can add notes, properties, and so on

System.Math

Provides static methods and properties for

performing mathematical functions

System.Net.Dns

Provides interaction with Domain Name

System (DNS)

System.Net.NetworkCredential

Provides credentials for network

authentication

Mastering Aliases, Functions, and Objects CHAPTER 6

203

TABLE 6-5 Common .NET Framework Objects for Use with Windows PowerShell CLASS

DESCRIPTION

System.Net.WebClient

Provides interaction with the Web client

System.Random

Represents a random number generator

System.Refl ection.Assembly

Represents .NET Framework assemblies so

that you can load and work with them

System.Security.Principal.

Represents security identifi ers (SIDs)

WellKnownSidType

System.Security.Principal.

Specifi es built-in roles

WindowsBuiltInRole

System.Security.Principal.

Represents a Windows user

WindowsIdentity

System.Security.Principal.

Allows checking of a user’s group

WindowsPrincipal

membership

System.Security.SecureString

Represents secure text that is encrypted for

privacy

System.String

Provides interaction with strings

System.Text.RegularExpressions.

Represents immutable regular expressions

Regex

System.Threading.Thread

Provides interaction with threads

System.Type

Represents type declarations

System.Uri

Represents uniform resource identifi ers (URIs)

System.Windows.Forms.

Represents a layout panel

FlowLayoutPanel

System.Windows.Forms.Form

Represents a window or dialog box in an

application

Some .NET Framework objects require that related .NET Framework assemblies

be loaded before you can use them. Assemblies are simply sets of fi les, which can

include dynamic-link libraries (DLLs), EXE fi les, and other resources that the .NET

Framework object needs to work properly. You’ll know that a .NET Framework

object requires an assembly because PowerShell will throw an error if the assembly

is not loaded, such as

Unable to find type [system.drawing.image]: make sure that the assembly

Unable to find type [system.drawing.image]: make sure that the assembly

containing this type is loaded.

containing this type is loaded.

At line:1 char:23

At line:1 char:23

204

CHAPTER 6 Mastering Aliases, Functions, and Objects

+ [system.drawing.image] <<<< |get-member -static

+ [system.drawing.image] <<<< |get-member -static

+ CategoryInfo : InvalidOperation: (system.drawing.

+ CategoryInfo : InvalidOperation: (system.drawing.

image:String)

image:String)

[], RuntimeException

[], RuntimeException

+ FullyQualifiedErrorId : TypeNotFound

+ FullyQualifiedErrorId : TypeNotFound

The solution is to use the [Refl ection.Assembly] class to load the required assem-

blies. One way to do this is with the LoadWithPartialName() method of the Refl ec-

tion.Assembly class. The syntax is

[Reflection.Assembly]::LoadWithPartialName("

[Reflection.Assembly]::LoadWithPartialName(ClassName

" ClassName")

where ClassName is the name of the .NET Framework class that completes the

requirement. For example, you can use the System.Drawing.Bitmap class to convert a

GIF image to JPEG. Because this class requires the assemblies of the System.Windows

.Forms class, you must load the related assemblies before you can convert an image.

When you load a refl ection assembly, PowerShell confi rms this and displays the

related output automatically as shown in this example:

[Reflection.Assembly]::LoadWithPartialName("System.Windows.Forms")

[Reflection.Assembly]::LoadWithPartialName("System.Windows.Forms")

GAC Version Location

GAC Version Location

--- ------- --------

--- ------- --------

True v2.0.50727 C:\Windows\assembly\GAC_MSIL\System.Windows.Forms

True v2.0.50727 C:\Windows\assembly\GAC_MSIL\System.Windows.Forms

\2.0.0.0__b77a5c561934e089\System.Windows.For...

\2.0.0.0__b77a5c561934e089\System.Windows.For...

This output is important. The True value for GAC tells you the assembly loaded

successfully. The Version value tells you the specifi c version of .NET Framework the

assembly uses. The location tells you the location in the operating system.

When you call a refl ection assembly, I recommend formatting the output as a list

as shown in this example:

[Reflection.Assembly]::LoadWithPartialName("System.Windows.Forms") |

[Reflection.Assembly]::LoadWithPartialName("System.Windows.Forms") |

format-

f

list

ormat-list

CodeBase : file:///C:/Windows/assembly/GAC_MSIL/System.Windows.Forms/

CodeBase : file:///C:/Windows/assembly/GAC_MSIL/System.Windows.Forms/

2.0.0.0__b77a5c561934e089/System.Windows.Forms.dll

2.0.0.0__b77a5c561934e089/System.Windows.Forms.dll

EntryPoint :

EntryPoint :

EscapedCodeBase : file:///C:/Windows/assembly/GAC_MSIL/System.Windows.

EscapedCodeBase : file:///C:/Windows/assembly/GAC_MSIL/System.Windows.

Forms/2.0.0.0__b77a5c561934e089/System.Windows.Forms.dll

Forms/2.0.0.0__b77a5c561934e089/System.Windows.Forms.dll

FullName : System.Windows.Forms, Version=2.0.0.0, Culture=neutral,

FullName : System.Windows.Forms, Version=2.0.0.0, Culture=neutral,

PublicKeyToken=b77a5c561934e089

PublicKeyToken=b77a5c561934e089

GlobalAssemblyCache : True

GlobalAssemblyCache : True

Mastering Aliases, Functions, and Objects CHAPTER 6

205

HostContext : 0

HostContext : 0

ImageFileMachine :

ImageFileMachine :

ImageRuntimeVersion : v2.0.50727

ImageRuntimeVersion : v2.0.50727

Location : C:\Windows\assembly\GAC_MSIL\System.Windows.

Location : C:\Windows\assembly\GAC_MSIL\System.Windows.

Forms\2.0.0.0__b77a5c561934e089\System.Windows.Forms.dll

Forms\2.0.0.0__b77a5c561934e089\System.Windows.Forms.dll

ManifestModule : System.Windows.Forms.dll

ManifestModule : System.Windows.Forms.dll

MetadataToken :

MetadataToken :

PortableExecutableKind :

PortableExecutableKind :

ReflectionOnly : False

ReflectionOnly : False

This listing gives you important additional details about the assembly you

just loaded, including the simple text name, version number, culture identifi er,

and public key. All of this information is listed as the FullName entry. If you copy

the FullName entry exactly, beginning with the simple text name, you have the

full load string you need to use the Load() method. Because the Load() method

is the preferred way to load assemblies and the LoadWithPartialName() method

is deprecated, this will help you prepare for when you can no longer use the

LoadWith PartialName() method.

To continue the example, after you’ve loaded the [System.Windows.Forms] class,

you can convert a GIF image in the current directory to JPEG using the following

statements:

$image = New-Object System.Drawing.Bitmap myimage.gif

$image = New-Object System.Drawing.Bitmap myimage.gif

$image.Save("mynewimage.jpg","JPEG")

$image.Save("mynewimage.jpg","JPEG")

Here, you get an image called MyImage.gif in the current directory and then

convert the image to JPEG format. You can substitute any GIF image and add

an image path as necessary. While you are working with the image, you can view its

width, height, and other properties by entering $image. You can view methods for

working with the image by entering $image | get-member.

Working with WMI Objects and Queries

Computers running Windows XP and later versions of Windows support Windows

Management Instrumentation (WMI). WMI is a management framework that you

can use to query a computer to determine its attributes. For example, you can

create a WMI query to determine the operating system running on a computer or

the amount of available memory. WMI queries by themselves are helpful, especially

when used in scripts.

You can use WMI queries to examine settings based on just about any measur-

able characteristic of a computer, including

N Amount of memory installed

N Available hard disk space

206

CHAPTER 6 Mastering Aliases, Functions, and Objects

N Processor type or speed

N Network adapter type or speed

N Operating system version, service pack level, or hotfi x

N System services that are running

You create WMI queries using the WMI Query Language. The basic syntax is

Select * from WMIObjectClass where Condition

In this syntax, WMIObjectClass is the WMI object class you want to work with,

and Condition is the condition you want to evaluate. The Select statement returns

objects of the specifi ed class. A condition has three parts:

N The name of the object property you are examining

N An operator, such as = for equals, > for greater than, or < for less than

N The value to evaluate

Operators can also be defi ned by using –Is or –Like. The –Is operator is used to

exactly match criteria. The –Like condition is used to match a keyword or text string

within a value. In the following example, you create a query to look for computers

running Windows Vista:

Select * from Win32_OperatingSystem where Caption like "%Vista%"

The Win32_OperatingSystem class tracks the overall operating system confi guration.

The Win32_OperatingSystem class is one of two WMI object classes that you’ll use

frequently. The other is Win32_ComputerSystem. The Win32_ComputerSystem class

tracks the overall computer confi guration.

In Windows PowerShell, you can use the Get-WMIObject cmdlet to get a WMI

object that you want to work with. The basic syntax is

Get-WmiObject -Class

Get-WmiObject -Class WMIClass

 WMIClass -Namespace

-Namespace NameSpace

 NameSpace -ComputerName

-ComputerName

 ComputerName

 ComputerName

where WMIClass is the WMI class you want to work with, NameSpace sets the

namespace to use within WMI, and ComputerName sets the name of the computer

to work with.

When working with WMI, you should work with the root namespace, as specifi ed

by setting the –Namespace parameter to root/cimv2. By using the –Computer

parameter, you can specify the computer you want to work with. If you want to

work with the local computer, use a dot (.) instead of a computer name. By redirect-

ing the object to Format-List *, you can list all the properties of the object and their

values.

Following this, you can examine the Win32_OperatingSystem object and

its properties to obtain summary information regarding the operating system

Mastering Aliases, Functions, and Objects CHAPTER 6

207

 confi guration of a computer by typing the following command at the Windows

PowerShell prompt:

Get-WmiObject -Class Win32_OperatingSystem -Namespace root/cimv2

Get-WmiObject -Class Win32_OperatingSystem -Namespace root/cimv2

-ComputerName . | Format-List *

-ComputerName . | Format-List *

To save the output in a fi le, simply redirect the output to a fi le. In the following

example, you redirect the output to a fi le in the working directory named

os_save.txt:

Get-WmiObject -Class Win32_OperatingSystem -Namespace root/cimv2

Get-WmiObject -Class Win32_OperatingSystem -Namespace root/cimv2

-ComputerName . | Format-List * > os_save.txt

-ComputerName . | Format-List * > os_save.txt

The detailed operating system information tells you a great deal about the

operating system running on the computer. The same is true for computer

confi guration details, which can be obtained by typing the following command at

a Windows PowerShell prompt:

Get-WmiObject -Class Win32_ComputerSystem -Namespace root/cimv2

Get-WmiObject -Class Win32_ComputerSystem -Namespace root/cimv2

-ComputerName . | Format-List *

-ComputerName . | Format-List *

In addition to targeting operating system or computer confi guration properties,

you might want to target computers based on the amount of disk space and fi le

system type. In the following example, you target computers that have more than

100 megabytes (MB) of available space on the C, D, or G partition:

get-wmiobject -query 'Select * from Win32_LogicalDisk where (Name = "C:"

get-wmiobject -query 'Select * from Win32_LogicalDisk where (Name = "C:"

OR Name = "D:" OR Name = "G:") AND DriveType = 3 AND FreeSpace

OR Name = "D:" OR Name = "G:") AND DriveType = 3 AND FreeSpace

> 104857600 AND FileSystem = "NTFS"'

> 104857600 AND FileSystem = "NTFS"'

In the preceding example, DriveType = 3 represents a local disk, and FreeSpace

units are in bytes (100 MB = 104,857,600 bytes). The partitions must be located on

one or more local fi xed disks, and they must be running the NTFS fi le system. Note

that while PowerShell understands storage units in MB, KB, or whatever, the WMI

query language does not.

In Windows PowerShell, you can examine all the properties of the Win32_Logical-

Disk object by typing the following command at the Windows PowerShell prompt:

Get-WmiObject -Class Win32_LogicalDisk -Namespace root/cimv2

Get-WmiObject -Class Win32_LogicalDisk -Namespace root/cimv2

-ComputerName . | Format-List *

-ComputerName . | Format-List *

As you’ll see, there are many properties you can work with, including

Compressed, which indicates whether a disk is compressed. Table 6-6 provides

an overview of these and other important WMI object classes.

208

CHAPTER 6 Mastering Aliases, Functions, and Objects

TABLE 6-6 WMI Classes Commonly Used with Windows PowerShell

WMI CLASS

DESCRIPTIONS

Win32_BaseBoard

Represents the motherboard

Win32_BIOS

Represents the attributes of the computer’s

firmware

Win32_BootConfiguration

Represents the computer’s boot

configuration

Win32_CacheMemory

Represents cache memory on the computer

Win32_CDROMDrive

Represents each CD-ROM drive configured

on the computer

Win32_ComputerSystem

Represents a computer system in a Windows

environment

Win32_Desktop

Represents the common characteristics of a

user’s desktop

Win32_DesktopMonitor

Represents the type of monitor or display

device connected to the computer

Win32_DiskDrive

Represents each physical disk drive on a

computer

Win32_DiskPartition

Represents each partitioned area of a

physical disk

Win32_DiskQuota

Tracks disk space usage for NTFS volumes

Win32_Environment

Represents a system environment setting on

a computer

Win32_LogicalDisk

Represents each logical disk device used for

data storage

Win32_LogonSession

Provides information about the current

logon session

Win32_NetworkAdapter

Represents each network adapter on the

computer

Win32_NetworkAdapter-

Represents the configuration of each

Configuration

network adapter on the computer

Win32_NetworkConnection

Represents an active network connection

Win32_OperatingSystem

Represents the working environment for the

operating system

Mastering Aliases, Functions, and Objects CHAPTER 6

209

TABLE 6-6 WMI Classes Commonly Used with Windows PowerShell

WMI CLASS

DESCRIPTIONS

Win32_OSRecoveryConfiguration

Represents recovery and dump files

Win32_PageFileUsage

Represents the page file used for handling

virtual memory swapping

Win32_PhysicalMemory

Represents each DIMM of physical memory

configured on the computer

Win32_PhysicalMemoryArray

Represents the total memory configuration

of the computer by capacity and number of

memory devices

Win32_Printer

Represents each configured print device on

the computer

Win32_PrinterConfiguration

Represents configuration details for print

devices

Win32_PrintJob

Represents active print jobs generated by

applications

Win32_Processor

Represents each processor or processor core

on the computer

Win32_QuickFixEngineeering

Represents updates that have been applied

to the computer

Win32_Registry

Represents the Windows registry

Win32_SCSIController

Represents each SCSI controller on the

computer

Win32_Service

Represents each service configured on the

computer

Win32_Share

Represents each file share configured on the

computer

Win32_SoundDevice

Represents the computer’s sound device

Using the techniques I discussed previously, you can examine the properties

of any or all of these objects in Windows PowerShell. If you do, you will find that

Win32_Physical MemoryArray has a MaxCapacity property that tracks the total

physical memory in kilobytes. Knowing this, you can easily create a WMI query to

210

 CHAPTER 6 Mastering Aliases, Functions, and Objects

look for computers with 256 MB of RAM or more. The WMI query to handle the task is the following:

if (get-wmiobject -query "Select * from Win32_PhysicalMemoryArray where

if (get-wmiobject -query "Select * from Win32_PhysicalMemoryArray where

MaxCapacity > 262000") {write-host $env:computername}

MaxCapacity > 262000") {write-host $env:computername}

CORPC87

CORPC87

I used the value 262000 because there are 262,144 kilobytes in 256 MB, and we

want the computer to have at least this capacity. Now if you add this statement to a

job running on remote computers as discussed in Chapter 4, “Using Sessions, Jobs,

and Remoting,” you can search across the enterprise to fi nd computers that meet

your specifi cations.

To display a complete list of WMI objects, type the following command at the

Windows PowerShell prompt:

Get-WmiObject –list -Namespace root/cimv2 -ComputerName . | Format-List name

Get-WmiObject –list -Namespace root/cimv2 -ComputerName . | Format-List name

Because the list of available objects is so long, you’ll defi nitely want to redirect

the output to a fi le. In the following example, you redirect the output to a fi le in the

working directory called FullWMIObjectList.txt:

Get-WmiObject –list -Namespace root/cimv2 -ComputerName . |

Get-WmiObject –list -Namespace root/cimv2 -ComputerName . |

Format-List name > FullWMIObjectList.txt

Format-List name > FullWMIObjectList.txt

Rather than viewing all WMI classes, you might want to see only the Win32 WMI

classes. To view only the Win32 WMI classes, use the following command:

Get-WmiObject -list | where {$_.name -like "*Win32_*"}

Get-WmiObject -list | where {$_.name -like "*Win32_*"}

Mastering Aliases, Functions, and Objects CHAPTER 6

211

C H A P T E R 7

Managing Computers with

Commands and Scripts

N

Getting More from Your Scripts and Profiles 213

N

Creating Transcripts 216

N

Creating Transactions 217

N

Common Elements in Scripts 222

PowerShell scripts are text files containing the commands you want to execute.

These are the same commands you normally type at the PowerShell prompt.

However, rather than type the commands each time you want to use them, you

create a script to store the commands for easy execution.

Although scripts are useful, you’ll more often work with PowerShell directly at

the PowerShell prompt. You can create some extensive one-liners that’ll let you

do just about anything, and if one line won’t suffice, you can type multiple lines of

commands just as you would in a script. Additionally, if you want to copy examples

from a document, the PowerShell console allows you to copy and paste a series

of commands in the same way as you copy and paste a single command. The only

difference is that with a series of commands, PowerShell executes each command

separately.

Getting More from Your Scripts and Profiles

Because scripts contain standard text characters, you can create and edit scripts

using any standard text editor as well as the PowerShell Integrated Scripting

Environment (ISE). When you type commands, be sure to place each command or

group of commands that should be executed together on a new line or to separate

commands with a semicolon. Both techniques ensure proper execution of the

commands. When you have finished creating a PowerShell script, save the script

file using the .ps1 extension. In most cases, you’ll be able to save scripts only to

213

restricted areas of the fi le system if you start the PowerShell ISE or your text editor as an administrator.

When you save a script, you can execute it as if it were a cmdlet or external

utility: simply type the path to the script, type the name of the script, and press

Enter. When you do this, PowerShell reads the script fi le and executes its commands

one by one. It stops executing the script when it reaches the end of the fi le. Any

output from the script is written to the PowerShell console, unless you explicitly

specify otherwise.

Don’t forget that your PowerShell profi les are some of the most powerful scripts

you can create. Your profi les can contain aliases, functions, and variables that you

can use at any time. When you are logged on locally, the profi les in $pshome and

$home affect you. When you are using remoting, the profi les in $pshome and

$home on the remote computer affect you.

Listing 7-1 shows an example profi le. This profi le defi nes several functions and

several aliases. The Prompt function modifi es the prompt so that it always shows the

current path and the computer name. The GetWinRm function gets the status of the

Windows Remote Management service. The GetS function lists confi gured services

by their status, such as Running or Stopped. The Inventory function lists the proper-

ties of the Win32_OperatingSystem. Three aliases provide keystroke shortcuts to

functions: gr for GetWinRm, gs for GetS, and inv for Inventory.

LISTING 7-1 An Example Profile

function prompt {"PS $(get-location) [$env:computername]> "}

function prompt {"PS $(get-location) [$env:computername]> "}

new-alias gr getwinrm

new-alias gr getwinrm

new-alias gs gets

new-alias gs gets

new-alias inv inventory

new-alias inv inventory

function getwinrm {

function getwinrm {

get-service -name winrm | format-list

get-service -name winrm | format-list

}

function gets {param ($status)

function gets {param ($status)

get-service | where { $_.status -eq $status}

get-service | where { $_.status -eq $status}

}

function inventory {param ($name = ".")

function inventory {param ($name = ".")

get-wmiobject -class win32_operatingsystem -namespace root/cimv2 `

get-wmiobject -class win32_operatingsystem -namespace root/cimv2 `

-computername $name | format-list *

-computername $name | format-list *

}

 NOTE The third line from the bottom includes a back apostrophe (`). As discussed

in previous chapters, this character tells PowerShell the command is continued on the

next line. If you have trouble typing a line with a continuation character, simply type

the divided lines as a single line without the back apostrophe (`).

214

CHAPTER 7 Managing Computers with Commands and Scripts

 You are able to use variables, aliases, and functions in profi les because they are loaded into the global working environment. As you get used to using the

additional elements you’ve created, you’ll increasingly want them to be available

whenever you are logged on and working with Windows. In some cases, you’ll be

able to copy your profi les to the computers you work with, such as with servers you

manage, and you’ll then be able to take advantage of the features you’ve built into

your profi le. However, copying your profi le to every possible computer you’ll work

with in the enterprise isn’t practical. In these cases, you still can take advantage of

your profi le if you prepare ahead of time.

To prepare, you need to modify a copy of your profi le so that its elements are

declared as global explicitly. Listing 7-2 shows how you can accomplish this for the

sample profi le created previously. Next, you need to save the modifi ed profi le in a

location that will be accessible on other computers you work with, such as a network

share. Finally, on the computer you are working with, you can load the script into

the global environment by running it. Be sure to specify the full path to the script,

such as \\FileServer84\DataShare\wrstanek\profi le.ps1.

LISTING 7-2 Example of a Modified Profile

function global:prompt {"PS $(get-location) [$env:computername]> "}

function global:prompt {"PS $(get-location) [$env:computername]> "}

new-alias gr getwinrm -scope global

new-alias gr getwinrm -scope global

new-alias gs gets -scope global

new-alias gs gets -scope global

new-alias inv inventory -scope global

new-alias inv inventory -scope global

function global:getwinrm {

function global:getwinrm {

get-service -name winrm | format-list

get-service -name winrm | format-list

}

function global:gets {param ($status)

function global:gets {param ($status)

get-service | where { $_.status -eq $status}

get-service | where { $_.status -eq $status}

}

function global:inventory {param ($name = ".")

function global:inventory {param ($name = ".")

get-wmiobject -class win32_operatingsystem -namespace root/cimv2 -

get-wmiobject -class win32_operatingsystem -namespace root/cimv2 -

computername $name | format-list *

computername $name | format-list *

}

Keep in mind that execution policy must be set to allow you to run scripts from

remote resources. If execution policy requires remote scripts to be signed, you need

to add a signature to the script before you can run it. Additionally, before Power-

Shell runs the script, you will likely see a security warning similar to the following:

Security Warning

Security Warning

Run only scripts that you trust. While scripts from the Internet can be

Run only scripts that you trust. While scripts from the Internet can be

useful, this script can potentially harm your computer. Do you want to

useful, this script can potentially harm your computer. Do you want to

run \\192.168.1.252\wrs\profileold.ps1?

run \\192.168.1.252\wrs\profileold.ps1?

[D] Do not run [R] Run once [S] Suspend [?] Help (default is "D"):

[D] Do not run [R] Run once [S] Suspend [?] Help (default is "D"):

Managing Computers with Commands and Scripts CHAPTER 7

215

To proceed and run the script, you need to type R and press Enter. For more information about execution policy and scripting signing, see the “Using Scripts”

section in Chapter 1, “Introducing Windows PowerShell.”

Creating Transcripts

The PowerShell console includes a transcript feature to help you record all your

activities at the prompt. As of this writing, you cannot use this feature in the

PowerShell application. Commands you use with transcripts include the following:

N Start-Transcript Initializes a transcript fi le and then creates a record of all

subsequent actions in the PowerShell session

Start-Transcript [[-path]

Start-Transcript [[-path] FilePath

 FilePath] [-force] [-noClobber] [-append]

] [-force] [-noClobber] [-append]

N Stop-Transcript Stops recording actions in the session and fi nalizes the

transcript

Stop-Transcript

Stop-Transcript

You tell PowerShell to start recording your activities using the Start-Transcript

cmdlet. This cmdlet creates a text transcript that includes all commands that you

type at the prompt and all the output from these commands that appears on the

console. The basic syntax for Start-Transcript is

Start-Transcript [[-path] FilePath]

where FilePath specifi es an alternate save location for the transcript fi le. Although you cannot use wildcards when you set the path, you can use variables. The directories in the path must exist or the command fails.

 NOTE If you do not specify a path, Start-Transcript uses the path in the value of the $Transcript global variable. If you have not created this variable, Start-Transcript stores the transcript in the $Home\[My]Documents directory as a PowerShell_transcript.

 TimeStamp.txt fi le, where TimeStamp is a date-time stamp.

Use the –Force parameter to override restrictions that prevent the command

from succeeding. For example, –Force will override the read-only attribute on an

existing fi le. However, –Force will not modify security or change fi le permissions.

By default, if a transcript fi le exists in the specifi ed path, Start-Transcript over-

writes the fi le without warning. Use the –noClobber parameter to stop PowerShell

from overwriting an existing fi le. Alternatively, use the –Append parameter to add

the new transcript to the end of an existing fi le.

When you want to stop recording the transcript, you can either exit the console

or type Stop-Transcript. The Stop-Transcript cmdlet requires no additional

parameters.

216

CHAPTER 7 Managing Computers with Commands and Scripts

 REAL WORLD When you start a transcript, PowerShell initializes the transcript fi le by inserting a header similar to the following:

Windows PowerShell Transcript Start

Windows PowerShell Transcript Start

Start time: 20100211134826

Start time: 20100211134826

Username : CPANDL\Bubba

Username : CPANDL\Bubba

Machine : TECHPC85 (Microsoft Windows NT 6.0.6001

Machine : TECHPC85 (Microsoft Windows NT 6.0.6001

Service Pack 1)

Service Pack 1)

Transcript started, output file is C:\Users\Bubba\Documents\

Transcript started, output file is C:\Users\Bubba\Documents\

PowerShell_transcript.20100211134826.txt

PowerShell_transcript.20100211134826.txt

 This header specifi es the time the transcript was started, the user who started the

transcript, the computer for which the transcript was created, and the full path to

the transcript fi le. Note that the user name is provided in DOMAIN\UserName or

MachineName\UserName format and that the machine information includes the Win-

dows version and service pack. This information is helpful when you are troubleshoot-

ing, because it enables you to know if the script is running in the wrong user context

or against a computer running an incompatible version of Windows. When you stop a

transcript, PowerShell inserts a footer similar to the following:

Windows PowerShell Transcript End

Windows PowerShell Transcript End

End time: 20090211134958

End time: 20090211134958

 This footer specifi es the time the transcript was stopped. The difference between the

start time and the stop time is the elapsed run time for a script or the total trouble-

shooting/work time when you are working at the prompt.

Creating Transactions

A transaction is a block of commands that are managed as a unit where either all

the commands are successful and completed, or all the commands are undone and

rolled back because one or more commands failed. You can use transactions when

you want to be sure that every command in a block of commands is successful and

to avoid leaving the computer in a damaged or unpredictable state.

Understanding Transactions

Whether you are working with relational databases, distributed computing environ-

ments, or PowerShell, transactions are some of the most powerful commands you

can work with. Why? Because transactions ensure that changes are applied only

when appropriate, and when you encounter any problems, the changes are undone

and the original working environment is restored.

Managing Computers with Commands and Scripts CHAPTER 7

217

To restore the working environment, transacted commands must keep track

of changes that were made as well as the original content and values. Because of

this, commands must be designed specifi cally to support transactions, and not all

commands can or do support transactions. In PowerShell, support for transactions

must be implemented at two levels:

N Provider Providers that provide cmdlets must be designed to support

transactions.

N Cmdlet Individual cmdlets, implemented on compliant providers, must be

designed to support transactions.

In the core PowerShell environment, with Windows Vista or later, the only core

component that supports transactions is the Registry provider. On this provider, the

Item-related cmdlets support transactions, including New-Item, Set-Item, Clear-Item,

Copy-Item, Move-Item, and Remove-Item. You can also use the System.Management

.Automation.TransactedString class to include expressions in transactions on any

version of Windows that supports Windows PowerShell. Other providers can be

updated to support transactions, and you can look for compliant providers by

typing the following command:

get-psprovider | where {$_.Capabilities -like "*transactions*"}

At their most basic, transactions work like this:

1. You start a transaction.

2. You perform transacted commands.

3. You commit or undo transacted commands.

Transactions also can have subscribers. A subscriber is a sequence of transacted

commands that is handled as a subunit within an existing transaction. For example,

if you are using PowerShell to work with a database, you might want to start a

transaction prior to changing data in the database. Then you might want to create

subtransactions for each data set you are manipulating. Because the success or

failure of each subtransaction determines the success or failure of the entire

transaction, you must commit each subtransaction separately before you commit

the primary transaction.

Cmdlets you can use with transactions include the following:

N Get-Transaction Gets an object that represents the current active transac-

tion in the session or the last transaction if there is no active transaction. This

allows you to view the rollback preference, the subscriber count, and the

status of the transaction.

Get-Transaction

Get-Transaction

N Complete-Transaction

Commits an active transaction, which

fi nalizes the transaction and permanently applies any related changes.

If the transaction includes multiple subscribers, you must type one

218

CHAPTER 7 Managing Computers with Commands and Scripts

 Complete-Transaction command for every dependent subscriber to com-

mit the transaction fully.

Complete-Transaction

Complete-Transaction

N Start-Transaction Starts a new independent transaction or joins an exist-

ing transaction as a dependent subscriber. The default rollback preference

is Error. Although there is no default time-out for transactions started at

the command line, the default timeout for transactions started in a script is

30 minutes.

Start-Transaction [-Independent] [-RollbackPreference {Error |

Start-Transaction [-Independent] [-RollbackPreference {Error |

TerminatingError | Never}] [-Timeout

TerminatingError | Never}] [-Timeout Minutes

 Minutes]

N Undo-Transaction Rolls back the active transaction, which undoes any

related changes and restores the original working environment. If the trans-

action includes multiple subscribers, the Undo-Transaction command rolls

back the entire transaction for all subscribers.

Undo-Transaction

Undo-Transaction

N Use-Transaction Adds a script block to the active transaction, enabling

transacted scripting of compliant .NET Framework objects, such as instances

of the System.Management.Automation.TransactedString class. You cannot

use noncompliant objects in a transacted script block. To enter the active

transaction, you must use the –UseTransaction parameter. Otherwise, the

command is ineffective.

Use-Transaction [-UseTransaction] [-TransactedScript]

Use-Transaction [-UseTransaction] [-TransactedScript] ScriptBlock

 ScriptBlock

 REAL WORLD Cmdlets that support transactions have a –UseTransaction parameter.

As changes are made to PowerShell, you can fi nd cmdlets that support transactions

by typing the following command: get-help * -parameter UseTransaction. If a cmdlet

has this parameter, the cmdlet supports transactions. Note that default cmdlets,

such as the Item cmdlets with the Registry provider, might not be listed in the help

 documents as having the –UseTransaction parameter.

 When you use transactions to modify a computer’s confi guration, keep in mind the

data that is affected by the transaction is not changed until you commit the transaction.

However, other commands that are not part of the transaction could make the same

changes, and this could affect the working environment. Although most transactional

systems, such as relational databases, have a feature that locks data while you are

working on it, PowerShell does not have a lock feature.

In each PowerShell session, only one independent transaction can be active at a

time. If you start a new, independent transaction while a transaction is in progress,

Managing Computers with Commands and Scripts CHAPTER 7

219

the new transaction becomes the active transaction, and you must complete the

new transaction before making any changes to the original transaction. You

complete transactions by committing or rolling back changes.

With a successful transaction, all the changes made by the commands are com-

mitted and applied to the working environment. With an unsuccessful transaction,

all the changes made by the commands are undone, and the working environment

is restored to its original state. By default, transactions are rolled back automatically

if any command in the transaction generates an error.

Using Transactions

To start a new independent transaction or join an existing transaction as a depen-

dent subscriber, you type start-transaction at the PowerShell prompt or in a script.

By default, if you use Start-Transaction while a transaction is in progress, the existing

transaction object is reused, and the subscriber count is incremented by one. You

can think of this as joining the original transaction. To complete a transaction with

multiple subscribers, you must type a Complete-Transaction command for each

subscriber.

 NOTE PowerShell supports subscribers to transactions to accommodate environ-

ments when a script contains a transaction that calls another script that contains its

own transaction. Because the transactions are related, they should be rolled back or

committed as a unit.

Start-Transaction supports three parameters: –Independent, –RollbackPreference,

and –Timeout. The –Independent parameter applies only when a transaction is

already in progress in the session. If you use the –Independent parameter, a new

transaction is created that can be completed or undone without affecting the

original transaction. However, because only one transaction can be active at a time,

you must complete or roll back the new transaction before resuming work with the

original transaction.

In the following example and sample output, you start a transaction with

automatic rollback set to Never and a timeout value of 30 minutes:

start-transaction –rollbackpreference "never" –timeout 30

start-transaction –rollbackpreference "never" –timeout 30

Suggestion [1,Transactions]: Once a transaction is started, only commands

Suggestion [1,Transactions]: Once a transaction is started, only commands

that get called with the -UseTransaction flag become part of that

that get called with the -UseTransaction flag become part of that

transaction.

transaction.

By adding the –RollbackPreference parameter, you can specify whether a

transaction is automatically rolled back. Valid values are

N Error Transactions are rolled back automatically if any command in the

transaction generates a terminating or nonterminating error. This is the

default.

220

CHAPTER 7 Managing Computers with Commands and Scripts

N TerminatingError Transactions are rolled back automatically if any command in the transaction generates a terminating error.

N Never Transactions are never rolled back automatically.

You can use the –Timeout parameter to specify the maximum time, in minutes,

that a transaction can be active. When the timeout expires, the transaction is

automatically rolled back. By default, there is no timeout for transactions started at

the command line. When transactions are started by a script, the default timeout is

30 minutes.

After you’ve started a transaction, you can perform transacted commands in two

ways. You can

N Add script blocks to the active transaction with Use-Transaction.

N Add an individual command to the active transaction using the command’s

–UseTransaction parameter.

PowerShell executes the script blocks and commands as you add them to the

transaction, taking appropriate action if errors are encountered or if the timeout

value is reached. You can obtain information about the transaction using Get-

Transaction as shown in this example and sample output:

get-transaction

get-transaction

RollbackPreference SubscriberCount Status

RollbackPreference SubscriberCount Status

------------------ --------------- ------

Never 3 Active

Never 3 Active

Here, Get-Transaction shows you the rollback preference is Never, the subscriber

count is 3, and the status of the transaction is Active.

If PowerShell doesn’t automatically roll back the transaction, because of errors

or a timeout expiration, you can manually commit or roll back the transaction. To

commit the transaction, you type complete-transaction once for each subscriber.

To undo a transaction completely for all subscribers, you type undo-transaction.

Consider the following example:

start-transaction

start-transaction

cd hkcu:\Software

cd hkcu:\Software

new-item MyKey -UseTransaction

new-item MyKey -UseTransaction

new-itemproperty -path MyKey -Name Current -value "Windows PowerShell" `

new-itemproperty -path MyKey -Name Current -value "Windows PowerShell" `

-UseTransaction

-UseTransaction

complete-transaction

complete-transaction

Here, you start a transaction so that you can work safely with the registry. You

access the HKCU\Software hive and create a new key called MyKey. Then you

Managing Computers with Commands and Scripts CHAPTER 7

221

add a value to this key. As long as these operations did not generate an error, the transaction continues to be active, and you then apply the changes by completing

the transaction.

Common Elements in Scripts

Now that we’ve discussed how to work with scripts, let’s look at common elements

you’ll use in scripts, including

N Comments

N Initializing

statements

N Conditional

statements

N Control

loops

Using Comments and Initializing Statements

Most scripts begin with comments that specify what a script is for and how it is used.

PowerShell supports two types of comments:

N Single-line comments that begin with #. PowerShell interprets everything

from the begin-comment mark to the end of the line as a comment. Here is

an example:

$myVar = "$env:computername" #Get the computer name

$myVar = "$env:computername" #Get the computer name

 NOTE Because values in strings are interpreted differently and # is not interpreted as a special character in a string, you can use # in single-quoted and double-quoted strings, and # will not be handled as the beginning of a comment.

N Multiple-line comments that begin with the <# delimiter and end with

the #> delimiter. If you have a begin-comment delimiter, you must have a

matching end-comment delimiter. PowerShell interprets everything between

the begin and end comment tags as a comment. Here is an example:

<# --------------------------

<# --------------------------

ScriptName: EvaluateComp.ps1

ScriptName: EvaluateComp.ps1

Description: This script checks the working environment

Description: This script checks the working environment

of a computer to determine issues with drive space, network

of a computer to determine issues with drive space, network

connections, etc.

connections, etc.

-------------------------- #>

-------------------------- #>

Every script you create should have comments that include the following details:

N When the script was created and last modifi ed

N Who created the script

222

CHAPTER 7 Managing Computers with Commands and Scripts

N What the script is used for

N How to contact the script creator

N Whether and where the script output is stored

Not only are the answers to the questions of who, what, how, where, and when

important for ensuring that the scripts you create can be used by other administra-

tors, they can also help you remember what a particular script does, especially if

weeks or months have passed since you last worked with the script. An example of a

script that uses comments to answer these questions is shown as Listing 7-3.

LISTING 7-3 Sample Script Header

<# --------------------------

<# --------------------------

ScriptName: CheckDNS.ps1

ScriptName: CheckDNS.ps1

Creation Date: 2/28/2010

Creation Date: 2/28/2010

Last Modified: 3/15/2010

Last Modified: 3/15/2010

Author: William R. Stanek

Author: William R. Stanek

E-mail: williamstanek@aol.com

E-mail: williamstanek@aol.com

Description: Checks DNS and IP configuration.

Description: Checks DNS and IP configuration.

Files: Stores output in c:\data\checkdns.txt.

Files: Stores output in c:\data\checkdns.txt.

-------------------------- #>

-------------------------- #>

 REAL WORLD Keep in mind that you can also use comments to

N

 Insert explanatory text within scripts, such as documentation on how a

 function works.

N

 Prevent a command from executing. On the command line, add # before the

command to comment it out.

N

 Hide part of a line from interpretation. Add # within a line to block interpreta-

tion of everything that follows the # character.

After you add a header to your script, you might want to initialize the console

so that the working environment appears the same way every time. For example,

you might want to use Cls (or Clear-Host) to clear the console window and reset the

screen buffer, and use the Start-Transcript cmdlet to record all output to a transcript

fi le. If you start a transcript, be sure to add a Stop-Transcript cmdlet at the end of

your script to end the transcript session.

You also might want your script to initialize the PowerShell window by setting

the window size, text color, and window title. Here is an example:

if ($host.name -eq "ConsoleHost") {

if ($host.name -eq "ConsoleHost") {

$size=New-Object System.Management.Automation.Host.Size(120,80);

$size=New-Object System.Management.Automation.Host.Size(120,80);

$host.ui.rawui.WindowSize=$size }

$host.ui.rawui.WindowSize=$size }

Managing Computers with Commands and Scripts CHAPTER 7

223

$myHostWin = $host.ui.rawui

$myHostWin = $host.ui.rawui

$myHostWin.ForegroundColor = "Blue"

$myHostWin.ForegroundColor = "Blue"

$myHostWin.BackgroundColor = "Yellow"

$myHostWin.BackgroundColor = "Yellow"

$myHostWin.WindowTitle = "Working Script"

$myHostWin.WindowTitle = "Working Script"

Here, you get an instance of the System.Management.Automation.Host object so

that you can set the window size to 120 lines high by 80 characters wide if you are

working with the PowerShell console. Then you use properties of the $host.ui.rawui

object to specify that you want to use blue text on a yellow background and a

window title of Working Script. For more information on these object instances, see

the “Digging Deeper into Functions” and “Digging Deeper into Objects” sections in

Chapter 6, “Mastering Aliases, Functions, and Objects.”

 NOTE When you dynamically reset the size of the PowerShell console, you must keep in mind the current display resolution and the console’s confi gured dimensions. You

shouldn’t set the width and height of the console so that it is larger than the display size.

You’ll get an error if you try to set the width of the console so that it is greater than the buffer size. Because resizing the window won’t work with the PowerShell application, you

may want to check the value of the $Host.Name property to ensure that you are working

with the console and not the PowerShell ISE. $Host.Name is set to “Windows PowerShell

ISE Host” for the PowerShell application and “ConsoleHost” for the PowerShell console.

When you are initializing the script, you also want to ensure the following:

N The script will run on a computer with a compatible version of PowerShell.

N The host application is indeed Windows PowerShell .

N Required PowerShell snap-ins, providers, and modules are available.

PowerShell includes a #Requires statement that you can use to validate the

PowerShell version, the host application, and the availability of snap-ins. Using

Requires statements, you can do the following:

N Verify the PowerShell version, where N is the version number and n is the optional revision number. To verify the PowerShell version is 2.0 or later, use 2 or 2.0.

#requires -Version

#requires -Version N[.

[. n]

#requires –version 2

#requires –version 2

#requires –version 2.0

#requires –version 2.0

N Verify the host application ID, where ShellID is the identifi er for the host

application. To verify the host application is the PowerShell console or

PowerShell ISE, use a value of Microsoft.PowerShell.

#requires –ShellId

#requires –ShellId ShellId

 ShellId

#requires –ShellId "Microsoft.PowerShell"

#requires –ShellId "Microsoft.PowerShell"

224

CHAPTER 7 Managing Computers with Commands and Scripts

N Verify a specifi ed snap-in—or, optionally, a specifi ed version of the

snap-in—is loaded in the current session, where PSSnapIn is the snap-in

identifi er and the optional N and .n values set the required version.

#requires –PsSnapIn

#

 PsSnapIn

requires –PsSnapIn PsSnapIn [-Version

[-Version N[. n]]

#requires –PsSnapIn ADRMS.PS.Admin -Version 2

#requires –PsSnapIn ADRMS.PS.Admin -Version 2

Whenever you use #Requires statements, the script runs only if the computer

meets the criteria set in the #Requires statements. For additional discussion on this

topic, see the “Navigating Windows PowerShell Extensions” section in Chapter 3,

“Managing Your Windows PowerShell Environment.”

As with most cmdlets and external utilities, you can pass arguments to scripts

when you start them. You use arguments to set special parameters in a script or

to pass along information needed by the script. Each argument should follow

the script name and be separated by a space (and enclosed in quotation marks if

necessary). In the following example, a script named Check-Computer in the current

working directory is passed the arguments FileServer26 and Extended:

.\check-computer fileserver26 extended

.\check-computer fileserver26 extended

Each value passed along to a script can be examined using the $args array. You

reference the fi rst argument using $args[0], the second using $args[1], and so on.

The script name itself is represented by the $MyInvocation.MyCommand.Name

property. The full fi le path to the script is represented by the $MyInvocation

.MyCommand.Path property.

 NOTE Because PowerShell stores arguments in an array, there is no limit to the

 number of arguments you can pass to a script. Further, regardless of the number of

arguments you use, the last argument is always represented by $args[$arg.length - 1],

and the total number of arguments used is represented by $args.count. If no argu-

ments are passed to a script, the argument count is zero.

Using Conditional Statements

Now that you know how to work with and initialize scripts, let’s look at the selection

statements used to control the fl ow of execution based upon conditions known only

at run time. These statements include:

N If…Else, to execute a block of statements if a condition is matched (true or

false) and to otherwise execute a second block of statements.

N If…ElseIf…Else, to execute a block of statements if a condition is matched

(true or false). Otherwise, it’s used to execute a second block of statements

if a second condition is matched. Finally, it’s used to execute a third block of

statements if neither of the previous conditions is met.

Managing Computers with Commands and Scripts CHAPTER 7

225

N If Not, to execute a statement when a condition is false. Otherwise, the

statement is bypassed.

N Switch, to perform a series of three or more conditional tests.

Using If, If…Else, and If…ElseIf…Else

Although some of the previous examples in this book used conditional execution,

we haven’t discussed the syntax for these statements. If your background doesn’t

include programming, you probably will be surprised by the power and fl exibility of

these statements.

The If statement is used for conditional branching. It can be used to route script

execution through two different paths. Its basic syntax is

if (

if condition

(conditi

) {

 on) { codeblock1

 codeblock1} [else {

} [else { codeblock2

 codeblock2}]

Here, each code block can contain a single command or multiple commands. The

condition is any expression that returns a Boolean value of True or False when evalu-

ated. The Else clause is optional, meaning you can also use the following syntax:

if (

if condition1

(conditi

) {

 on1) { codeblock1

 codeblock1}

The If statement works like this: If the condition is true, codeblock1 is executed.

Otherwise, codeblock2 is executed (if the Else clause is provided). In no case will

both the If and Else clauses be executed. Frequently, the expression used to control

If statements involves a test for equality. In fact, the most basic type of string com-

parison is when you compare two strings using the equality operator (=), such as

if (stringA = stringB) {codeblock}

if (stringA = stringB) {codeblock}

Here, you are performing a literal comparison of the strings; if they are identical,

the related code block is executed. This syntax works for literal strings but is not

ideal for use in scripts. Parameters, property values, and arguments might contain

spaces, or there might be no value at all for a variable. In this case, you might get an

error if you perform literal comparisons. Instead, use the comparison operators to

perform more advanced comparisons, such as –eq, –like, –match, or –contains.

To learn about other advanced techniques, consider the following example and

sample output:

if ($args.count -eq 0) {throw "No arguments passed to script"}

if ($args.count -eq 0) {throw "No arguments passed to script"}

else {write-host "You passed args to the script"}

else {write-host "You passed args to the script"}

No arguments passed to script

No arguments passed to script

At C:\Users\Bubba\dat.ps1:8 char:24

At C:\Users\Bubba\dat.ps1:8 char:24

+ if ($args.count) {throw <<<< "No arguments passed to script"}

+ if ($args.count) {throw <<<< "No arguments passed to script"}

226

CHAPTER 7 Managing Computers with Commands and Scripts

 + CategoryInfo : OperationStopped: (No arguments passed to

 + CategoryInfo : OperationStopped: (No arguments passed to

script:String) [], RuntimeException

script:String) [], RuntimeException

 + FullyQualifiedErrorId : No arguments passed to script

 + FullyQualifiedErrorId : No arguments passed to script

Here, if you don’t pass any arguments to the script, the script throws an error.

Because the default error action for PowerShell is to halt execution, this is an

effective way to stop processing a script when expected conditions are not met. The

Else condition applies when you pass arguments to the script, and in this example,

“You passed args to the script” is written to the output.

Alternatively, if a script requires an argument, such as a computer name, you

could use the If…Else construct to catch the missing argument and prompt the user

to enter it using the Read-Host cmdlet as shown in this example and sample output:

if ($args.count -eq 0) {

if ($args.count -eq 0) {

$compName = read-host "Enter the name of the computer to check"

$compName = read-host "Enter the name of the computer to check"

} else {

} else {

$compName = $args[0]

$compName = $args[0]

}

Enter the name of the computer to check: FileServer84.cpandl.com

Enter the name of the computer to check: FileServer84.cpandl.com

Here, if you don’t type an argument, the Read-Host cmdlet prompts you and

then stores the value you specify in the $compName variable. Otherwise, the

$ compName variable is set to the value of the fi rst argument you pass to the script.

Using any of the logical operators, listed previously in Table 5-7, you can check

two conditions. In the following example, the If condition is met only when the

conditions on either side of the logical AND are true:

if (($args.count -ge 1) -and ($args[0] -eq "Check")) {

if (($args.count -ge 1) -and ($args[0] -eq "Check")) {

write-host "Performing system checks..."

write-host "Performing system checks..."

} else {

} else {

write-host "Script will not perform system checks..."

write-host "Script will not perform system checks..."

}

.\check-sys.ps1 Check

.\check-sys.ps1 Check

Performing system checks...

Performing system checks...

PowerShell also allows you to use If…ElseIf…Else constructs to execute a block of

statements if a condition is met. Otherwise, it allows you to execute a second block

of statements if a second condition is met. Finally, it allows you to execute a third

block of statements if neither of the previous conditions is met. The basic syntax is

if (condition1

if (condition1) {

) { action1

 action1} elseif (

} elseif (condition2

 condition2) {

) { action2

 action2} else {

} else { action3

 action3}

Managing Computers with Commands and Scripts CHAPTER 7

227

The following example uses the If…ElseIf…Else construct to perform actions

depending on the value of the fi rst argument passed to the script:

if (($args.count -ge 1) -and ($args[0] -eq "Check")) {

if (($args.count -ge 1) -and ($args[0] -eq "Check")) {

write-host "Performing system checks..."

write-host "Performing system checks..."

} elseif (($args.count -ge 1) -and ($args[0] -eq "Test")) {

} elseif (($args.count -ge 1) -and ($args[0] -eq "Test")) {

write-host "Performing connectivity tests..."

write-host "Performing connectivity tests..."

} else {

} else {

write-host "Script will not perform system checks or tests."

write-host "Script will not perform system checks or tests."

}

.\check-sys.ps1 Test

.\check-sys.ps1 Test

Performing connectivity tests...

Performing connectivity tests...

When you want to execute a statement only if a condition is false, you can use

If Not. The basic syntax is

if (!

if

 condition

(! condition) {

) { codeblock1

 codeblock1} [else {

} [else { codeblock2

 codeblock2}]

or

if (-not (

if (-not condition

(condition)) { codeblock1

 codeblock1} [else {

} [else { codeblock2

 codeblock2}]

Here PowerShell evaluates the condition. If it is false, PowerShell executes the

statements in codeblock1. Otherwise, codeblock1 doesn’t execute, and PowerShell

proceeds to codeblock2, if present. The Else clause is optional, meaning you can

also use the following syntax:

if (!

if

 condition

(! condition) {

) { codeblock1}

Consider the following example:

if (!$args.count -ge 1) {

if (!$args.count -ge 1) {

read-host "Enter the name of the computer to check"

read-host "Enter the name of the computer to check"

}

Here you execute the code block when the argument count is not greater than

or equal to one (meaning the argument count is zero).

 TIP A nested If is an If statement within an If statement. Nested Ifs are common in programming, and PowerShell scripting is no exception. When you nest If statements,

you place the required If…Else or If…ElseIf…Else construct with its subconditions and

subcodeblocks inside the code block of the original If…Else or If…ElseIf…Else construct.

228

CHAPTER 7 Managing Computers with Commands and Scripts

Using Switch

Checking for multiple conditions using If…ElseIf…Else constructs is a lot of work for

you and for PowerShell. An easier way to check three or more conditions is to use

Switch constructs. Using Switch, you can check multiple conditions in a way that is

clear and easy to understand. You can also add a default code block that is executed

if none of the other conditions are met.

The basic syntax for a Switch construct is

switch (pipeline_expression) {

switch (pipeline_expression) {

value1 { codeblock1 }

value1 { codeblock1 }

value2 { codeblock2 }

value2 { codeblock2 }

value3 { codeblock3 }

value3 { codeblock3 }

. . .

. . .

value

val

 N

ue { codeblock

{ codeblock N }

 N

default { default_codeblock}

default { default_codeblock}

The Switch construct is essentially an extended series of If statements that get

the condition to test from a pipeline value you provide. If a value in the pipeline

matches a specifi ed value, the related code block is executed. After the code block

is executed, PowerShell exits the switch. If there are additional values in the pipeline

to process, PowerShell evaluates those values, each in turn, in the same way.

 NOTE Each Switch construct can have only one default. If there is more than one

default clause, an error results.

Switch constructs can be used with any valid data type. If the value to check is

an array of numbers, strings, or objects, each element is evaluated in order against

the switch conditions, starting with element 0. At least one element must be present

that meets at least one condition, or PowerShell generates an error. In the follow-

ing example and sample output, you defi ne an array called $myValue, assign four

values, and then process the values through a Switch construct:

$myValue = 4, 5, 6, 0

$myValue = 4, 5, 6, 0

switch ($myValue) {

switch ($myValue) {

0 { write-host "The value is zero."}

0 { write-host "The value is zero."}

1 { write-host "The value is one."}

1 { write-host "The value is one."}

2 { write-host "The value is two."}

2 { write-host "The value is two."}

3 { write-host "The value is three."}

3 { write-host "The value is three."}

default { write-host "The value doesn't match expected parameters."}

default { write-host "The value doesn't match expected parameters."}

}

The value doesn't match expected parameters.

The value doesn't match expected parameters.

The value doesn't match expected parameters.

The value doesn't match expected parameters.

The value doesn't match expected parameters.

The value doesn't match expected parameters.

The value is zero.

The value is zero.

Managing Computers with Commands and Scripts CHAPTER 7

229

This processing approach is the same one PowerShell uses if you insert continue clauses as the last statement in every code block. Rather than have PowerShell

continue processing with the next value in the pipeline, you might want PowerShell

to stop processing any additional values in the pipeline. To do this, you can add

the break statement whenever you want PowerShell to exit the Switch construct.

Typically, you add a break statement as the last statement in a code block. Thus, the

basic syntax becomes

switch (pipeline) {

switch (pipeline) {

value1 { codeblock1 break}

value1 { codeblock1 break}

value2 { codeblock2 break}

value2 { codeblock2 break}

value3 { codeblock3 break}

value3 { codeblock3 break}

. . .

. . .

value

valu N

e { codeblock

 N

 N break}

 N

default { default_codeblock}

default { default_codeblock}

In the following example, you use break statements to break out of the Switch

construct:

$myError = "Green", "Red", "Yellow", "Green"

$myError = "Green", "Red", "Yellow", "Green"

switch ($myError) {

switch ($myError) {

"Red" { write-host "A critical error occurred. Break."; break}

"Red" { write-host "A critical error occurred. Break."; break}

"Yellow" { write-host "A warning occurred. Break."; break}

"Yellow" { write-host "A warning occurred. Break."; break}

"Green" { write-host "No error occurred yet. No break." }

"Green" { write-host "No error occurred yet. No break." }

default { write-host "The values don't match expected parameters."}

default { write-host "The values don't match expected parameters."}

}

No error occurred yet. No break.

No error occurred yet. No break.

A critical error occurred. Break.

A critical error occurred. Break.

By default, when you use Switch, PowerShell does not consider the letter case

and looks for exact matches only. To control what determines matches, you can add

the following fl ags:

N –regex Matches string values against a regular expression. If the value

you are testing is not a string, this option is ignored. Don’t use it with the

– wildcard and –exact fl ags.

N –wildcard Matches string values using wildcards. Indicates that the match

clause, if a string, is treated as a wildcard string. If the value you are testing

is not a string, this option is ignored. Don’t use it with the –regex and –exact

fl ags.

N –exact Performs an exact match of string values. If the value you are test-

ing is not a string, this option is ignored. Don’t use it with the –regex and

–exact fl ags.

230

CHAPTER 7 Managing Computers with Commands and Scripts

N –casesensitive Performs a case-sensitive match. If the value you are testing is not a string, this option is ignored.

N –fi le Takes input from a fi le rather than a statement. Each line of the fi le

is read as a separate element and passed through the switch block, starting

with the fi rst line of the fi le. At least one element must be present that meets

at least one condition, or PowerShell generates an error.

The following example switches based on the status of a service you specify by

name in the fi rst argument or when prompted:

if (!$args.count -ge 1) {

if (!$args.count -ge 1) {

$rh = read-host "Enter the name of the service to check"

$rh = read-host "Enter the name of the service to check"

$myValue = get-service $rh

$myValue = get-service $rh

} else {

} else {

$myValue = get-service $args[0]

$myValue = get-service $args[0]

}

$serName = $myValue.Name

$serName = $myValue.Name

switch -wildcard ($myValue.Status) {

switch -wildcard ($myValue.Status) {

"S*" { write-host "The $serName service is stopped."}

"S*" { write-host "The $serName service is stopped."}

"R*" { write-host "The $serName service is running."}

"R*" { write-host "The $serName service is running."}

"P*" { write-host "The $serName service is paused."}

"P*" { write-host "The $serName service is paused."}

default { write-host "Check the service."}

default { write-host "Check the service."}

}

Enter the name of the service to check: w32time

Enter the name of the service to check: w32time

The W32Time service is running.

The W32Time service is running.

Using Control Loops

When you want to execute a command or a series of commands repeatedly, you

use control loops. A loop is a method for controlling the logical fl ow and execution

of commands. In PowerShell, you can perform controlled looping in several ways,

including

N For looping

N ForEach looping

N While looping

N Do While looping

N Do Until looping

You can create a basic loop using the For statement. You use For loops to

execute a code block for a specifi c count. The structure of For loops is as follows:

for (

for countStartValue

(countStartValu ;

 e; condition

 condition; countNextValue

 countNextValue) {

) { CodeBlockToRepeat }

 t

Managing Computers with Commands and Scripts CHAPTER 7

231

where countStartValue is a statement that initializes the counter that controls the For loop, condition is a statement that specifi es what value the counter must reach

to stop looping, and countNextValue is a statement that sets the next value for

the counter. Note that the elements in parentheses are separated with semicolons

and that the next value for the counter is set after each iteration (and not before

iteration begins).

You can set the next value for the counter using any assignment operator. In the

following example and sample output, you initialize the counter to 1, loop as long

as the counter is less than or equal to 10, and increment the counter by 1 after each

iteration:

for ($c=1; $c -le 10; $c++){write-host $c}

for ($c=1; $c -le 10; $c++){write-host $c}

1

2

3

4

5

6

7

8

9

10

In the following example and sample output, you initialize the counter to 10,

loop as long as the counter is greater than or equal to 0, and decrement the counter

by 1 after each iteration:

for ($c = 10; $c -ge 0; $c--) {Write-Host $c}

for ($c = 10; $c -ge 0; $c--) {Write-Host $c}

10

10

9

8

7

6

5

4

3

2

1

0

232

CHAPTER 7 Managing Computers with Commands and Scripts

 You can just as easily increment or decrement the counter by twos, threes, or more as shown in these examples:

for ($c=1; $c -le 100; $c += 2){write-host $c}

for ($c=1; $c -le 100; $c += 2){write-host $c}

for ($c=1; $c -le 100; $c += 3){write-host $c}

for ($c=1; $c -le 100; $c += 3){write-host $c}

for ($c = 20; $c -ge 0; $c -= 2) {Write-Host $c}

for ($c = 20; $c -ge 0; $c -= 2) {Write-Host $c}

for ($c = 20; $c -ge 0; $c -= 3) {Write-Host $c}

for ($c = 20; $c -ge 0; $c -= 3) {Write-Host $c}

Another type of loop is a ForEach loop. With ForEach loops, you iterate through

each element in a collections of items. Although you can work with other types of

collections, you’ll more typically work with collections of items in an array.

ForEach loops are similar to standard For loops. The key difference is that the

number of elements in the collection determines the number of times you go

through the loop. The basic syntax is

ForEach (

ForEach (Item

 m in

in Collection

 Collection) {

) { CodeBlockToRepeat }

 t

where Item is a variable that PowerShell creates automatically when the ForEach

loop runs, and Collection is the collection of items to iterate through. The collection can come directly from the pipeline. In the following example and sample output,

you perform an action against each process in a collection of processes:

foreach ($p in get-process) {

foreach ($p in get-process) {

if ($p.handlecount -gt 500) {

if ($p.handlecount -gt 500) {

Write-Host $p.Name, $p.pm }

Write-Host $p.Name, $p.pm }

}

aolsoftware 14766080

aolsoftware 14766080

csrss 1855488

csrss 1855488

csrss 22507520

explorer 34463744

explorer 34463744

Here, every running process is examined. The If statement checks for processes

with greater than 500 fi le handles and lists their name and private memory set.

This technique can help you fi nd processes that are using a lot of resources on the

computer.

In the following example and sample output, you perform an action against each

fi le in a collection of fi les:

if (!$args.count -ge 1) {

if (!$args.count -ge 1) {

$path = read-host "Enter the name of the base directory to check"

$path = read-host "Enter the name of the base directory to check"

} else {

} else {

$path = $args[0]

$path = $args[0]

}

Managing Computers with Commands and Scripts CHAPTER 7

233

foreach ($file in Get-ChildItem -path $path -recurse) {

foreach ($file in Get-ChildItem -path $path -recurse) {

if ($file.length -gt 1mb) {

if ($file.length -gt 1mb) {

$size = [Math]::Round($file.length/1MB.ToString("F0"))

$size = [Math]::Round($file.length/1MB.ToString("F0"))

Write-Host $file, $size, $file.lastaccesstime }

Write-Host $file, $size, $file.lastaccesstime }

}

A Catalog Section 1.pdf 8095845 11/23/2009 8:10:16 PM

A Catalog Section 1.pdf 8095845 11/23/2009 8:10:16 PM

A Catalog Section 2.pdf 12021788 11/23/2009 8:10:16 PM

A Catalog Section 2.pdf 12021788 11/23/2009 8:10:16 PM

Here, every fi le in a specifi ed base directory and its subdirectories is examined.

The If statement looks for fi les with a fi le size greater than 1 MB and lists their name,

size in MB, and last access time. This technique can help you fi nd large fi les that

haven’t been accessed in a long time.

 TIP With For and ForEach loops, you’ll sometimes want to break out of the loop

before iterating through all of the possible values. To break out of a loop ahead of

schedule, you can use the Break statement. The best place for this statement is within

the code blocks for If, If…Else, and If…ElseIf…Else constructs.

Sometimes you’ll want to execute a code segment while a condition is met. To do

this, you use While looping. The structure of this loop is as follows:

while (condition

while (condition) {

) { CodeBlockToRepeat

 CodeBlockToRepeat}

With the While statement, the loop is executed as long as the condition is met.

To break out of the loop, you must change the condition at some point within the

loop. Here is an example of a While loop that changes the status of the condition:

$x = 0

$x = 0

$continuetoggle = $true

$continuetoggle = $true

while ($continuetoggle) {

while ($continuetoggle) {

$x = $x + 1

$x = $x + 1

if ($x -lt 5) {write-host "x is less than 5."}

if ($x -lt 5) {write-host "x is less than 5."}

elseif ($x -eq 5) {write-host "x equals 5."}

elseif ($x -eq 5) {write-host "x equals 5."}

else { write-host "exiting the loop."

else { write-host "exiting the loop."

$continuetoggle = $false }

$continuetoggle = $false }

}

X is less than 5.

X is less than 5.

X is less than 5.

X is less than 5.

X is less than 5.

X is less than 5.

X is less than 5.

X is less than 5.

X equals 5.

X equals 5.

Exiting the loop.

Exiting the loop.

234

CHAPTER 7 Managing Computers with Commands and Scripts

 By placing the condition at the top of the loop, you ensure that the loop is

executed only if the condition is met. In the previous example, this means the loop

won’t be executed at all if continueToggle is set to False beforehand.

However, sometimes you want to execute the loop at least once before you

check the condition. To do this, you can use the Do While construct, which places

the condition test at the bottom of the loop, as in the following example:

do {

do CodeBlockToRepeat

{ CodeBlock

} while (

 ToRepeat} while (condition

 condition)

In the following example, the code block is processed at least once before the

condition is checked:

$x = 0

$x = 0

$continuetoggle = $true

$continuetoggle = $true

do { $x = $x + 1

do { $x = $x + 1

if ($x -lt 5) {write-host "x is less than 5."}

if ($x -lt 5) {write-host "x is less than 5."}

elseif ($x -eq 5) {write-host "x equals 5."}

elseif ($x -eq 5) {write-host "x equals 5."}

else { write-host "exiting the loop."

else { write-host "exiting the loop."

$continuetoggle = $false }

$continuetoggle = $false }

}

while ($continuetoggle)

while ($continuetoggle)

X is less than 5.

X is less than 5.

X is less than 5.

X is less than 5.

X is less than 5.

X is less than 5.

X is less than 5.

X is less than 5.

X equals 5.

X equals 5.

Exiting the loop.

Exiting the loop.

The fi nal type of control loop available in PowerShell is the Do Until loop. With

Do Until, you execute a loop until a condition is met instead of while a condition is

met. As with Do While, you place the condition test at the end of the loop. The basic

syntax is

do {

do CodeBlockToRepeat

{ CodeBlockToRep

} until (

 eat} until (condition

 condition)

The following loop is executed one or more times until the condition is met:

do {

do {

$cont = read-host "Do you want to continue? [Y/N]"

$cont = read-host "Do you want to continue? [Y/N]"

} until ($cont -eq "N")

} until ($cont -eq "N")

Do you want to continue? [Y/N]: y

Do you want to continue? [Y/N]: y

Do you want to continue? [Y/N]: y

Do you want to continue? [Y/N]: y

Do you want to continue? [Y/N]: n

Do you want to continue? [Y/N]: n

Managing Computers with Commands and Scripts CHAPTER 7

235

C H A P T E R 8

Managing Roles, Role

 Services, and Features

N

Server Manager Essentials 238

N

Checking Installed Roles, Role Services, and Features 245

N

Installing Roles, Role Services, and Features 247

N

Uninstalling Roles, Role Services, and Features 250

When you are working with Windows Server 2008 or later, you have many

more configuration options than when you are working with Windows Vista,

Windows 7, or later. After you’ve installed a server running Windows Server 2008

or later, you can manage the server configuration by installing and configuring the

following components:

N Server

roles Server roles are related sets of software components that

allow servers to perform specific functions for users and other computers

on networks. A server can be dedicated to a single role, such as File Services,

or a server can have multiple roles.

N Role

services Role services are software components that provide the

functionality of server roles. While some server roles have a single function

and installing the role installs this function, most server roles have multiple,

related role services and you are able to choose which role services to

install.

N Features Features are software components that provide additional func-

tionality. Features are installed and removed separately from roles and role

services. A computer can have multiple features installed or none, depending

on its configuration.

Normally, you manage roles, role services, and features using ServerManagerCmd,

which is a command-line administration tool, and Server Manager, which is a graphical

administration tool. However, when you are working with Windows PowerShell 2.0

or later, you can manage roles, role services, and features by importing the Server-

Manager module into the PowerShell console.

237

Server Manager Essentials

When you want to manage server confi guration using PowerShell, you need to

import the ServerManager module. Not only can you use this module’s cmdlets

to add or remove roles, role services, and features, but you can use this module’s

cmdlets to view the confi guration details and status for these software components.

You can add the Import statement to your profi le and scripts to ensure the

ServerManager module is available as shown in this example:

import-module servermanager

import-module servermanager

The ServerManager module is available on Windows Server 2008. The Server-

Manager module has several advantages over Server Manager version 6.0 and Server

Manager version 6.1, which are included in Windows Server 2008 and Windows

Server 2008 Release 2, respectively. The ServerManager module as implemented

in PowerShell allows concurrent instances to add or remove components at the

same time. This gives PowerShell an advantage over Server Manager version 6.1,

which allows only one instance of either ServerManagerCmd or Server Manager

to work at a time. Although updates to Server Manager, ServerManagerCmd, or

both might remove this restriction, the usefulness of concurrent instances remains

the same: you are able to run multiple Server Manager sessions simultaneously. For

example, you can add roles in one Server Manager session while you are removing

features in a different Server Manager session.

 REAL WORLD You can add supplemental components to Windows Server 2008 or

later as downloads from the Microsoft Web site, including Windows Media Server 2008

and Windows SharePoint Server 2008. To make supplemental components available

for installation and confi guration in the Server Manager environment, download the

 installer package or packages from the Microsoft Web site. Typically, these are provided

as a set of Microsoft Update Standalone Package (.msu) fi les. Afterward, double-click

each installer package to register it for use.

Server Manager Commands

Whenever you work with the ServerManager module you should use an elevated

administrator PowerShell console. You can manage roles, role services, and features

using the following cmdlets:

N Get-WindowsFeature Lists the server’s current state with regard to roles,

role services, and features.

Get-WindowsFeature [[-Name]

Get-WindowsFeature [[-Name] ComponentNames

 ComponentNames] [-LogPath

] [-LogPath LogFile.txt

 LogFile.txt]

238

CHAPTER 8 Managing Roles, Role Services, and Features

N Add-WindowsFeature Installs the named role, role service, or feature. The

–IncludeAllSubFeature parameter allows you to install all subordinate role

services and features of the named component.

Add-WindowsFeature [-Name]

Add-WindowsFeature [-Name] ComponentNames

 ComponentNames [-IncludeAllSubFeature]

[-IncludeAllSubFeature]

[-LogPath

[-LogPath LogFile.txt

 Log

] [-Restart] [-Concurrent]

 File.txt] [-Restart] [-Concurrent]

N Remove-WindowsFeature Removes the named role, role service, or feature.

Remove-WindowsFeature [-Name]

Remove-WindowsFeature [-Name] ComponentNames

 ComponentNames [-LogPath

[-LogPath LogFile.txt

 LogFile.txt]

]

[-Restart] [-Concurrent]

[-Restart] [-Concurrent]

When applicable, you can

N Use the –LogPath parameter to log error details to a named log fi le as an

alternative to the default logging used.

N Use the –Restart parameter to restart the computer automatically (if restarting

is necessary to complete the operation).

N Use the –Concurrent parameter to allow concurrent instances to add or

remove components at the same time.

N Use the –WhatIf parameter to display the operations that would be performed

if the command were executed.

The parameter values that you can use include:

N ComponentNames Identifi es the roles, role services, or features to work

with by their name (not their display name). The –Name parameter matches

actual component names and not display names. With Get-WindowsFeature,

you can use wildcard characters. With Add-WindowsFeature and Remove-

WindowsFeature, you can use pipelining to get the required input names

from another command, such as Get-WindowsFeature.

N LogFile.txt Sets the path and name of the text fi le to which log error

details should be written.

Most installable roles, role services, and features have a corresponding component

name that identifi es the component so that you can manipulate it from the PowerShell

prompt. This also is true for supplemental components you’ve made available by

downloading and installing their installer packages from the Microsoft Web site.

Available Roles and Role Services

Table 8-1 provides a hierarchical listing of the component names associated

with roles, related role services, and related subcomponents. When you are

installing a role, you can use the –IncludeAllSubFeature parameter to install all the

subordinate role services and features listed under the role. When you are installing

a role service, you can use the –IncludeAllSubFeature parameter to install all the

subordinate features listed under the role service.

Managing Roles, Role Services, and Features CHAPTER 8

239

 NOTE In the following table, a notation of 1 indicates a new or revised role for Windows Server 2008 R2 or later. A notation of 2 indicates a role that is no longer available.

TABLE 8-1 Component Names for Key Roles and Role Services

COMPONENT NAME

ROLE

SERVICE

FEATURE

AD-Certificate

Active Directory Certificate Services

ADCS-Cert-Authority

Certification Authority

ADCS-Web-Enrollment

Certification Authority Web Enrollment

ADCS-Online-Cert

Online Responder

ADCS-Device-Enrollment

Network Device Enrollment Service

ADCS-Enroll-Web-Svc

Certificate Enrollment Web Service

ADCS-Enroll-Web-Pol

Certificate Enrollment Policy Web Service

AD-Domain-Services

Active Directory Domain Services (AD DS)

ADDS-Domain-Controller

Active Directory Domain Controller

ADDS-Identity-Mgmt

Identity Management for UNIX

ADDS-NIS

Server for Network

Information Services (NIS)

ADDS-Password-Sync

Password Synchronization

ADDS-IDMU-Tools

Administration Tools

AD-Federation-Services

Active Directory Federation Services (AD FS)

ADFS-Federation

Federation Service

ADFS-Proxy

Federation Service Proxy

ADFS-Web-Agents

AD FS Web Agents

ADFS-Claims

Claims-Aware Agent

ADFS-Windows-Token

Windows Token-Based

Agent

ADLDS

Active Directory Lightweight Directory Services (AD

LDS)

ADRMS

Active Directory Rights Management Services

ADRMS-Server

Active Directory Rights Management

Services Server

ADRMS-Identity

Identity Federation Support

DHCP

Dynamic Host Configuration Protocol (DHCP) Server

240

 CHAPTER 8 Managing Roles, Role Services, and Features

TABLE 8-1 Component Names for Key Roles and Role Services

COMPONENT NAME

ROLE

SERVICE

FEATURE

DNS

Domain Name System (DNS) Server

Fax

Fax Server

File-Services

File Services

FS-FileServer

File Server

FS-DFS

Distributed File System

FS-DFS-Namespace

DFS Namespace

FS-DFS-Replication

DFS Replication

FS-Resource-Manager

File Server Resource Manager

FS-NFS-Services

Services for Network File System (NFS)

FS-Search-Service

Windows Search Service

FS-Win2003-Services

Windows Server 2003 File Services

FS-Replication

File Replication Service2

FS-Indexing-Service

Indexing Service

FS-BranchCache

BranchCache for Remote Files¹

Hyper-V

Hyper-V

NPAS

Network Policy and Access Services

NPAS-Policy-Server

Network Policy Server

NPAS-RRAS-Services

Routing and Remote Access Services

NPAS-RRAS

Remote Access Service

NPAS-Routing

Routing

NPAS-Health

Health Registration Authority

NPAS-Host-Cred

Host Credential Authorization Protocol

Print-Services

Print and Document Services¹

Print-Server

Print Server

Print-LPD-Service

LPD Service

Print-Internet

Internet Printing

Print-Scan-Server

Distributed Scan Management Server¹

Remote-Desktop-Services Remote Desktop Services¹

RDS-RD-Server

Remote Desktop Server¹

Managing Roles, Role Services, and Features CHAPTER 8

241

TABLE 8-1 Component Names for Key Roles and Role Services

COMPONENT NAME

ROLE

SERVICE

FEATURE

RDS-Licensing

Remote Desktop (RD) Services Licensing¹

RDS-Connection-Broker

RD Connection Broker¹

RDS-Gateway

RD Gateway¹

RDS-Web-Access

RD Web Access¹

RDS-Virtualization

RD Virtualization¹

WDS

Windows Deployment Services

WDS-Deployment

Deployment Server

WDS-Transport

Transport Server

OOB-WSUS

Windows Server Update Services¹

Available Features

Table 8-2 provides a hierarchical listing of the component names associated with

features and related subfeatures. When you are installing a feature, you can use

the –IncludeAllSubFeature parameter to install all the subordinate second-level

and third-level features listed under the feature. When you are installing a second-

level feature, you can use the –IncludeAllSubFeature parameter to install all the

subordinate third-level features listed under the second-level feature.

 NOTE An asterisk following the feature command indicates that the feature has

unlisted subordinate features that generally are installed together by adding the

parameter –IncludeAllSubFeature. A notation of 1 indicates a new or revised feature for

Windows Server 2008 R2 or later. A notation of 2 indicates a feature no longer avail-

able. A notation of 3 indicates a feature integrated with the operating system.

TABLE 8-2 Component Names for Key Features and Subfeatures

SECOND-LEVEL

COMPONENT NAME

FEATURE

 FEATURE

THIRD-LEVEL FEATURE

NET-Framework*

.NET Framework 3.5.1 Features¹

BitLocker*

BitLocker Drive Encryption

BITS

Background Intelligent Transport Services (BITS) Server

Extensions

BranchCache

BranchCache¹

CMAK

Connection Manager Administration Kit

Desktop-Experience

Desktop Experience

242

 CHAPTER 8 Managing Roles, Role Services, and Features

TABLE 8-2 Component Names for Key Features and Subfeatures

SECOND-LEVEL

COMPONENT NAME

FEATURE

 FEATURE

THIRD-LEVEL FEATURE

DAMC

Direct Access Management Console¹

Failover-Clustering

Failover Clustering

GPMC

Group Policy Management Console

Ink-Handwriting*

Ink and Handwriting Services¹

Internet-Print-Client

Internet Printing Client

ISNS

Internet Storage Name Server

LPR-Port-Monitor

LPR Port Monitor

MSMQ*

Message Queuing

Multipath-IO

Multipath I/O

NLB

Network Load Balancing

PNRP

Peer Name Resolution Protocol

qWave

Quality Windows Audio Video Experience

Remote-Assistance

Remote Assistance

RDC

Remote Differential Compression

RSAT

Remote Server Administration Tools

RSAT-Role-Tools

Role Administration Tools

RSAT-ADCS*

Active Directory Certificate Services

Tools

RSAT-AD-Tools

AD DS and AD LDS Tools

RSAT-ADDS*

Active Directory

Domain Services

Tools

RSAT-ADLDS

Active Directory

Lightweight

Directory Services

Tools

RSAT-AD-PowerShell

Active Directory

PowerShell snap-in¹

RSAT-RMS

Active Directory Rights Management

Services Tools

RSAT-DHCP

DHCP Server Tools

Managing Roles, Role Services, and Features CHAPTER 8

243

TABLE 8-2 Component Names for Key Features and Subfeatures

SECOND-LEVEL

COMPONENT NAME

FEATURE

 FEATURE

THIRD-LEVEL FEATURE

RSAT-DNS-Server

DNS Server Tools

RSAT-Fax

Fax Server Tools

RSAT-File-Services*

File Services Tools

RSAT-NPAS*

Network Policy and Access Services

Tools

RSAT-Print-Services

Print Services Tools

RSAT-RDS*

Remote Desktop Services Tools¹

RSAT-UDDI

Universal Description, Discovery, and

Integration (UDDI) Services Tools2

RSAT-Web-Server

Web Server (Internet Information

Services, IIS) Tools

RSAT-WDS

Windows Deployment Services Tools

RSAT-Hyper-V

Hyper-V Tools

RSAT-Feature-Tools

Feature Administration Tools

RSAT-BitLocker*

BitLocker Drive

Encryption Tools¹

RSAT-BITS-Server

BITS Server Exten-

sions Tools

RSAT-Clustering

Failover Clustering

Tools

RSAT-NLB

Network Load

Balancing Tools

RSAT-SMTP

Simple Mail Trans-

fer Protocol (SMTP)

Server Tools

RSAT-WINS

Windows Internet

Naming Service

(WINS) Server Tools

Removable-Storage

Removable Storage Manager2

RPC-over-HTTP-

RPC over HTTP Proxy

Proxy

244

 CHAPTER 8 Managing Roles, Role Services, and Features

TABLE 8-2 Component Names for Key Features and Subfeatures

SECOND-LEVEL

COMPONENT NAME

FEATURE

 FEATURE

THIRD-LEVEL FEATURE

Simple-TCPIP

Simple TCP/IP Services

SMTP-Server

Simple Mail Transfer Protocol (SMTP) Server

SNMP-Services*

Simple Network Management Protocol Services

Storage-Mgr-SANS

Storage Manager for SANs

Subsystem-UNIX-

Subsystem for UNIX-Based Applications

Apps

Telnet-Client

Telnet Client

Telnet-Server

Telnet Server

TFTP-Client

Trivial File Transfer Protocol (TFTP) Client

Biometric-

Windows Biometric Framework¹

Framework

Windows-

Windows Internal Database

InternalDB

PowerShell

Windows PowerShell3

Backup-Features

Windows Server Backup Features

Backup

Windows Server Backup

Backup-Tools

Command-Line Tools

Migration

Windows Server Migration Tools¹

WSRM

Windows System Resource Manager

WinRM-IIS-Ext

WinRM IIS Extension

WINS-Server

WINS Server

Wireless-Networking Wireless Local Area Network (LAN) Service

XPS-Viewer

XML Paper Specification (XPS) Viewer

Checking Installed Roles, Role Services, and Features

Before modifying a server’s configuration, you check its current configuration and

carefully plan how adding or removing a role, role service, or feature will affect a

server’s overall performance. Although you typically want to combine complementary

roles, doing so increases the workload on the server, so you need to optimize the

server hardware accordingly.

Managing Roles, Role Services, and Features CHAPTER 8

245

At a standard or elevated PowerShell prompt, you can determine the roles, role services, and features that are installed on a server by typing Get-WindowsFeature.

Get-WindowsFeature then lists the confi guration status of each available role, role

service, and feature. Installed roles, role services, and features are highlighted and

marked as being installed. In the output, roles and role services are listed before

features as shown in the following example and sample output:

get-windowsfeature

get-windowsfeature

Display Name Name

Display Name Name

------------ ----

------------ ----

[] Active Directory Certificate Services AD-Certificate

[] Active Directory Certificate Services AD-Certificate

 [] Certification Authority ADCS-Cert-Authority

 [] Certification Authority ADCS-Cert-Authority

 [] Certification Authority Web Enrollment ADCS-Web-Enrollment

 [] Certification Authority Web Enrollment ADCS-Web-Enrollment

 [] Online Responder ADCS-Online-Cert

 [] Online Responder ADCS-Online-Cert

 [] Network Device Enrollment Service ADCS-Device-Enrollment

 [] Network Device Enrollment Service ADCS-Device-Enrollment

 [] Certificate Enrollment Web Service ADCS-Enroll-Web-Svc

 [] Certificate Enrollment Web Service ADCS-Enroll-Web-Svc

 [] Certificate Enrollment Policy Web Service ADCS-Enroll-Web-Pol

 [] Certificate Enrollment Policy Web Service ADCS-Enroll-Web-Pol

[X] Active Directory Domain Services AD-Domain-Services

[X] Active Directory Domain Services AD-Domain-Services

 [X] Active Directory Domain Controller ADDS-Domain-Controller

 [X] Active Directory Domain Controller ADDS-Domain-Controller

 [X] Identity Management for UNIX ADDS-Identity-Mgmt

 [X] Identity Management for UNIX ADDS-Identity-Mgmt

 [X] Server for Network Information Services ADDS-NIS

 [X] Server for Network Information Services ADDS-NIS

 [X] Password Synchronization ADDS-Password-Sync

 [X] Password Synchronization ADDS-Password-Sync

 [X] Administration Tools ADDS-IDMU-Tools

 [X] Administration Tools ADDS-IDMU-Tools

[X] Active Directory Federation Services AD-Federation-Services

[X] Active Directory Federation Services AD-Federation-Services

 [X] Federation Service ADFS-Federation

 [X] Federation Service ADFS-Federation

 [X] Federation Service Proxy ADFS-Proxy

 [X] Federation Service Proxy ADFS-Proxy

 [X] AD FS Web Agents ADFS-Web-Agents

 [X] AD FS Web Agents ADFS-Web-Agents

 [X] Claims-aware Agent ADFS-Claims

 [X] Claims-aware Agent ADFS-Claims

 [X] Windows Token-based Agent ADFS-Windows-Token

 [X] Windows Token-based Agent ADFS-Windows-Token

[] Active Directory Lightweight Directory Services ADLDS

[] Active Directory Lightweight Directory Services ADLDS

[X] Active Directory Rights Management Services ADRMS

[X] Active Directory Rights Management Services ADRMS

 [X] Active Directory Rights Management Server ADRMS-Server

 [X] Active Directory Rights Management Server ADRMS-Server

 [X] Identity Federation Support ADRMS-Identity

 [X] Identity Federation Support ADRMS-Identity

. . .

. . .

[X] .NET Framework 3.5.1 Features NET-Framework

[X] .NET Framework 3.5.1 Features NET-Framework

 [X] .NET Framework 3.5.1 NET-Framework-Core

 [X] .NET Framework 3.5.1 NET-Framework-Core

 [X] WCF Activation NET-Win-CFAC

 [X] WCF Activation NET-Win-CFAC

 [X] HTTP Activation NET-HTTP-Activation

 [X] HTTP Activation NET-HTTP-Activation

 [X] Non-HTTP Activation NET-Non-HTTP-Activ

 [X] Non-HTTP Activation NET-Non-HTTP-Activ

[] Background Intelligent Transfer Service (BITS) BITS

[] Background Intelligent Transfer Service (BITS) BITS

 [] Compact Server BITS-LWDLServer

 [] Compact Server BITS-LWDLServer

 [] IIS Server Extension BITS-IIS-Ext

 [] IIS Server Extension BITS-IIS-Ext

[] BitLocker Drive Encryption BitLocker

[] BitLocker Drive Encryption BitLocker

246

CHAPTER 8 Managing Roles, Role Services, and Features

 You can use wildcard characters to review the status for a subset of components by name. For example, if you want to check the status of only Active Directory–

related components, you can enter Get-WindowsFeature -name ad* or

Get-WindowsFeature ad*.

In addition to helping you determine at a glance what components are installed,

Get-WindowsFeature can help you document a server’s confi guration. To do this,

you can save the output in a fi le as standard text using the redirection symbol (>) as

shown in this example:

Get-WindowsFeature > ServerConfig03-21-2010.txt

Get-WindowsFeature > ServerConfig03-21-2010.txt

In this example, you save the output to a text fi le named ServerConfi g03-21-

2010.txt.

Installing Roles, Role Services, and Features

The ServerManager module is the PowerShell component you use to install roles,

role services, and features. Roles, role services, and features can be dependent on

other roles, role services, and features. When you install roles, role services, and

features, Server Manager prompts you to install any additional roles, role services,

or features that are required.

Adding Roles, Role Services, and Features

At an elevated command prompt, you can install roles, role services, and features

by typing add-windowsfeature ComponentName, where ComponentName is the name of the component to install, as listed in Table 8-1 or Table 8-2. You can install

subordinate components by including the –IncludeAllSubFeature parameter as

shown in the following example and sample output:

add-windowsfeature fs-dfs -IncludeAllSubFeature

add-windowsfeature fs-dfs -IncludeAllSubFeature

Success Restart Needed Exit Code Feature Result

Success Restart Needed Exit Code Feature Result

------- -------------- --------- -------------

True No Success {DFS Replication, DFS Namespaces}

True No Success {DFS Replication, DFS Namespaces}

Here, you install the Distributed File System role service as well as the subordi-

nate DFS Namespaces and DFS Replication role services. As PowerShell works, you

see a Start Installation progress bar. When the installation is complete, you see the

result. The output for a successful installation should look similar to the example.

As you can see, the output specifi es whether the installation was successful,

whether a restart is needed, an exit code, and a list of the exact changes made. The

exit code can be different from the Success status. For example, if the components

Managing Roles, Role Services, and Features CHAPTER 8

247

you specify are already installed, the exit code is NoChangeNeeded, as shown in this example and sample output:

add-windowsfeature –name net-framework -includeallsubfeature

add-windowsfeature –name net-framework -includeallsubfeature

Success Restart Needed Exit Code Feature Result

Success Restart Needed Exit Code Feature Result

------- -------------- --------- -------------

True No NoChangeNeeded {}

True No NoChangeNeeded {}

Here, you see that Add-WindowsFeature was successful but didn’t actually make

any changes. The Feature Result shows no changes as well.

Add-WindowsFeature allows you to specify component names by getting the

input from the output of another command. Consider the following example and

sample output:

get-windowsfeature bits* | add-windowsfeature

get-windowsfeature bits* | add-windowsfeature

WARNING: [Installation] Succeeded: [Background Intelligent Transfer

WARNING: [Installation] Succeeded: [Background Intelligent Transfer

Service (BITS)] Compact Server. You must restart this server to finish

Service (BITS)] Compact Server. You must restart this server to finish

the installation process.

the installation process.

Success Restart Needed Exit Code Feature Result

Success Restart Needed Exit Code Feature Result

------- -------------- --------- -------------

True Yes SuccessRestartRequired { BITS-LWDLServer,

True Yes SuccessRestartRequired { BITS-LWDLServer,

BITS-IIS-Ext }

BITS-IIS-Ext }

Here, Add-WindowsFeature gets the list of components to install from the Get-

WindowsFeature cmdlet. You install the Background Intelligent Transfer Service

(BITS) role service as well as the subordinate Compact Server and IIS Server Exten-

sion role services. Because you must restart the server to complete the installation

of BITS, you see a warning message as well as results.

If a restart is required to complete an installation, you can have the Add-

WindowsFeature cmdlet restart the computer by including the –Restart parameter.

Also note that a pending restart can prevent you from adding or removing other

components. You’ll see a related error message as well as the standard output:

Add-WindowsFeature: Please restart the computer before trying to install

Add-WindowsFeature: Please restart the computer before trying to install

more roles/features.

more roles/features.

Success Restart Needed Exit Code Feature Result

Success Restart Needed Exit Code Feature Result

------- -------------- --------- -------------

------- -------------- --------- -------------

False Yes FailedRestartRequired { }

False Yes FailedRestartRequired { }

248

CHAPTER 8 Managing Roles, Role Services, and Features

Handling Confi guration Errors and Other Issues

Some components cannot be installed from the command line. If you try to install

one of these components, you’ll see a warning as shown in the following example

and sample output:

get-windowsfeature ad-fe* | add-windowsfeature

get-windowsfeature ad-fe* | add-windowsfeature

WARNING: Installation of ‘Active Directory Federation Services’ is not

WARNING: Installation of ‘Active Directory Federation Services’ is not

supported on the command line. Skipping . . .

supported on the command line. Skipping . . .

Success Restart Needed Exit Code Feature Result

Success Restart Needed Exit Code Feature Result

------- -------------- --------- -------------

True No NoChangeNeeded { }

True No NoChangeNeeded { }

To test the installation prior to performing the actual operation, you can use

the –WhatIf parameter. If you are trying to install components that are already

installed, you see a message in the output stating no changes were made, such as

get-windowsfeature ad-d* | add-windowsfeature -whatif

get-windowsfeature ad-d* | add-windowsfeature -whatif

What if: Checking if running in ‘WhatIf’ Mode.

What if: Checking if running in ‘WhatIf’ Mode.

Success Restart Needed Exit Code Feature Result

Success Restart Needed Exit Code Feature Result

------- -------------- --------- -------------

------- -------------- --------- -------------

True No NoChangeNeeded {}

True No NoChangeNeeded {}

If an error occurs and Add-WindowsFeature is not able to perform the operation

specifi ed, you see an error. Generally, error text is shown in red and includes an

error fl ag and error text as shown in the following example output:

The term ‘add-windowsfeature’ is not recognized as a cmdlet, function,

The term ‘add-windowsfeature’ is not recognized as a cmdlet, function,

operable program, or script file. Verify the term and try again.

operable program, or script file. Verify the term and try again.

At line:1 char:19

At line:1 char:19

+ add-windowsfeature <<<< fs-dfs

+ add-windowsfeature <<<< fs-dfs

 + CategoryInfo : ObjectNotFound: (add-windowsfeature:String)

 + CategoryInfo : ObjectNotFound: (add-windowsfeature:String)

[], CommandNotFoundException

[], CommandNotFoundException

 + FullyQualifiedErrorId : CommandNotFoundException

 + FullyQualifiedErrorId : CommandNotFoundException

This error indicates that PowerShell doesn’t recognize the Add-WindowsFeature

cmdlet. You see this error if you forget to import the ServerManager module using the

command import-module servermanager.

Managing Roles, Role Services, and Features CHAPTER 8

249

Another common error you’ll see occurs when you don’t use an elevated admin-

istrator PowerShell prompt:

Add-WindowsFeature: Because of security restrictions imposed by User

Add-WindowsFeature: Because of security restrictions imposed by User

Account Control you must run Add-WindowsFeature in a Windows PowerShell

Account Control you must run Add-WindowsFeature in a Windows PowerShell

session opened with elevated rights.

session opened with elevated rights.

To resolve this problem, right-click the PowerShell shortcut on the menu and

select Run As Administrator. This opens an administrator PowerShell prompt.

When you install components, Add-WindowsFeature writes extended logging

information to %SystemRoot%\logs\servermanager.log. This logging information

details every operation performed by Add-WindowsFeature. You can write the

detailed information to an alternate location by including the –LogPath parameter.

In this example, you write the logging information to C:\logs\install.log:

add-windowsfeature BITS -IncludeAllSubFeature -LogPath

add-windowsfeature BITS -IncludeAllSubFeature -LogPath

c:\logs\install.log

c:\logs\install.log

Finally, because PowerShell returns the output as an object, you can pass the

output object along the pipeline as necessary. You also can apply alternative

formatting to the output, such as list formatting, as shown in this example and

sample output:

get-windowsfeature net-* | add-windowsfeature | format-list *

get-windowsfeature net-* | add-windowsfeature | format-list *

Success : True

Success : True

RestartNeeded : No

RestartNeeded : No

FeatureResult : { }

FeatureResult : { }

ExitCode : NoChangeNeeded

ExitCode : NoChangeNeeded

Uninstalling Roles, Role Services, and Features

The ServerManager module is the PowerShell component you use to uninstall roles,

role services, and features. Roles, role services, and features can be dependent on

other roles, role services, and features. If you try to remove a required component

of an installed role, role service, or feature, Server Manager warns that you cannot

remove the component unless you also remove the other role, role service, or feature.

Removing Roles, Role Services, and Features

At an elevated command prompt, you can uninstall roles, role services, and features

by typing remove-windowsfeature ComponentName, where ComponentName

is the name of the component to uninstall as listed in Table 8-1 or Table 8-2. When

250

CHAPTER 8 Managing Roles, Role Services, and Features

you uninstall a top-level component, subordinate components are automatically

uninstalled as well. Consider the following example and sample output:

remove-windowsfeature net-framework

remove-windowsfeature net-framework

WARNING: [Removal] Succeeded: [Background Intelligent Transfer Service

WARNING: [Removal] Succeeded: [Background Intelligent Transfer Service

(BITS)] Compact Server. You must restart this server to finish the

(BITS)] Compact Server. You must restart this server to finish the

removal process.

removal process.

Success Restart Needed Exit Code Feature Result

Success Restart Needed Exit Code Feature Result

------- -------------- --------- -------------

------- -------------- --------- -------------

True Yes SuccessRestartRequired {Compact Server, IIS

True Yes SuccessRestartRequired {Compact Server, IIS

Server Extension}

Server Extension}

Here, you uninstall the BITS role service as well as the subordinate Compact

Server and IIS Server Extension role services. As PowerShell works, you see a Start

Removal progress bar. When the removal is complete, you see the result. The output

for a successful removal should look similar to the example. Because you must

restart the server to complete the removal of BITS, you see a warning message as

well as results.

If a restart is required to complete a removal, you can have the Remove-

WindowsFeature cmdlet restart the computer by including the –Restart parameter. As

with installation, you can test the removal prior to performing the actual operation

using the –WhatIf parameter. If you are trying to remove components that aren’t

installed, you see a note stating no changes were made, such as

remove-windowsfeature net-framework -whatif

remove-windowsfeature net-framework -whatif

What if: Checking if running in ‘WhatIf’ Mode.

What if: Checking if running in ‘WhatIf’ Mode.

Success Restart Needed Exit Code Feature Result

Success Restart Needed Exit Code Feature Result

------- -------------- --------- -------------

True No NoChangeNeeded {}

True No NoChangeNeeded {}

Remove-WindowsFeature allows you to specify component names by getting

the input from the output of another command. Consider following example

and sample output:

get-windowsfeature fs-* | remove-windowsfeature

get-windowsfeature fs-* | remove-windowsfeature

Success Restart Needed Exit Code Feature Result

Success Restart Needed Exit Code Feature Result

------- -------------- --------- -------------

------- -------------- --------- -------------

True No Success {DFS Replication, DFS Namespaces}

True No Success {DFS Replication, DFS Namespaces}

Here, Remove-WindowsFeature gets the list of components to remove from the

Get-WindowsFeature cmdlet. You uninstall the Distributed File System role service

as well as the subordinate role services.

Managing Roles, Role Services, and Features CHAPTER 8

251

Handling Removal Errors and Other Issues

If an error occurs and Remove-WindowsFeature is not able to perform the operation

specifi ed, you see an error. The errors you see are similar to those for adding

components.

In some cases, you might not be able to uninstall a component. Typically, this

occurs because a component is required by or depended on by another role, role

service, or feature. Consider the following example and sample output:

get-windowsfeature fs-* | remove-windowsfeature

get-windowsfeature fs-* | remove-windowsfeature

Remove-WindowsFeature : DFS Replication and DFS Namesspace cannot be

Remove-WindowsFeature : DFS Replication and DFS Namesspace cannot be

removed from a domain controller.

removed from a domain controller.

Success Restart Needed Exit Code Feature Result

Success Restart Needed Exit Code Feature Result

------- -------------- --------- -------------

------- -------------- --------- -------------

False No Failed {}

False No Failed {}

Here, you try to uninstall the Distributed File System role service as well as

the subordinate role services on a domain controller. However, you are unable to

remove these role services because they are required on domain controllers.

During the removal process, Remove-WindowsFeature writes extended logging

information to %SystemRoot%\logs\servermanager.log. As with the installation

process, you can write the detailed information to an alternate location by including

the –logPath parameter. Here is an example:

remove-windowsfeature net-framework -logpath c:\logs\uninstall.log

remove-windowsfeature net-framework -logpath c:\logs\uninstall.log

252

CHAPTER 8 Managing Roles, Role Services, and Features

C H A P T E R 9

Inventorying and Evaluating

Windows Systems

N

Getting Basic System Information 253

N

Examining the System Confi guration and the Working Environment 257

N

Evaluating System Hardware 267

Often when you are working with a user’s computer or a remote server, you’ll

want to examine the working environment and computer confi guration

details. For example, you might want to know who is logged on, the current system

time, or what accounts are available locally. You might also want to know what

processor and how much RAM are installed. To do this and much more, you can

take an inventory of your computers.

While you are inventorying your computers, you also might want to evaluate

the hardware confi guration and determine whether there are issues that need your

attention. For example, if a computer’s primary disk is getting low in free space

or a computer has little available memory, you’ll want to note this at the least and

possibly take preventative measures.

Getting Basic System Information

Sometimes when you are working with a computer, you won’t know basic informa-

tion, such as the name of the computer, the logon domain, or the current user. This

can happen when you get called to support a computer in another department

within your organization and when you are working remotely. Items that help you

quickly gather basic user and system information include the following:

N $env:computername Displays the name of the computer

$env:computername

$env:computername

253

N $env:username Displays the name of the user currently logged on to the system, such as wrstanek

$env:username

$env:username

N $env:userdomain Displays the logon domain of the current user, such as

CPANDL

$env:userdomain

$env:userdomain

N Get-Date Displays the current system date or current system time

Get-Date [-Date] DateTime

Get-Date [-Date] DateTime

Get-Date –DisplayHint [Date | Time]

Get-Date –DisplayHint [Date | Time]

N Set-Date Sets the current system date or current system time

Set-Date [-Date]

Set-Date [-Date] DateTime

 DateTime

Set-Date [-Adjust]

Set-Date [-Adjust] TimeChange

 TimeChange

N Get-Credential Gets a credential needed for authentication

Get-Credential [-Credential]

Get-Credential [-Credential] Credential

 Credential

Determining the Current User, Domain, and Computer Name

Often, you can obtain the basic information you need about the working environ-

ment from environment variables. The most common details you might need to

know include the name of the computer, the identity of the current user, and the

logon domain.

You can obtain the user, domain, and computer name information by using

$env:username, $env:userdomain, and $env:computername, respectively. In the

following example and sample output, you write this information to the console:

write-host "Domain: $env:userdomain 'nUser: $env:username 'nComputer:

write-host "Domain: $env:userdomain 'nUser: $env:username 'nComputer:

$env:computername"

$env:computername"

Domain: CPANDL

User: wrstanek

User: wrstanek

Computer: TECHPC76

Computer: TECHPC76

Here, the user is wrstanek, the computer is TechPC76, and the user’s logon

domain is CPANDL.

254

CHAPTER 9 Inventorying and Evaluating Windows Systems

 A faster alternative that provides even more information about the working

environment is to list all available environment variables and their values as shown

in this example and sample output:

get-childitem env:

get-childitem env:

Name Value

Name Value

---- -----

ALLUSERSPROFILE C:\ProgramData

ALLUSERSPROFILE C:\ProgramData

APPDATA C:\Users\WilliamS\AppData\Roaming

APPDATA C:\Users\WilliamS\AppData\Roaming

CommonProgramFiles C:\Program Files\Common Files

CommonProgramFiles C:\Program Files\Common Files

COMPUTERNAME TECHPC125

COMPUTERNAME TECHPC125

ComSpec C:\Windows\system32\cmd.exe

ComSpec C:\Windows\system32\cmd.exe

FP_NO_HOST_CHECK NO

FP_NO_HOST_CHECK NO

HOMEDRIVE C:

HOMEDRIVE C:

HOMEPATH \Users\WilliamS

HOMEPATH \Users\WilliamS

LOCALAPPDATA C:\Users\WilliamS\AppData\Local

LOCALAPPDATA C:\Users\WilliamS\AppData\Local

LOGONSERVER \\ENGPC42

LOGONSERVER \\ENGPC42

NUMBER_OF_PROCESSORS 4

NUMBER_OF_PROCESSORS 4

OS Windows_NT

OS Windows_NT

Path C:\Windows\system32;C:\Windows;

Path C:\Windows\system32;C:\Windows;

PATHEXT .COM;.EXE;.BAT;.CMD;.VBS; JS;.PSC1

PATHEXT .COM;.EXE;.BAT;.CMD;.VBS; JS;.PSC1

PROCESSOR_ARCHITECTURE x86

PROCESSOR_ARCHITECTURE x86

PROCESSOR_IDENTIFIER x86 Family GenuineIntel

PROCESSOR_IDENTIFIER x86 Family GenuineIntel

PROCESSOR_LEVEL 6

PROCESSOR_LEVEL 6

PROCESSOR_REVISION 0f07

PROCESSOR_REVISION 0f07

ProgramData C:\ProgramData

ProgramData C:\ProgramData

ProgramFiles C:\Program Files

ProgramFiles C:\Program Files

PSMODULEPATH C:\Windows\System32\WindowsPowerShell;

PSMODULEPATH C:\Windows\System32\WindowsPowerShell;

PUBLIC C:\Users\Public

PUBLIC C:\Users\Public

SystemDrive C:

SystemDrive C:

SystemRoot C:\Windows

SystemRoot C:\Windows

TEMP C:\Users\WilliamS\AppData\Local\Temp

TEMP C:\Users\WilliamS\AppData\Local\Temp

USERDOMAIN ENGPC42

USERDOMAIN ENGPC42

USERNAME WilliamS

USERNAME WilliamS

USERPROFILE C:\Users\WilliamS

USERPROFILE C:\Users\WilliamS

Determining and Setting the Date and Time

You can get the current date and time using Get-Date. To use Get-Date, simply type

the cmdlet name at the PowerShell prompt and press Enter. The output of Get-Date

is the current date and time as shown in the following example and sample output:

get-date

get-date

Tuesday, March 16, 2010 10:40:51 AM

Tuesday, March 16, 2010 10:40:51 AM

Inventorying and Evaluating Windows Systems CHAPTER 9

255

If you want only the current date or current time, use the –DisplayHint parameter.

While the output of Get-Date –DisplayHint Date is the current date—such as

Tuesday, March 16, 2010—the output of Get-Date –DisplayHint Time is the

current time, such as 10:40:51 AM. Here is an example and sample output:

get-date –displayhint time

get-date –displayhint time

10:40:51 AM

10:40:51 AM

To set the date, time, or both, you must use an elevated administrator PowerShell

prompt. Simply follow Set-Date with the desired date and time enclosed in quota-

tion marks.

You enter the current date in MM-DD-YY format, where MM is for the two-digit

month, DD is for the two-digit day, and YY is for the two-digit year, such as typing 03-20-10 for March 20, 2010, as shown in the following example:

set-date "03-20-10"

set-date "03-20-10"

You enter the current time in HH:MM or HH:MM:SS format, where HH is for

the two-digit hour, MM is for the two-digit minute, and SS is for the two-digit second. If you enter the time without designating AM for A.M. or PM for P.M., the

time command assumes you are using a 24-hour clock, where hours from 00 to

11 indicate A.M. and hours from 12 to 23 indicate P.M. The following example sets

the time to 3:30 P.M.:

set-date "3:30 PM"

set-date "3:30 PM"

You can set the date and time at the same time. All of the following examples set

the date and time to March 20, 2010, 3:30 P.M.:

set-date "03-20-10 03:30 PM"

set-date "03-20-10 03:30 PM"

set-date "03-20-10 03:30:00 PM"

set-date "03-20-10 03:30:00 PM"

set-date "03-20-10 15:30:00"

set-date "03-20-10 15:30:00"

You also can adjust the time forward or backward using the –Adjust parameter.

Type Set-Date -Adjust followed by the time adjustment. Specify the time change in

HH:MM:SS format. The following example sets the time ahead 30 minutes:

set-date –adjust 00:30:00

set-date –adjust 00:30:00

To adjust the time backward, use a minus sign (–) to indicate that you want to

subtract time. The following example sets the time back one hour:

set-date –adjust -01:00:00

set-date –adjust -01:00:00

256

CHAPTER 9 Inventorying and Evaluating Windows Systems

 TIP The Get-Date cmdlet returns a DateTime object. Before you experiment with setting the date and time, store the current date and time in a variable by typing

$date = get-date. When you are done testing, restore the date and time by typing

set-date $date. Then adjust the time as necessary to get the current time exactly.

Specifying Authentication Credentials

When you are working with some cmdlets and objects in PowerShell that modify

system information, you might need to specify a credential for authentication.

Whether in a script or at the prompt, the easiest way to do this is to use Get-

Credential to obtain a Credential object and save the result in a variable for later

use. Consider the following example:

$cred = get-credential

$cred = get-credential

When PowerShell reads this command, PowerShell prompts you for a user name

and password and then stores the credentials provided in the $cred variable. It is

important to point out that the credentials prompt is displayed simply because you

typed Get-Credential.

You also can specify that you want the credentials for a specifi c user in a specifi c

domain. In the following example, you request the credentials for the TestUser ac-

count in the DevD domain:

$cred = get-credential –credential devd\testuser

$cred = get-credential –credential devd\testuser

A Credential object has UserName and Password properties that you can work

with. Although the user name is stored as a regular string, the password is stored

as a secure, encrypted string. Knowing this, you can reference the user name and

password stored in $cred as follows:

$user = $cred.username

$user = $cred.username

$password = $cred.password

$password = $cred.password

Examining the System Confi guration and the Working

Environment

Sometimes when you are working with a computer, you’ll want to obtain detailed

information on the system confi guration or the operating system. With mission-

critical systems, you might want to save or print this information for easy reference.

Items that help you gather detailed system information include the following:

N Get-HotFix Gets information about service packs and updates applied

to the local computer or specifi ed computers. Use –Id to look for a specifi c

hotfi x by its identifi er. Use –Description to get hotfi xes by type.

Inventorying and Evaluating Windows Systems CHAPTER 9

257

Get-HotFix [[–Id | -Description]

Get-HotFix [[–Id | -Description] HotFixes

 HotFixes] {AddtlParams}

] {AddtlParams}

AddtlParams=

AddtlParams=

[-Credential

[-Credential Credential

 C

] [-ComputerName

 redential

 ComputerName1, ComputerName2,

] [-ComputerName

 ...

 ..]

 .

N Win32_ComputerSystem Lists detailed information about the local

computer or a specifi ed computer.

Get-Wmiobject -Class Win32_ComputerSystem [-ComputerName

Get-Wmiobject -Class Win32_ComputerSystem [-ComputerName

 ComputerName1, ComputerName2, ...

 ComputerName1, ComputerName2, ..] [–Credential

 .] [–Credential Credential

 Credential] |

] |

format-list *

N Win32_OperatingSystem Lists detailed information about the operating

system installed on the local computer or a specifi ed computer.

Get-Wmiobject -Class Win32_OperatingSystem [-ComputerName

Get-Wmiobject -Class Win32_OperatingSystem [-ComputerName

 ComputerName1, ComputerName2, ...

 ComputerName1, ComputerName2, ..] [–Credential

 .] [–Credential Credential

 Credential] |

] |

format-list *

format-list *

N Win32_UserAccount Lists the user accounts created or available on a

computer, which can include local user accounts and domain user accounts.

Get-Wmiobject -Class Win32_UserAccount [-ComputerName

Get-Wmiobject -Class Win32_UserAccount [-ComputerName

 ComputerName1, ComputerName2, ...

 ComputerName1, ComputerName2, ..] [–Credential

 .] [–Credential Credential

 Credential] |

] |

format-list Caption, Name, Domain, FullName, SID

format-list Caption, Name, Domain, FullName, SID

N Win32_Group Lists the groups created or available on a computer, which

can include local user accounts and domain user accounts.

Get-Wmiobject -Class Win32_Group [-ComputerName

Get-Wmiobject -Class Win32_Group [-ComputerName ComputerName1,

 ComputerName1,

 ComputerName2, ...

 ComputerName2, ..] [–Credential

 .] [–Credential Credential

 Credential] | format-list Caption,

] | format-list Caption,

Name, Domain, SID

Name, Domain, SID

To use these commands on a local computer, simply type the commands on a

single line using the syntax shown.

Determining Windows Updates and Service Packs

With Get-HotFix, you can use the –ComputerName parameter to specify computers

to examine in a comma-separated list as shown in this example:

get-hotfix –ComputerName fileserver84, dcserver32, dbserver11

get-hotfix –ComputerName fileserver84, dcserver32, dbserver11

However, to access remote computers, you’ll often need to provide credentials,

and you can do this using the –Credential parameter. Note that although you can

provide credentials for remote connections, you typically won’t be able to provide

258

CHAPTER 9 Inventorying and Evaluating Windows Systems

credentials for working with the local computer (and this is why you need to start with an elevated, administrator prompt if required). The following example shows

how you can prompt directly for a required credential:

get-hotfix –Credential (get-credential) –ComputerName fileserver84,

get-hotfix –Credential (get-credential) –ComputerName fileserver84,

dcserver32, dbserver11

dcserver32, dbserver11

You also can use a stored credential as shown in this example:

$cred = get-credential

get-hotfix –Credential $cred –ComputerName fileserver84, dcserver32,

get-hotfix –Credential $cred –ComputerName fileserver84, dcserver32,

dbserver11

dbserver11

Because you’ll often work with the same remote computers, you might want to

get the names of the remote computers from a fi le. To do this, enter each computer

name on a separate line in a text fi le and save this text fi le to a location where you

can always access it, such as a network share. Then get the content from the fi le as

your input to the –ComputerName parameter as shown in this example:

get-hotfix –Credential (get-credential) –ComputerName (get-content

g

et-hotfix –Credential (get-credential) –ComputerName (get-content

c:\d

c:\data\servers.txt)

ata\servers.txt)

Or get it as shown in this example and sample output:

$comp = get-content c:\data\servers.txt

$comp = get-content c:\data\servers.txt

$cred = get-credential

$cred = get-credential

get-hotfix –Credential $cred –ComputerName $comp

get-hotfix –Credential $cred –ComputerName $comp

Source Description HotFixID InstalledBy InstalledOn

Source Description HotFixID InstalledBy InstalledOn

------ ----------- -------- ----------- -----------

TECHPC75 {026C2636-... 12/19/2009

TECHPC75 {026C2636-... 12/19/

2009

12:00:00 AM

12:00:00 AM

TECHPC75 {AFB4DC8C-... 10/22/2010

TECHPC75 {AFB4DC8C-... 10/22/

2010

12:00:00 AM

12:00:00 AM

TECHPC75 Update KB937286 TECHPC75\wrstanek 10/15/2010

TECHPC75 Up

date KB937286 TECHPC75\wrstanek 10/15/2010

3:50:09 AM

3:50:09 AM

TECHPC75 Software Update 928439 TECHPC75\wrstanek 4/18/2010

TECHPC75 Software Up

date 928439 TECHPC75\wrstanek 4/18/2010

4:10:35 PM

4:10:35 PM

TECHPC75 Security Update KB925902 NT AUTHORITY\SYSTEM 4/17/2010

TECHPC75 Security Update KB925902 NT AUTHORITY\SYSTEM 4/17/

2010

4:57:48 PM

4:57:48 PM

TECHPC75 Update KB929399 NT AUTHORITY\SYSTEM 4/17/2010

TECHPC75 Update KB929399 NT AUTHORITY\SYSTEM 4/17/2010

4:57:48 PM

4:57:48 PM

TECHPC75 Update KB929777 NT AUTHORITY\SYSTEM 4/17/2010

TECHPC75 Update KB929777 NT AUTHORITY\SYSTEM 4/17/2010

4:57:48 PM

4:57:48 PM

Inventorying and Evaluating Windows Systems CHAPTER 9

259

Here, you are getting a list of hotfi xes on a specifi ed set of remote computers using credentials you entered when prompted. Each hotfi x is listed by

N Source Shows the name of the source computer.

N Description Shows the type of hotfi x. Types of hotfi xes include software

update, security update, and service pack. Hotfi xes also can be listed simply

as update or hotfi x.

N HotFixID Shows the identifi er for the hotfi x, which can be a globally

unique identifi er (GUID), an update identifi cation number, or a knowledge

base identifi cation number.

N InstalledBy Shows the name of the user who installed the update. If a

specifi c user name is listed, this user installed the update or the update was

installed on behalf of the user when the user was logged on. If the user is

listed as NT AUTHORITY\SYSTEM, the update was automatically installed by

Windows Update.

N InstalledOn Shows the date and time the update was installed.

Using the –Id and –Description parameters, you can look for hotfi xes with a

specifi c identifi er or a specifi c descriptive type. In the following example and sample

output, you look for service packs installed on the local computer:

get-hotfix -description "Service Pack"

get-hotfix -description "Service Pack"

Source Description HotFixID InstalledBy InstalledOn

Source Description HotFixID InstalledBy InstalledOn

------ ----------- -------- ----------- -----------

------ ----------- -------- ----------- -----------

TECHPC16 Service Pack KB936330 TECHPC16\CharleneD 10/15/2008

T

ECHPC16 Service Pack KB936330 TECHPC16\CharleneD 10/15/2008

2:18:22 AM

2:18:22 AM

When you are trying to determine the update status of computers through-

out the enterprise, you can take this idea a step further by logging the output or

by tracking computers that don’t have a particular update installed. For example,

if KB936330 is a new service pack that you want to ensure is installed on specifi c

computers, you can type the name of each computer to check on a separate line

in a text fi le and store this list in a fi le named computers.txt. Next, you can use

Get-HotFix to check each of these computers and log your fi ndings. One approach

is shown in the following example:

$comp = get-content c:\data\computers.txt

$comp = get-content c:\data\computers.txt

$comp | foreach { if (!(get-hotfix -id KB936330 -computername $_)) { add-

$comp | foreach { if (!(get-hotfix -id KB936330 -computername $_)) { add-

content $_ -path log.txt }}

content $_ -path log.txt }}

Here, you retrieve a list of computer names and store each computer name as an

item in an array called $comp, and then you use a ForEach loop to take an action on

each item (computer name) in the array. That action is an If Not test that executes

Get-HotFix for each computer. As a result, if a computer does not have the required

260

CHAPTER 9 Inventorying and Evaluating Windows Systems

hotfi x, you write the computer’s name to a fi le called log.txt in the current working directory. When you use $_ in this way, it refers to the current item in a specifi ed

array, which in this case is the name of a computer.

Obtaining Detailed System Information

When inventorying computers in the enterprise, you’ll also want to use the

Win32_OperatingSystem and Win32_ComputerSystem classes. You use the Win32_

Operating System object and its properties to obtain summary information regarding

the operating system confi guration, as shown in the following example and partial

output:

Get-WmiObject -Class Win32_OperatingSystem | Format-List *

Get-WmiObject -Class Win32_OperatingSystem | Format-List *

Status : OK

Status : OK

Name : Microsoft® Windows Server® 2008 Enterprise

Name : Microsoft® Windows Server® 2008 Enterprise

 |C:\Windows|\Device\Harddisk1\Partition1

 |C:\Windows|\Device\Harddisk1\Partition1

FreePhysicalMemory : 679172

FreePhysicalMemory : 679172

FreeSpaceInPagingFiles : 3749368

FreeSpaceInPagingFiles : 3749368

FreeVirtualMemory : 2748020

FreeVirtualMemory : 2748020

BootDevice : \Device\HarddiskVolume2

BootDevice : \Device\HarddiskVolume2

BuildNumber : 7000

BuildNumber : 7000

BuildType : Multiprocessor Free

BuildType : Multiprocessor Free

Caption : Microsoftr Windows Server 2008

Caption : Microsoftr Windows Server 2008

CodeSet : 1252

CodeSet : 1252

CountryCode : 1

CountryCode : 1

When you are working with Win32_OperatingSystem, some of the most important

information includes the following:

N The amount of free physical memory and free virtual memory, which are

tracked in the TotalVisibleMemorySize and TotalVirtualMemorySize proper-

ties, respectively.

N The boot device, system directory, build number, build type, and operating

system type, which are tracked in the BootDevice, SystemDirectory,

BuildNumber, BuildType, and Caption properties, respectively.

N The encryption level and operating system architecture, which are tracked in

the EncryptionLevel and OSArchitecture properties, respectively.

N The last boot-up time, which is tracked in the LastBootUp time property.

The TotalVisibleMemorySize and TotalVirtualMemorySize are shown in

kilobytes. To quickly convert the values provided to megabytes, copy each value

separately, paste it at the PowerShell prompt, and then type /1kb. For example, if

the TotalVisibleMemorySize is 3403604, you type 3403604/1kb and the answer is

3323.832 MB.

Inventorying and Evaluating Windows Systems CHAPTER 9

261

 NOTE Are you wondering why I didn’t use /1mb to get a value in megabytes? The value of the kb constant is 1024. The value of the mb constant is 1048576. If a value is

in bytes, you can type /1mb to convert the value to megabytes. However, if the value

is in kilobytes already, you must divide by 1024 to convert the value to megabytes.

Knowing this, you can obtain and store the memory values in megabytes using

the following technique:

$os = get-wmiobject -class win32_operatingsystem

$os = get-wmiobject -class win32_operatingsystem

$AvailMemInMB = $os.totalvisiblememorysize/1kb

$AvailMemInMB = $os.totalvisiblememorysize/1kb

$VirtualMemInMB = $os.totalvirtualmemorysize/1kb

$VirtualMemInMB = $os.totalvirtualmemorysize/1kb

Whether you are at the PowerShell prompt or working in a script, the

$AvailMemInMB and $VirtualMemInMB variables are then available for your use.

The boot device, system device, system directory, and build information provide

essential information about the confi guration of the operating system. You can

use this information to determine the physical disk device on which Windows is

installed, the actual directory in the fi le system, the type of build as either single or

multiprocessor, and the exact operating system version installed.

Knowing this, you can obtain and store the related information using the follow-

ing technique:

$os = get-wmiobject -class win32_operatingsystem

$os = get-wmiobject -class win32_operatingsystem

$BootDevice = $os.bootdevice

$BootDevice = $os.bootdevice

$SystemDevice = $os.systemdevice

$SystemDevice = $os.systemdevice

$SystemDirectory = $os.systemdirectory

$SystemDirectory = $os.systemdirectory

$BuildType = $os.buildtype

$BuildType = $os.buildtype

$OSType = $os.caption

$OSType = $os.caption

You can then work with these values as necessary. For example, if you want to

perform an action only when Windows Vista is installed, you can use the following

technique:

$os = get-wmiobject -class win32_operatingsystem

$os = get-wmiobject -class win32_operatingsystem

$OSType = $os.caption

$OSType = $os.caption

if ($OSType -match "Vista") {

if ($OSType -match "Vista") {

#Vista is installed; run the commands in this code block

#Vista is installed; run the commands in this code block

} else {

} else {

#Vista is not installed; run these commands instead

#Vista is not installed; run these commands instead

}

Using the LastBootUpTime property of the Win32_OperatingSystem object, you

can determine how long a computer has been running since it was last started. To

do this, you perform a comparison of the current date and time with the date and

time stored in the LastBootUpTime property. However, because the value stored

in this property is a string rather than a DateTime object, you must fi rst convert

262

CHAPTER 9 Inventorying and Evaluating Windows Systems

the string value to a DateTime object using the ConvertToDateTime() method. An example and sample output follows:

$date = get-date

$date = get-date

$os = get-wmiobject -class win32_operatingsystem

$os = get-wmiobject -class win32_operatingsystem

$uptime = $os.ConvertToDateTime($os.lastbootuptime)

$uptime = $os.ConvertToDateTime($os.lastbootuptime)

write-host ($date - $uptime)

write-host ($date - $uptime)

09:20:57.2639083

09:20:57.2639083

Here, you store the current date and time in the $date variable; then you use

Get-WmiObject to get the Win32_OperatingSystem object. Next, you use the

ConvertToDateTime() method to convert the string value in the LastBootUpTime

property to a DateTime object. Finally, you perform a comparison of the current

date and the boot date and display the difference. In this example, the computer

has been running about 9 hours and 20 minutes.

You use the Win32_ComputerSystem object and its properties to obtain sum-

mary information regarding the computer confi guration as shown in the following

example and partial output:

Get-WmiObject -Class Win32_ComputerSystem | Format-List *

Get-WmiObject -Class Win32_ComputerSystem | Format-List *

AdminPasswordStatus : 1

BootupState : Normal boot

BootupState : Normal boot

ChassisBootupState : 3

ChassisBootupState : 3

KeyboardPasswordStatus : 2

KeyboardPasswordStatus : 2

PowerOnPasswordStatus : 1

PowerOnPasswordStatus : 1

PowerSupplyState : 3

PowerSupplyState : 3

PowerState : 0

PowerState : 0

FrontPanelResetStatus : 2

FrontPanelResetStatus : 2

ThermalState : 3

ThermalState : 3

Status : OK

Status : OK

Name : CORPSERVER84

Name : CORPSERVER84

With the Win32_ComputerSystem object, there is a great deal of useful infor-

mation about the computer and its confi guration. Some of the most important

information includes the following:

N The boot-up state and status of the computer, which are tracked in the

BootUpState and Status properties, respectively.

N The name, DNS host name, domain, and domain role, which are tracked in

the Name, DNSHostName, Domain, and DomainRole properties, respectively.

N The system type and total physical memory, which are tracked in the

properties SystemType and TotalPhysicalMemory, respectively. Note that

the total memory available is shown in bytes, not kilobytes.

Inventorying and Evaluating Windows Systems CHAPTER 9

263

The boot-up state and status can help you decide whether you want to modify

the confi guration of a computer, which is helpful when you are working with a

remote computer and you don’t know its current status. In the following example,

you perform one block of commands if the computer is in a normal state and

another block of commands if the computer is in a different state:

$cs = get-wmiobject -class win32_computersystem

$cs = get-wmiobject -class win32_computersystem

$BootUpState = $cs.bootupstate

$BootUpState = $cs.bootupstate

if ($BootUpState -match "Normal") {

if ($BootUpState -match "Normal") {

"Computer is in a normal state, so run these commands."

"Computer is in a normal state, so run these commands."

} else {

"Computer not in a normal state, so run these commands instead."

"Computer not in a normal state, so run these commands instead."

}

A computer’s name and domain information also can help you decide whether

you want to work with the computer. For example, although you might want to

reconfi gure desktops and laptops, you might not want to reconfi gure servers and

domain controllers. To help you avoid modifying computers of a specifi c type

inadvertently, you can perform actions based on a computer’s role as shown in this

example:

$cs = get-wmiobject -class win32_computersystem

$cs = get-wmiobject -class win32_computersystem

$DomainRole = $cs.domainrole

$DomainRole = $cs.domainrole

switch –regex ($DomainRole) {

switch –regex ($DomainRole) {

[0-1] { "This computer is a workstation." }

[0-1] { "This computer is a workstation." }

[2-3] { "This computer is a server but not a domain controller."}

[2-3] { "This computer is a server but not a domain controller."}

[4-5] { "This computer is a domain controller."}

[4-5] { "This computer is a domain controller."}

default { "Unknown value."}

default { "Unknown value."}

}

In the shift to 64-bit computing, you might want to track which computers in the

enterprise support 64-bit operating systems, which computers are already running

64-bit operating systems, or both. To determine whether a computer has a 64-bit

operating system installed already, you can use the OSArchitecture property of

the Win32_OperatingSystem object. To determine whether a computer supports a

64-bit operating system, you can use the Name and Description properties of the

Win32_Processor object.

You can type the name of each computer to check on a separate line in a text fi le

and store this list in a fi le called computers.txt.

Next, you can use Get-WmiObject to check each of these computers and log

your fi ndings. One approach is shown in the following example:

$comp = get-content computers.txt

$comp = get-content computers.txt

#Get list of computers that don't have 64-bit OS installed

#Get list of computers that don't have 64-bit OS installed

264

CHAPTER 9 Inventorying and Evaluating Windows Systems

$comp | foreach {

$comp | foreach {

$os = get-wmiobject -class win32_operatingsystem -computername $_

$os = get-wmiobject -class win32_operatingsystem -computername $_

$OSArch = $os.osarchitecture

$OSArch = $os.osarchitecture

if (!($OSArch –match "32-bit")) { add-content $_ -path next.txt }

if (!($OSArch –match "32-bit")) { add-content $_ -path next.txt }

}

#Determine which computers without 64-bit OS can have 64-bit OS

#Determine which computers without 64-bit OS can have 64-bit OS

$comp2 = get-content next.txt

$comp2 = get-content next.txt

$comp2 | foreach {

$comp2 | foreach {

$ps = get-wmiobject -class win32_processor -computername $_

$ps = get-wmiobject -class win32_processor -computername $_

$SystemType = $ps.description

$SystemType = $ps.description

if ($SystemType –like "*x64*") { add-content $_ -path final.txt }

if ($SystemType –like "*x64*") { add-content $_ -path final.txt }

}

Here, you retrieve a list of computer names from a fi le called computers.txt in

the current working directory and store each computer name as an item in an array

called $comp. Then you use a ForEach loop to take an action on each item (computer

name) in the array. As a result, if a computer has a 32-bit operating system installed,

you write the computer’s name to a fi le called next.txt in the current working direc-

tory. When you use $_ in this way, it refers to the current item in a specifi ed array,

which in this case is the name of a computer.

In the fi nal series of commands, you retrieve the list of computers that don’t have

64-bit operating systems installed and store each computer name as an item in an

array called $comp2. Then you use a ForEach loop to take an action on each item

(computer name) in the array. As a result, if a computer is capable of having a 64-bit

operating system installed, you write the computer’s name to a fi le called fi nal.txt in

the current working directory. The result is a quick but clean approach to inventory-

ing your computers. Any computer listed in fi nal.txt is capable of having a 64-bit

operating system but currently has a 32-bit operating system.

Determining Available Users and Groups

As part of your inventory of computers in the enterprise, you’ll often want to know

what users and groups have been created and are available. One way to examine

users and groups is to use the Win32_UserAccount and Win32_Group classes. As

shown in the following example and sample output, Win32_UserAccount lists user

accounts by name, domain, and more:

Get-Wmiobject -Class Win32_UserAccount | format-list Caption,Name,Domain

Get-Wmiobject -Class Win32_UserAccount | format-list Caption,Name,Domain

Caption : TECHPC76\Administrator

Caption : TECHPC76\Administrator

Name : Administrator

Name : Administrator

Domain : TECHPC76

Domain : TECHPC76

Caption : TECHPC76\Barney

Caption : TECHPC76\Barney

Name : Barney

Name : Barney

Domain : TECHPC76

Domain : TECHPC76

Inventorying and Evaluating Windows Systems CHAPTER 9

265

Here, you are working with the local computer. If the user or group was created on the local computer, the computer name is set as the domain. Otherwise, the

Active Directory domain name is set as the domain.

You can use the –ComputerName parameter to specify the remote computer

or computers that you want to work with and –Credential to specify credentials

required for authentication. To see how these could be used, consider the following

example:

$cred = get-credential

$cred = get-credential

$comp = get-content c:\data\computers.txt

$comp = get-content c:\data\computers.txt

$comp | foreach { Get-Wmiobject -Class Win32_UserAccount `

$comp | foreach { Get-Wmiobject -Class Win32_UserAccount `

-ComputerName $_ -Credential $cred }

-ComputerName $_ -Credential $cred }

Here, you prompt the user for a credential and store the credential in the $cred

variable. Then you retrieve a list of computer names and store each computer name

as an item in an array called $comp. Afterward, you use a ForEach loop to take an

action on each item (computer name) in the array. That action is to list the user

accounts available on the computer.

 TIP You can enter these commands at the PowerShell prompt or use them in scripts.

At the prompt, enter each command separately. In a script, place each command on a

separate line. Either way works and will yield the same results. For continued lines, you

might fi nd it easier to enter the divided lines as a single line. If you do, don’t forget to remove the continuation character (`).

Because some scheduled tasks and backup processes require a computer to

have a specifi c local user or group available, you might want to determine whether

computers have this user or group. One way to do this is shown in the following

example:

$comp = get-content computers.txt

$comp = get-content computers.txt

#Get list of computers that don't have the BackUpUser account

#Get list of computers that don't have the BackUpUser account

$comp | foreach {

$Global:currentc = $_

$Global:currentc = $_

$ua = get-wmiobject -class win32_useraccount -computername $_

$ua = get-wmiobject -class win32_useraccount -computername $_

$ua | foreach {

$ua | foreach {

$user = $_.name

$user = $_.name

if ($user –eq "sqldb") {add-content $currentc -path valid.txt}

if ($user –eq "sqldb") {add-content $currentc -path valid.txt}

}

}

}

Here, you retrieve a list of computer names from a fi le called computers.txt in

the current working directory and store each computer name as an item in an array

266

CHAPTER 9 Inventorying and Evaluating Windows Systems

called $comp. Then you use a ForEach loop to take an action on each item (computer name) in the $comp array. First, you store the current computer name in a global

variable so that you can access it later. Then you retrieve objects representing all the

user accounts on the computer and store these in an array called $ua. Next, you use

a second ForEach loop to take action on each item (group object) in the $ua array.

As a result, if a computer has a group called SqlDb, you write the computer’s name

to a fi le called valid.txt in the current working directory.

Because we are using direct matching, you can use the –Filter parameter of the

Get-WmiObject to get only the user account you are looking for in the fi rst place.

The –Filter parameter works like a Where clause in a WMI query. Here is an example

of the revised code:

$comp = get-content computers.txt

$comp = get-content computers.txt

#Get list of computers that don't have the BackUpUser account

#Get list of computers that don't have the BackUpUser account

$comp | foreach {

$comp | foreach {

if (get-wmiobject -class win32_useraccount -computername $_ -filter ìf (get-wmiobject -class win32_useraccount -computername $_ -filter `

"Name='sqldb'") { add-content $_ -path valid.txt }

"Name='sqldb'") { add-content $_ -path valid.txt }

}

Note the syntax for the Where clause in the string passed to the –Filter param-

eter. Because you use double quotes to enclose the string, you must use single

quotes to match a specifi c property value.

You can work with Win32_Group in much the same way. Although this is a quick

and easy way to inventory users and groups, you’ll want to use the Active Directory

cmdlets to work with and manage users and groups. Other useful Win32 classes for

inventorying computers include Win32_BIOS, Win32_NetworkAdapterConfi gura-

tion, Win32_PhysicalMemory, Win32_Processor, and Win32_LogicalDisk.

Evaluating System Hardware

When you are working with computers in the enterprise, you’ll often need to obtain

detailed confi guration information for hardware components. This confi guration

information will help you evaluate hardware to ensure it is functioning properly and

help you diagnose and resolve diffi cult issues, such as hardware malfunctions and

improper confi gurations.

Checking Firmware Versions and Status

A computer’s fi rmware can be the source of many hardware problems. The fi rmware

must be confi gured properly and should be kept current with the latest revision.

You can use Win32_BIOS to examine the status, version, language, and manu-

facturer of a computer’s BIOS fi rmware. When you are trying to determine whether

Inventorying and Evaluating Windows Systems CHAPTER 9

267

a computer’s BIOS is up to date, look at the SMBIOSBIOSVersion information. An example and sample output using WIN32_BIOS follow:

get-wmiobject win32_bios | format-list * |

get-wmiobject win32_bios | format-list * |

Out-File -append -filepath save.txt

Out-File -append -filepath save.txt

__PATH : \\ENGPC42\root\cimv2:Win32_BIOS.Name="Default

__PATH : \\ENGPC42\root\cimv2:Win32_BIOS.Name="Default

 System BIOS",SoftwareElementID="Default

 System BIOS",SoftwareElementID="Default

 System BIOS",SoftwareElementState=3,

 System BIOS",SoftwareElementState=3,

 TargetOperatingSystem=0,Version="GATEWA - 11d"

 TargetOperatingSystem=0,Version="GATEWA - 11d"

Status : OK

Status : OK

Name : Default System BIOS

Name : Default System BIOS

SMBIOSPresent : True

SMBIOSPresent : True

BIOSVersion : {GATEWA - 11d}

BIOSVersion : {GATEWA - 11d}

CurrentLanguage : enUS

CurrentLanguage : enUS

Manufacturer : Intel Corp.

Manufacturer : Intel Corp.

SMBIOSBIOSVersion : LA97510J.15A.0285.2007.0906.0226

SMBIOSBIOSVersion : LA97510J.15A.0285.2007.0906.0226

To help keep your computers current, you might want to inventory the fi rmware

versions that are installed and determine whether computers need a fi rmware

update. The SMBIOSBIOSVersion property provides the value you can use to do this.

In the following example, you retrieve the BIOS version for a group of computers

and store the computer name and BIOS version in a fi le called bioscheck.txt:

$comp = get-content computers.txt

$comp = get-content computers.txt

#Store BIOS version for each computer

#Store BIOS version for each computer

$comp | foreach {

$comp | foreach {

$bios = get-wmiobject -class win32_bios -computername $_

$bios = get-wmiobject -class win32_bios -computername $_

$BiosVersion = $bios.SMBIOSBIOSVersion

$BiosVersion = $bios.SMBIOSBIOSVersion

add-content ("$_ $BiosVersion") -path bioscheck.txt

add-content ("$_ $BiosVersion") -path bioscheck.txt

}

If your organization has standardized its computers, you might want to determine

whether the BIOS version for a group of computers is up to date. One way to do this

is to check to see if the current BIOS version is installed and log information about

computers that have a different BIOS version, as shown in this example:

$comp = get-content computers.txt

$comp = get-content computers.txt

$comp | foreach {

$bios = get-wmiobject -class win32_bios -computername $_

$bios = get-wmiobject -class win32_bios -computername $_

$BiosVersion = $bios.SMBIOSBIOSVersion

$BiosVersion = $bios.SMBIOSBIOSVersion

if (!($BiosVersion –match "LA97510J.15A.0285.2007.0906.0226")) {

if (!($BiosVersion –match "LA97510J.15A.0285.2007.0906.0226")) {

add-content ("$_ $BiosVersion") -path checkfailed.txt }

add-content ("$_ $BiosVersion") -path checkfailed.txt }

}

268

CHAPTER 9 Inventorying and Evaluating Windows Systems

Checking Physical Memory and Processors

Few things affect a computer’s performance more than the physical memory

and processors that are installed. You’ll want to ensure computers have adequate

memory and processors to support their daily tasks.

You can use Win32_PhysicalMemory to get detailed information for each individual

DIMM of memory on a computer as well as status indicators that could indicate

problems. A DIMM is a group of memory chips on a card handled as a single unit.

Many computers have an even number of memory card banks, such as two or

four. A computer’s memory cards should all have the same data width and speed.

An example and sample output using Win32_PhysicalMemory follow:

get-wmiobject Win32_PhysicalMemory | format-list * |

get-wmiobject Win32_PhysicalMemory | format-list * |

Out-File -append -filepath save.txt

Out-File -append -filepath save.txt

__PATH : \\ENGPC42\root\cimv2:Win32_PhysicalMemory.Tag="Physical Memory

__PATH : \\ENGPC42\root\cimv2:Win32_PhysicalMemory.Tag="Physical Memory

0"

BankLabel : CHAN A DIMM 0

BankLabel : CHAN A DIMM 0

Capacity : 1073741824

Capacity : 1073741824

Caption : Physical Memory

Caption : Physical Memory

DataWidth : 64

DataWidth : 64

Description : Physical Memory

Description : Physical Memory

DeviceLocator : J6H1

DeviceLocator : J6H1

FormFactor : 8

FormFactor : 8

HotSwappable :

HotSwappable :

InstallDate :

InstallDate :

InterleaveDataDepth : 1

InterleaveDataDepth : 1

InterleavePosition : 1

InterleavePosition : 1

Manufacturer : 0xAD00000000000000

Manufacturer : 0xAD00000000000000

MemoryType : 21

MemoryType : 21

Model :

Model :

Name : Physical Memory

Name : Physical Memory

Speed : 667

Speed : 667

Status :

Status :

Tag : Physical Memory 0

Tag : Physical Memory 0

TotalWidth : 64

TotalWidth : 64

TypeDetail : 128

TypeDetail : 128

Version :

Version :

The BankLabel entry shows the channel and DIMM number, such as CHAN A

DIMM 0. Capacity is shown in bytes. To quickly convert the value provided to

megabytes, copy the value and paste it at the PowerShell prompt and then type

/1mb, such as 1073741824/1mb.

The Status entry tells you the current error status. The error status can help you

identify a malfunctioning DIMM. The error status also can help you identify a DIMM

that is not valid for the computer.

Inventorying and Evaluating Windows Systems CHAPTER 9

269

 REAL WORLD Windows Vista and later versions of Windows have built-in features to help you identify and diagnose problems with memory. If you suspect a computer

has a memory problem that isn’t being automatically detected, you can run the

 Windows Memory Diagnostics utility by completing the following steps:

1. Click Start, type mdsched.exe in the Search box, and then press Enter.

2. Choose whether to restart the computer and run the tool immediately or

schedule the tool to run at the next restart.

3. Windows Memory Diagnostics runs automatically after the computer restarts

and performs a standard memory test automatically. If you want to perform

fewer or more tests, press F1, use the Up and Down arrow keys to set the Test

Mix as Basic, Standard, or Extended, and then press F10 to apply the desired

settings and resume testing.

4. When testing is completed, the computer restarts automatically. You’ll see the

test results when you log on.

Note also that if a computer crashes because of failing memory, and Windows Memory

Diagnostics detects this, you are prompted to schedule a memory test the next time

the computer is restarted.

The total memory capacity is the sum of the capacity of all memory banks on the

computer. As discussed in Chapter 6, “Mastering Aliases, Functions, and Objects,”

the Win32_PhysicalMemoryArray class has a MaxCapacity property that tracks the

total physical memory in kilobytes as well as a MemoryDevices property that tracks

the number of memory banks.

You can use Win32_Processor to get detailed information about each processor

on a computer. When you are working with processors, note the clock speed, data

width, deviceID, and cache details as well as the number of cores and number of

logical processor. A single processor might have multiple processor cores, and

each of those processor cores might have a logical representation. Processor cache

usually is shown in kilobytes. While most desktop computers have only L2 cache,

many servers will have L3 and additional cache. An example and sample output

using Win32_Processor follow:

get-wmiobject Win32_Processor | format-list * |

get-wmiobject Win32_Processor | format-list * |

Out-File -append -filepath save.txt

Out-File -append -filepath save.txt

__PATH : \\ENGPC42\root\cimv2:Win32_Processor.DeviceID="CPU0"

__PATH : \\ENGPC42\root\cimv2:Win32_Processor.DeviceID="CPU0"

CpuStatus : 1

CpuStatus : 1

CreationClassName : Win32_Processor

CreationClassName : Win32_Processor

CurrentClockSpeed : 2660

CurrentClockSpeed : 2660

CurrentVoltage : 16

CurrentVoltage : 16

DataWidth : 64

DataWidth : 64

Description : x64 Family 6 Model 15 Stepping 7

Description : x64 Family 6 Model 15 Stepping 7

DeviceID : CPU0

DeviceID : CPU0

ErrorCleared :

270

CHAPTER 9 Inventorying and Evaluating Windows Systems

ErrorDescription :

ErrorDescription :

ExtClock : 266

ExtClock : 266

Family : 190

Family : 190

InstallDate :

InstallDate :

L2CacheSize : 4096

L2CacheSize : 4096

L2CacheSpeed :

L2CacheSpeed :

L3CacheSize : 0

L3CacheSize : 0

L3CacheSpeed : 0

L3CacheSpeed : 0

LastErrorCode :

LastErrorCode :

Level : 6

Level : 6

LoadPercentage : 2

LoadPercentage : 2

Manufacturer : GenuineIntel

Manufacturer : GenuineIntel

MaxClockSpeed : 2660

MaxClockSpeed : 2660

Name : Intel(R) Core(TM)2 Quad CPU @ 2.66GHz

Name : Intel(R) Core(TM)2 Quad CPU @ 2.66GHz

NumberOfCores : 4

NumberOfCores : 4

NumberOfLogicalProcessors : 4

NumberOfLogicalProcessors : 4

PowerManagementCapabilities :

PowerManagementCapabilities :

PowerManagementSupported : False

PowerManagementSupported : False

ProcessorId : BFEBFBFF000006F7

ProcessorId : BFEBFBFF000006F7

ProcessorType : 3

ProcessorType : 3

Revision : 3847

Revision : 3847

Role : CPU

Role : CPU

SocketDesignation : LGA 775

SocketDesignation : LGA 775

Status : OK

Status : OK

In the output, note the ErrorCleared, ErrorDescription, and Status properties.

These properties can help you identify a malfunctioning processor. Note error

details or error conditions that are shown, and take corrective action as appropriate.

For example, if a processor has an error status that restarting the computer doesn’t

resolve, you might need to service the motherboard, the processor, or both. In

some cases, updating the motherboard fi rmware can resolve intermittent errors.

Checking Hard Disks and Partitions

Hard disks are used to store data. Computers need enough disk space to accommo-

date the operating system fi les, the working environment, and user data. To ensure

proper performance, hard disks need ample free space as well because this ensures

housekeeping tasks and disk cleanup activities can be performed automatically as

necessary.

WMI provides several Win32 classes for working with disk drives. Using Win32_

DiskDrive, you can work with physical drives, including both fi xed hard drives and

USB reader devices. If you want to see only a computer’s fi xed hard disks, you can

fi lter on the media type as shown in the following example and sample output:

get-wmiobject -class win32_diskdrive -filter '

get-wmiobject -class win32_diskdrive -filter '

"MediaType='Fixed hard disk media'"

"MediaType='Fixed hard disk media'"

Inventorying and Evaluating Windows Systems CHAPTER 9

271

Partitions : 2

Partitions : 2

DeviceID : \\.\PHYSICALDRIVE0

DeviceID : \\.\PHYSICALDRIVE0

Model : ST3500630AS

Model : ST3500630AS

Size : 500105249280

Size : 500105249280

Caption : ST3500630AS

Caption : ST3500630AS

Partitions : 1

Partitions : 1

DeviceID : \\.\PHYSICALDRIVE1

DeviceID : \\.\PHYSICALDRIVE1

Model : ST3500630AS

Model : ST3500630AS

Size : 500105249280

Size : 500105249280

Caption : ST3500630AS

Caption : ST3500630AS

The computer in this example has two fi xed hard drives. PhysicalDrive0 has two

disk partitions. PhysicalDrive1 has one disk partition.

If you fi lter the output by the device ID or caption, you can get information

that is more detailed for individual fi xed hard drives. In the following example and

sample output, you examine a fi xed hard drive by its caption:

get-wmiobject -class win32_diskdrive -filter "Caption='ST3500630AS'" |

get-wmiobject -class win32_diskdrive -filter "Caption='ST3500630AS'" |

format-list *

format-list *

ConfigManagerErrorCode : 0

ConfigManagerErrorCode : 0

LastErrorCode :

LastErrorCode :

NeedsCleaning :

NeedsCleaning :

Status : OK

Status : OK

DeviceID : \\.\PHYSICALDRIVE0

DeviceID : \\.\PHYSICALDRIVE0

StatusInfo :

StatusInfo :

Partitions : 2

Partitions : 2

BytesPerSector : 512

BytesPerSector : 512

ConfigManagerUserConfig : False

ConfigManagerUserConfig : False

DefaultBlockSize :

DefaultBlockSize :

Index : 0

Index : 0

InstallDate :

InstallDate :

InterfaceType : SCSI

InterfaceType : SCSI

SectorsPerTrack : 63

SectorsPerTrack : 63

Size : 500105249280

Size : 500105249280

TotalCylinders : 60801

TotalCylinders : 60801

TotalHeads : 255

TotalHeads : 255

TotalSectors : 976768065

TotalSectors : 976768065

TotalTracks : 15504255

TotalTracks : 15504255

TracksPerCylinder : 255

TracksPerCylinder : 255

Caption : ST3500630AS

Caption : ST3500630AS

CompressionMethod :

CompressionMethod :

ErrorCleared :

ErrorCleared :

ErrorDescription :

ErrorDescription :

ErrorMethodology :

ErrorMethodology :

FirmwareRevision : 3.AA

FirmwareRevision : 3.AA

272

CHAPTER 9 Inventorying and Evaluating Windows Systems

Manufacturer : (Standard disk drives)

Manufacturer : (Standard disk drives)

MediaLoaded : True

MediaLoaded : True

MediaType : Fixed hard disk media

MediaType : Fixed hard disk media

Model : ST3500630AS

Model : ST3500630AS

Name : \\.\PHYSICALDRIVE0

Name : \\.\PHYSICALDRIVE0

SCSIBus : 0

SCSIBus : 0

SCSILogicalUnit : 0

SCSILogicalUnit : 0

SCSIPort : 0

SCSIPort : 0

SCSITargetId : 0

SCSITargetId : 0

As you can see, the detailed information tells you the exact confi guration of the

physical device, including:

N The number of bytes per sector, sectors per track, and tracks per cylinder.

N The interface type, such as SCSI or IDE.

N The size in bytes. Divide the value by 1gb to get the size in gigabytes.

N The total number of cylinders, heads, sectors, and tracks.

N The bus, logical unit, port, and target ID.

In the output, note the ErrorCleared, ErrorDescription, ErrorMethodology, and

Status properties. These properties can help you identify a malfunctioning disk.

Note error details or error conditions that are shown, and take corrective action as

appropriate. For example, if a processor has an error status that restarting the com-

puter doesn’t resolve, you might need to service the hardware controller, the hard

disk, or both. In some cases, updating the controller fi rmware can resolve intermit-

tent errors.

You can use Win32_DiskPartition to obtain partitioning details for each fi xed

hard disk on the computer. The partitions correspond exactly to how you’ve parti-

tioned fi xed hard disks using Disk Management. As shown in the following example

and sample output, each partition of each fi xed hard disk is accessible:

get-wmiobject -class win32_diskpartition

get-wmiobject -class win32_diskpartition

NumberOfBlocks : 18603207

NumberOfBlocks : 18603207

BootPartition : False

BootPartition : False

Name : Disk #0, Partition #0

Name : Disk #0, Partition #0

PrimaryPartition : True

PrimaryPartition : True

Size : 9524841984

Size : 9524841984

Index : 0

Index : 0

NumberOfBlocks : 958164795

NumberOfBlocks : 958164795

BootPartition : True

BootPartition : True

Name : Disk #0, Partition #1

Name : Disk #0, Partition #1

PrimaryPartition : True

PrimaryPartition : True

Size : 490580375040

Size : 490580375040

Index : 1

Index : 1

Inventorying and Evaluating Windows Systems CHAPTER 9

273

NumberOfBlocks : 976768002

NumberOfBlocks : 976768002

BootPartition : False

BootPartition : False

Name : Disk #1, Partition #0

Name : Disk #1, Partition #0

PrimaryPartition : True

PrimaryPartition : True

Size : 500105217024

Size : 500105217024

Index : 0

Index : 0

The key information you need to know is listed as part of the standard output, so

you might not need to view the extended properties. In this example, the computer

has two fi xed hard disks: Disk 0 and Disk 1. Disk 0 has two partitions: Partition 0

and Partition 1. Disk 1 has one partition: Partition 0. Because partition size is shown

in bytes, you can divide the value listed by 1gb to get the size of the partition in

gigabytes.

Windows represents formatted disk partitions as logical disks. The WMI object

you can use to work with logical disks is Win32_LogicalDisk, which you can use to

get detailed information for each logical disk on a computer. However, note that

removable disks, CD/DVD drives, and paths assigned drive letters are also represented

as logical disks. You can distinguish among these elements using the Description

property. Values you’ll see include:

N CD-ROM Disc, for CD/DVD drives

N Removable Disk, for removable disks

N Local Fixed Disk, for fi xed hard drives

When you are working with the logical representation of partitions on fi xed hard

disks, note the device ID, compression status, fi le system type, free space, size, and

supported options. DeviceID shows the drive designator, such as C:. An example and

sample output using Win32_LogicalDisk follow:

get-wmiobject -class win32_logicaldisk -filter "name='c:'" |

get-wmiobject -class win32_logicaldisk -filter "name='c:'" |

format-list * | Out-File -append -filepath save.txt

format-list * | Out-File -append -filepath save.txt

Status :

Status :

Availability :

Availability :

DeviceID : C:

DeviceID : C:

StatusInfo :

StatusInfo :

Access : 0

Access : 0

BlockSize :

Caption : C:

Caption : C:

Compressed : False

Compressed : False

ConfigManagerErrorCode :

ConfigManagerErrorCode :

ConfigManagerUserConfig :

ConfigManagerUserConfig :

CreationClassName : Win32_LogicalDisk

CreationClassName : Win32_LogicalDisk

Description : Local Fixed Disk

Description : Local Fixed Disk

DriveType : 3

DriveType : 3

FileSystem : NTFS

FileSystem : NTFS

274

CHAPTER 9 Inventorying and Evaluating Windows Systems

FreeSpace : 298870042624

FreeSpace : 298870042624

InstallDate :

InstallDate :

LastErrorCode :

LastErrorCode :

MaximumComponentLength : 255

MaximumComponentLength : 255

MediaType : 12

MediaType : 12

Name : C:

Name : C:

NumberOfBlocks :

NumberOfBlocks :

QuotasDisabled : True

QuotasIncomplete : False

QuotasIncomplete : False

QuotasRebuilding : False

QuotasRebuilding : False

Size : 490580373504

Size : 490580373504

SupportsDiskQuotas : True

SupportsDiskQuotas : True

SupportsFileBasedCompression : True

SupportsFileBasedCompression : True

SystemCreationClassName : Win32_ComputerSystem

SystemCreationClassName : Win32_ComputerSystem

SystemName : ENGPC42

SystemName : ENGPC42

VolumeDirty : False

VolumeDirty : False

VolumeName :

VolumeName :

VolumeSerialNumber : 008EA097

VolumeSerialNumber : 008EA097

The FreeSpace and Size properties are shown in bytes. To quickly convert the

value provided to gigabytes, copy the value, paste it at the PowerShell prompt,

and then type /1gb, such as 302779912192/1gb. Here is an example and sample

output:

$dr = get-wmiobject -class win32_logicaldisk -filter "name='c:'"

$dr = get-wmiobject -class win32_logicaldisk -filter "name='c:'"

$free = [Math]::Round($dr.freespace/1gb)

$free = [Math]::Round($dr.freespace/1gb)

$capacity = [Math]::Round($dr.size/1gb)

$capacity = [Math]::Round($dr.size/1gb)

write-host $dr.name "on" $dr.systemname

write-host $dr.name "on" $dr.systemname

write-host "Disk Capacity: $capacity"

write-host "Disk Capacity: $capacity"

write-host "Free Space: $free"

write-host "Free Space: $free"

C: on ENGPC42

C: on ENGPC42

Disk Capacity: 457

Free Space: 278

Free Space: 278

Checking and Managing Device Drivers

Computers can have all sorts of hardware devices installed on and connected to

them. Because all of these devices require device drivers to operate properly, you’ll

often want to know detailed information about a particular device’s driver. For

example, you might want to know whether the device driver is:

N Enabled or disabled.

N Running or stopped.

N Confi gured to start automatically.

Inventorying and Evaluating Windows Systems CHAPTER 9

275

The Win32 class for working with device drivers is Win32_SystemDriver. Using

Win32_SystemDriver, you can obtain detailed confi guration and status information

on any device driver confi gured for use on a computer. You can examine device

drivers by device display name using the DisplayName property, by state using the

State property, or by start mode using the StartMode property. The display name

for a device and its driver is the same as the one shown in Device Manager.

In the following example, you use the DisplayName property to check the RAID

controller on a computer:

get-wmiobject -class win32_systemdriver | where-object '

get-wmiobject -class win32_systemdriver | where-object '

{$_.displayname -like "*raid c*"} | format-list *

{$_.displayname -like "*raid c*"} | format-list *

Status : OK

Status : OK

Name : iaStor

Name : iaStor

State : Running

State : Running

ExitCode : 0

ExitCode : 0

Started : True

Started : True

ServiceSpecificExitCode : 0

ServiceSpecificExitCode : 0

AcceptPause : False

AcceptPause : False

AcceptStop : True

AcceptStop : True

Caption : Intel RAID Controller

Caption : Intel RAID Controller

CreationClassName : Win32_SystemDriver

CreationClassName : Win32_SystemDriver

Description : Intel RAID Controller

Description : Intel RAID Controller

DesktopInteract : False

DesktopInteract : False

DisplayName : Intel RAID Controller

DisplayName : Intel RAID Controller

ErrorControl : Normal

ErrorControl : Normal

InstallDate :

InstallDate :

PathName : C:\Windows\system32\drivers\iastor.sys

PathName : C:\Windows\system32\drivers\iastor.sys

ServiceType : Kernel Driver

ServiceType : Kernel Driver

StartMode : Boot

StartMode : Boot

StartName :

StartName :

SystemCreationClassName : Win32_ComputerSystem

SystemCreationClassName : Win32_ComputerSystem

SystemName : ENGPC42

SystemName : ENGPC42

TagId : 25

TagId : 25

Site :

Site :

Container :

Container :

Generally, State is shown as either Running or Stopped. Knowing this, you can

check for device drivers in either state as shown in the following example and

sample output:

get-wmiobject -class win32_systemdriver -filter "state='Running'"

get-wmiobject -class win32_systemdriver -filter "state='Running'"

DisplayName : Microsoft ACPI Driver

DisplayName : Microsoft ACPI Driver

Name : ACPI

Name : ACPI

State : Running

State : Running

Status : OK

Status : OK

276

CHAPTER 9 Inventorying and Evaluating Windows Systems

Started : True

Started : True

DisplayName : Ancillary Function Driver for Winsock

DisplayName : Ancillary Function Driver for Winsock

Name : AFD

Name : AFD

State : Running

State : Running

Status : OK

Status : OK

Started : True

Started : True

The start mode can be set as:

N Boot Used for boot device drivers

N Manual Used for device drivers that are started manually

N Auto Used for device drivers that are started automatically

N System

Used for system device drivers

Using StartMode for your fi lter, you can list boot device drivers as shown in the

following example:

get-wmiobject -class win32_systemdriver -filter "startmode='Boot'"

get-wmiobject -class win32_systemdriver -filter "startmode='Boot'"

The Win32_SystemDriver class provides a number of methods for managing

system drivers. These methods include:

N Change() Changes the device driver confi guration. It accepts the following

parameters in the following order: DisplayName, PathName, ServiceType-

Byte, ErrorControlByte, StartMode, DesktopInteractBoolean, StartName,

StartPassword, LoadOrderGroup, LoadOrderGroupDependenciesArray, and

ServiceDependenciesArray.

 CAUTION Modifying devices at the PowerShell prompt is not something you

should do without careful forethought. PowerShell lets you make changes that will

make your computer unbootable. Before you make any changes to devices, you

should create a system restore point as discussed in Chapter 12, “Managing and

Securing the Registry.” You also might want to consider performing a full backup

of the computer.

N ChangeStartMode() Changes the start mode of the device driver. It

accepts a single parameter, which is the start mode to use. Valid values

are boot, manual, auto, or system.

 CAUTION Before you change the start mode of a device driver, ensure the driver

supports this start mode. You also should ensure that the start mode won’t affect

the computer’s ability to start.

N Delete() Deletes the device driver (if the device is in a state that allows

this). Deleting the device driver doesn’t prevent the device from being used.

To prevent the device from being used, you should disable it instead. If you

Inventorying and Evaluating Windows Systems CHAPTER 9

277

delete a device driver without disabling a device, Windows will, in most

cases, detect and reinstall the device the next time the computer is started.

As part of troubleshooting, you can sometimes delete a device’s driver to

force Windows to reinstall the device.

 CAUTION Exercise extreme caution if you plan to delete device drivers using

PowerShell. PowerShell will not warn you if you are making harmful changes to

your computer.

N InterrogateService() Connects to the device using the device driver. If the

return value is zero, WMI was able to connect to and interrogate the device

using the device driver. If the return value isn’t zero, WMI encountered a

problem while trying to communicate with the device using the device

driver. If the device is stopped or paused, this method always returns an

error status.

N PauseService() Pauses the device, which might be necessary during

troubleshooting or diagnostics. Devices that can be paused indicate this

when the AcceptPause property is set to True for their device drivers. Further,

you can pause only a device that is in a state where pausing is permitted.

N ResumeService() Resumes the device after it has been paused.

N StopService() Stops the device, which might be necessary during trouble-

shooting or diagnostics. Devices that can be stopped indicate this when the

AcceptStop property is set to True for their device drivers. Further, you can

stop only a device that is in a state where stopping is permitted.

N StartService() Starts a stopped device, including devices that are confi g-

ured for manual start up.

If you want to change the start mode for a device driver, you can use the

Change StartMode() method to specify the desired start mode. The basic syntax is

 $driverObject.ChangeStartMode(StartMode)

where $driverObject is a reference to a Win32_SystemDriver object, and StartMode

is the desired start mode entered as a string value, as shown in this example and

sample output:

$d = get-wmiobject -class win32_systemdriver | where-object '

$d = get-wmiobject -class win32_systemdriver | where-object '

{$_.displayname -like "creative audio*"}

{$_.displayname -like "creative audio*"}

$d.changestartmode("auto")

$d.changestartmode("auto")

__GENUS : 2

__CLASS : __PARAMETERS

__CLASS : __PARAMETERS

__SUPERCLASS :

__SUPERCLASS :

__DYNASTY : __PARAMETERS

__DYNASTY : __PARAMETERS

__RELPATH :

__RELPATH :

__PROPERTY_COUNT : 1

__PROPERTY_COUNT : 1

278

CHAPTER 9 Inventorying and Evaluating Windows Systems

__DERIVATION : {}

__DERIVATION : {}

__SERVER :

__SERVER :

__NAMESPACE :

__NAMESPACE :

__PATH :

__PATH :

ReturnValue : 0

ReturnValue : 0

Here, you set the start mode to Auto for a Creative Audio device. The return

value in the output is what you want to focus on. A return value of 0 (zero) indicates

success. Any other return value indicates an error. Typically, errors occur because

you aren’t using an elevated administrator PowerShell prompt, you haven’t accessed

the correct device driver, or the device isn’t in a state in which it can be confi gured.

Keep in mind that if you alter the confi guration of required device drivers, you

might not be able to start the computer. Because of this, don’t make any changes to

device drivers without careful planning and forethought.

Digging In Even More

Want to really dig in and explore what’s available on a computer? Enter the follow-

ing command as a single line to list every available .NET type:

[System.AppDomain]::CurrentDomain.GetAssemblies() |

[System.AppDomain]::CurrentDomain.GetAssemblies() |

Foreach-Object { $_.GetTypes() }

Foreach-Object { $_.GetTypes() }

You can expand on this idea by creating a function and then calling this function

with various fi lters to fi nd specifi c .NET types. The code for a ListType function follows: function ListType() {

function ListType() {

[System.AppDomain]::CurrentDomain.GetAssemblies() |

[System.AppDomain]::CurrentDomain.GetAssemblies() |

Foreach-Object { $_.GetTypes() }

Foreach-Object { $_.GetTypes() }

}

To list all .NET types, you can call the ListType function without any fi lters, as

shown in this example:

ListType

You can view specifi c .NET types if you check for names that are like a specifi ed

value. For example, to list all .NET types with “parser” as part of the name, you could

enter

ListType | ? { $_.Name -like "*parser*" }

To learn more about a .NET type, you can look at the constructors for the type.

The following example lists the constructors for all .NET types with “parser” as part

of the name:

ListType | ? { $_.Name -like "*parser*" } |

% { $_.GetConstructors() }

Inventorying and Evaluating Windows Systems CHAPTER 9

279

Pretty cool. However, not every .NET type is loaded for use. Therefore, to use a

.NET type you fi nd, you might need to load it before you use it.

Another cool trick is to examine the available COM objects on a computer. COM

objects are registered in the registry, and by exploring the appropriate registry

branches, you can fi nd COM objects that are registered for use on the computer. A

function for checking the registry follows:

function ListProgID {

function ListProgID {

param()

$paths = @("REGISTRY::HKEY_CLASSES_ROOT\CLSID")

$paths = @("REGISTRY::HKEY_CLASSES_ROOT\CLSID")

if ($env:Processor_Architecture -eq "amd64") {

if ($env:Processor_Architecture -eq "amd64") {

$paths+="REGISTRY::HKEY_CLASSES_ROOT\Wow6432Node\CLSID" }

$paths+="REGISTRY::HKEY_CLASSES_ROOT\Wow6432Node\CLSID" }

Get-ChildItem $paths -include VersionIndependentPROGID -recurse |

Get-ChildItem $paths -include VersionIndependentPROGID -recurse |

Select-Object @{

Select-Object @{

Name='ProgID'

Name='ProgID'

Expression={$_.GetValue("")}

Expression={$_.GetValue("")}

}, @{

}, @{

Name='Type'

Name='Type'

Expression={

Expression={

if ($env:Processor_Architecture -eq "amd64") { "Wow6432" }

if ($env:Processor_Architecture -eq "amd64") { "Wow6432" }

else { "32-bit" }

else { "32-bit" }

}

}

}

}

}

Here, you check the processor architecture on the computer. If the computer

is running a 32-bit operating system, you look under HKEY_CLASSES_ROOT\CLSID

for 32-bit COM objects. If the computer is running a 64-bit operating system, you

look under HKEY_CLASSES_ROOT\CLSID for 32-bit COM objects and under HKEY_

CLASSES_ROOT\Wow6432Node\CLSID for additional COM objects. You then list the

registered COM objects by their progID and type.

To use this function to list all COM objects by their ProgID and type, you could

enter the following command:

ListProgID

You can view specifi c COM objects if you check for names that are like a specifi ed

value. For example, to list all COM objects with “Microsoft” as part of the name, you

could enter

ListProgID | Where-Object { $_.ProgID -like "*Microsoft*" }

Have fun; there’s a lot here to explore. For more information on objects, .NET

types, and COM objects, see “Working with Objects” and “Working with COM and

.NET Framework Objects” in Chapter 6.

280

CHAPTER 9 Inventorying and Evaluating Windows Systems

C H A P T E R 1 0

Managing File Systems,

Security, and Auditing

N

Managing PowerShell Drives, Directories, and Files 281

N

Working with File Contents 286

N

Accessing Security Descriptors 289

N

Configuring File and Directory Permissions 296

N

Configuring File and Directory Auditing 305

In this chapter, you’ll learn techniques for managing file systems and security—

and there’s a lot more flexibility to this than most people realize. You can create,

copy, move, and delete individual directories and files. You can read and write

files, and you also can append data to files and clear the contents of files. You

can examine and set access control lists on directories and files, and you also can

take ownership of directories and files. Moreover, because you are working with

Windows PowerShell, it’s just as easy to manipulate multiple directories and files

matching specific parameters you specify as it is to work with individual directories

and files.

Managing PowerShell Drives, Directories, and Files

You can use PowerShell to manage drives, directories, and files. The core set of

features for performing related procedures were discussed previously in the “Using

Providers” section in Chapter 3, “Managing Your PowerShell Environment,” and

include the FileSystem provider, the cmdlets for working with data stores listed in

Table 3-4, and the cmdlets for working with provider drives listed in Table 3-5.

281

Adding and Removing PowerShell Drives

Using the Get-PSDrive cmdlet, you can view the PowerShell drives that currently are

available. As the following example and sample output shows, this includes actual

drives and the resources PowerShell lets you work with as if they were drives:

get-psdrive

get-psdrive

Name Provider Root

Name Provider Root

---- -------- ----

---- -------- ----

Alias Alias

Alias Alias

C FileSystem C:\

C FileSystem C:\

cert Certificate \

cert Certificate \

D FileSystem D:\

D FileSystem D:\

E FileSystem E:\

E FileSystem E:\

Env Environment

Env Environment

F FileSystem F:\

F FileSystem F:\

Function Function

Function Function

G FileSystem G:\

G FileSystem G:\

HKCU Registry HKEY_CURRENT_USER

HKCU Registry HKEY_CURRENT_USER

HKLM Registry HKEY_LOCAL_MACHINE

HKLM Registry HKEY_LOCAL_MACHINE

I FileSystem I:\

I FileSystem I:\

J FileSystem J:\

J FileSystem J:\

K FileSystem K:\

K FileSystem K:\

L FileSystem L:\

L FileSystem L:\

M FileSystem M:\

M FileSystem M:\

N FileSystem N:\

N FileSystem N:\

O FileSystem O:\

O FileSystem O:\

P FileSystem P:\

P FileSystem P:\

Q FileSystem Q:\

Q FileSystem Q:\

Variable Variable

Variable Variable

W FileSystem W:\

W FileSystem W:\

WSMan WSMan

WSMan WSMan

X FileSystem X:\

X FileSystem X:\

Y FileSystem Y:\

Y FileSystem Y:\

Z FileSystem Z:\

Z FileSystem Z:\

 NOTE To query multiple computers, use the Invoke-Command cmdlet as discussed

in Chapter 4, “Using Sessions, Jobs, and Remoting.” Here is an example:

invoke-command -computername Server43, Server27, Server82

invoke-command -computername Server43, Server27, Server82

-scriptblock { get-psdrive }

-scriptblock { get-psdrive }

You can change the working location to any of these drives using Set-Location.

Simply follow the cmdlet name with the desired drive or path relative to a drive,

such as

set-location c:

set-location c:

282

CHAPTER 10 Managing File Systems, Security, and Auditing

 or

set-location c:\logs

set-location c:\logs

When you switch drives using only the drive designator, PowerShell remembers

the working path, allowing you to return to the previous working path on a drive

simply by referencing the drive designator. See the “Navigating and Using Provider

Drives” section in Chapter 3 for more information.

You can use the New-PSDrive cmdlet to create a PowerShell drive that is mapped

to a location in a data store, which can include a shared network folder, local direc-

tory, or registry key. The drive acts as a shortcut and is available only in the current

PowerShell console. For example, if you frequently work with the C:\Data\Current\

History\Files directory, you might want to create a new drive to quickly reference

this location. When you create a drive, you specify the alias to the drive using the

–Name parameter, the provider type using the –PSProvider parameter, and the

root path using the –Root parameter, as shown in this example:

new-psdrive –name hfiles –psprovider filesystem –root c:\data\current\

new-psdrive –name hfiles –psprovider filesystem –root c:\data\current\

history\files

history\files

Here, you create a drive called hfi les as a FileSystem type to act as a shortcut to

C:\Data\Current\History\Files. You can switch to this drive by typing set-location

hfi les:. As long as you have the appropriate permissions to create drives, the cre-

ation process should be successful. A common error you might see occurs when a

like-named drive already exists.

Because the drive exists only in the current PowerShell session, the drive ceases

to exist when you exit the PowerShell console. You also can remove a drive using

Remove-PSDrive. Although you can remove drives you added to the console, you

cannot delete Windows drives or mapped network drives created by using other

methods.

 NOTE You can create a drive that maps to registry locations as well. If you do, the PSProvider type to reference is registry. Type get-psprovider to list all available

provider types.

Creating and Managing Directories and Files

In PowerShell, you work with directories and fi les in much the same way. You view

directories and fi les using Get-ChildItem as shown in many previous examples. To

create directories and fi les, you use New-Item. The basic syntax is

new-item –type [Directory | File] –path Path

Managing File Systems, Security, and Auditing CHAPTER 10

283

where you specify the type of item you are creating as either Directory or File and then use Path to specify where the directory or fi le should be created. When

you create a directory or fi le, New-Item displays results that confi rm the creation

process. In the following example, you create a C:\Logs\Backup directory, and the

resulting output confi rms that the directory was successfully created:

new-item -type directory -path c:\logs\backup

new-item -type directory -path c:\logs\backup

 Directory: C:\logs

 Directory: C:\logs

Mode LastWriteTime Length Name

Mode LastWriteTime Length Name

---- ------------- ------ ----

---- ------------- ------ ----

d---- 2/18/2009 4:54 PM backup

d---- 2/18/2009 4:54 PM backup

 NOTE To create directories and fi les on remote computers, use the Invoke-Command

cmdlet as discussed in Chapter 4. Here is an example:

invoke-command -computername Server43, Server27, Server82

invoke-command -computername Server43, Server27, Server82

-scriptblock { new-item -type directory -path c:\logs\backup }

-scriptblock { new-item -type directory -path c:\logs\backup }

As long as you have the appropriate permissions to create a directory or fi le in the

specifi ed location, the creation process should be successful. The New-Item cmdlet

even creates any required subdirectories for you automatically. In this example, if

the C:\Logs directory doesn’t exist, PowerShell creates this directory and then

creates the Backup subdirectory. When you create a fi le, PowerShell creates an

empty fi le with no contents.

Using similar procedures, you can copy, move, rename, and delete directories

and fi les.

Copying Directories and Files

You can copy directories and fi les using Copy-Item. The basic syntax for directories

and their contents is

copy-item SourcePath DestinationPath -recurse

where SourcePath is the path to the directory to copy, and DestinationPath is where you’d like to create a copy of the directory. In the following example, you copy the

C:\Logs directory (and all its contents) to C:\Logs_Old:

copy-item c:\logs c:\logs_old -recurse

copy-item c:\logs c:\logs_old -recurse

The command will create the Logs_Old directory if it does not already exist. The

basic syntax for copying fi les is

copy-item PathToSourceFile DestinationPath

284

CHAPTER 10 Managing File Systems, Security, and Auditing

 where PathToSourceFile is the path to the fi le or fi les to copy, and DestinationPath is where you’d like to create a copy of the fi le or fi les. In the following example, you

copy all the .txt fi les in the C:\Logs directory to C:\Logs_Old:

copy-item c:\logs*.txt c:\logs_old

copy-item c:\logs*.txt c:\logs_old

As long as you have the appropriate permissions, you should be able to copy

directories and fi les. You can use Copy-Item to copy resources across volumes as

shown in the following example:

copy-item c:\logs d:\logs_old -recurse

copy-item c:\logs d:\logs_old -recurse

Moving Directories and Files

You can move directories and fi les using Move-Item. The basic syntax is

move-item SourcePath DestinationPath

where SourcePath is the current path to the directory or fi le, and DestinationPath is the new path for the directory or fi le. When you move a directory or fi le, Move-Item

displays an error that indicates failure but doesn’t display any output to indicate

success. In the following example, you move the C:\Logs directory (and all its contents)

to C:\Backup\Logs:

move-item c:\logs c:\backup\logs

move-item c:\logs c:\backup\logs

The following command moves all the .txt files in the C:\Logs directory to

C:\Backup\Logs:

move-item c:\logs*.txt c:\backup\logs

move-item c:\logs*.txt c:\backup\logs

As long as you have the appropriate permissions, you should be able to move

directories and fi les. However, some caveats apply. Because you cannot use Move-

Item to move resources across volumes, the source and destination path must

have identical roots. If fi les in a directory are in use, a fi le is in use, or a directory is shared, you won’t be able to move the directory or fi le.

Renaming Directories and Files

To rename directories and fi les, you use the Rename-Item cmdlet. Rename-Item has

the following syntax:

rename-item OriginalNamePath NewName

where OriginalNamePath is the full path to the directory or fi le, and NewName is the new name for the directory or fi le. In the following example, you rename Log1.txt

in the C:\Logs directory as Log1_hist.txt:

rename-item c:\logs\log1.txt log1_hist.txt

rename-item c:\logs\log1.txt log1_hist.txt

Managing File Systems, Security, and Auditing CHAPTER 10

285

As long as you have the appropriate permissions, you should be able to rename

directories and fi les. However, if fi les in a directory are in use, a fi le is in use, or a

directory is shared, you won’t be able to rename the directory or fi le.

Deleting Directories and Files

You can delete directories and fi les using the Remove-Item cmdlet. Remove-Item

has the following syntax:

remove-item NamePath [-force]

where NamePath is the full path to the directory or fi le that you want to remove,

and –Force is an optional parameter to force the removal of a directory or

fi le. In the following example, you delete the D:\Logs_Old directory (and all its

contents):

remove-item d:\logs_old

remove-item d:\logs_old

As long as you have the appropriate permissions, you should be able to remove

directories and fi les. However, if fi les in a directory are in use, a fi le is in use, or a

directory is shared, you won’t be able to remove the directory or fi le. Additionally,

if a directory or fi le is marked Read-Only, Hidden, or System, you’ll have to use the

–Force parameter to remove it.

Working with File Contents

Often when you are working with computers, you’ll want to create your own

confi guration and inventory records or logs to record your activities. PowerShell

makes this easy by providing a simple set of commands for reading the contents

of fi les and writing new contents to fi les.

Commands for Managing File Contents

Commands that help you access fi le resources include the following:

N Get-Content Displays the contents of fi les in a specifi ed location. Use

–Force to force access to a hidden, system, or read-only fi le. Use –TotalCount

to specify the number of lines in each matching fi le to display. Use –Include

to limit the matches to fi les meeting specifi c criteria. Use –Exclude to omit

specifi ed fi les. Both –Include and –Exclude accept wildcard characters.

Get-Content [-LiteralPath | -Path]

Get-Content [-LiteralPath | -Path] FilePath

 FilePath {AddtlParams}

{AddtlParams}

AddtlParams=

AddtlParams=

[–Credential

[–Credential Credential

 Credential] [-Delimiter

] [-Delimiter String

 String] [-Encoding

] [-Encoding Encoding

 Encoding]

]

[-Exclude

[-Exclude FilesToExclude

 FilesToExclude] [-Force] [-Include

] [-Force] [-Include FilesToInclude

 FilesToInclude]

[-TotalCount

[-TotalCount Count]

286

CHAPTER 10 Managing File Systems, Security, and Auditing

 REAL WORLD Many PowerShell cmdlets accept –Path and –LiteralPath parameters.

Both parameters specify the path to an item. However, unlike –Path, the value of

–LiteralPath is used exactly as it is typed. This means no characters are interpreted as

wildcards. If a path includes actual escape characters, enclose them in single quotation

marks because this tells PowerShell not to interpret any characters as escape sequences.

N Set-Content

Overwrites the contents of fi les in a specifi ed location. Use

–Force to force access to a hidden, system, or read-only fi le. Specify the

content to write using the –Value parameter or by pipelining input from

another command. Use –Include to limit the matches to fi les meeting

specifi c criteria. Use –Exclude to omit specifi ed fi les. Both –Include and

–Exclude accept wildcard characters.

Set-Content [-LiteralPath | -Path]

Set-Content [-LiteralPath | -Path] FilePath

 FilePath [-Value

[-Value Content

 Content]

]

{AddtlParams}

AddtlParams=

AddtlParams=

[–Credential

[–Credential Credential

 Credential] [-Encoding

] [-Encoding Encoding

 Encoding] [-Exclude

] [-Exclude

 FilesToExclude

 FilesToExclude] [-Force] [-Include

] [-Force] [-Include FilesToInclude

 FilesToInclude]

N Add-Content Adds contents to fi les in a specifi ed location. Use –Force to

force access to a hidden, system, or read-only fi le. Specify the content to

write using the –Value parameter or by pipelining input from another command.

Add-Content [-LiteralPath | -Path]

Add-Content [-LiteralPath | -Path] FilePath

 FilePath [-Value

[-Value NewContent

 NewContent]

]

{AddtlParams}

{AddtlParams}

AddtlParams=

AddtlParams=

[–Credential

[–Credential Credential

 Credential] [-Encoding

] [-Encoding Encoding

 Encoding] [-Exclude

] [-Exclude

 FilesToExclude

 FilesToExclud] [-Force] [-Include

 e] [-Force] [-Include FilesToInclude

 FilesToInclude]

N Clear-Content Clears the contents of fi les in a specifi ed location. Use

–Force to force access to a hidden, system, or read-only fi le. Use –Include to

limit the matches to fi les meeting specifi c criteria.

Add-Content [-LiteralPath | -Path]

Add-Content [-LiteralPath | -Path] FilePath

 FilePath {AddtlParams}

{AddtlParams}

AddtlParams=

[–Credential

[–Credential Credential

 Credential] [-Exclude

] [-Exclude FilesToExclude

 FilesToExclude] [-Force]

] [-Force]

[-Include FilesToInclude

 FilesToInclude]

Managing File Systems, Security, and Auditing CHAPTER 10

287

Reading and Writing File Content

By default, Get-Content searches the current directory for a fi le you specify by name

or by partial name using wildcards and then displays its contents as text. This means

you can quickly display the contents of any text-based fi le at the prompt simply by

typing Get-Content followed by the name of a fi le in the current directory. The

following example gets the log1.txt fi le in the current directory:

get-content log1.txt

get-content log1.txt

To display the contents of a fi le in a specifi ed path, type the full path to the fi le.

The following example gets the log1.txt fi le in the C:\Logs directory:

get-content c:\logs\log1.txt

get-content c:\logs\log1.txt

If you use wildcards, you can display the contents of any fi les that match the

wildcard criteria. The following example displays the contents of any fi le in the

C:\Logs directory that begins with “log”:

get-content c:\logs\log*

get-content c:\logs\log*

To restrict wildcard matches to specifi c types of fi les, use the –Include parameter.

To exclude specifi c fi les or types of fi les, use the –Exclude parameter. For example, to

match only fi les with the .txt and .log extension, you can enter

get-content –include *.txt, *.log –path c:\logs\log*

get-content –include *.txt, *.log –path c:\logs\log*

Alternatively, to exclude .xml fi les and match all other fi les beginning with “log”,

you can enter

get-content –exclude *.xml –path c:\logs\log*

get-content –exclude *.xml –path c:\logs\log*

Additionally, if you want to see only the fi rst few lines of matching fi les, use

–TotalCount to specify the number of lines in each matching fi le to display. The

following example displays the fi rst 10 lines of each matching fi le:

get-content –totalcount 10 –path c:\logs\log*

get-content –totalcount 10 –path c:\logs\log*

Other cmdlets for working with the contents of fi les include Set-Content, Add-

Content, and Clear-Content. Set-Content overwrites the contents of one or more

fi les in a specifi ed location with content you specify. Add-Content adds content

you specify to the end of one or more fi les in a specifi ed location. Clear-Content

removes the contents of fi les in a specifi ed location. Because Clear-Content does

not delete the fi les, this results in fi les with no contents (empty fi les).

288

CHAPTER 10 Managing File Systems, Security, and Auditing

Accessing Security Descriptors

As an administrator, some of the most important tasks you perform have to do

with confi guring and maintaining fi le-system security. PowerShell makes this

easy by providing a simple set of commands for viewing and confi guring security

descriptors. If you save a transcript of your work or use a script to perform the

work, you can easily duplicate your efforts on one computer on other computers

in the enterprise.

Commands for Working with Security Descriptors

Commands that help you access fi le resources include the following:

N Get-Acl Gets objects that represent the security descriptor of a fi le, registry

key, or any other resource with a provider that supports the concept of security

descriptors. Use –Audit to get the audit data for the security descriptor from

the access control list.

Get-Acl [-Path]

Get-Acl [-Path] FilePaths

 FilePaths {AddtlParams}

{AddtlParams}

AddtlParams=

AddtlParams=

[-Audit] [-Exclude

[-Audit] [-Exclud

 FilesToExclude

e FilesToExclude] [-Include

] [-Include FilesToInclude

 FilesToInclude]

N Set-Acl Changes the security descriptor of a fi le, registry key, or any other

resource with a provider that supports the concept of security descriptors.

Use –AclObject to set the desired security settings.

Set-Acl [-Path]

Set-Acl [-Path] FilePaths

 FilePaths [-Aclobject]

[-Aclobject] Security

 y {AddtlParams}

{AddtlParams}

AddtlParams=

AddtlParams=

[-Exclude FilesToExclude

 FilesToExclude] [-Include

] [-Include FilesToInclude

 FilesToInclude]

 NOTE On NTFS fi le system volumes, access permissions control access to fi les and directories. If you do not have appropriate access permissions, you will not be able to

work with fi les and directories.

Getting and Setting Security Descriptors

Whenever you are working with system resources—such as directories, fi les, or

registry keys—you might want to view or modify a resource’s security descriptor.

Use Get-Acl with the –Path parameter to specify the path to resources you want to

work with. As with Get-Content, you can use wildcard characters in the path and

also include or exclude fi les using the –Include and –Exclude parameters.

Managing File Systems, Security, and Auditing CHAPTER 10

289

Get-Acl returns a separate object containing the security information for each matching fi le. By default, Get-Acl displays the path to the resource, the owner of the

resource, and a list of the access control entries on the resource. The access control

list is controlled by the resource owner. To get additional information—including

the security group of the owner, a list of auditing entries, and the full security

descriptor as an SDDL (Security Descriptor Defi nition Language) string—format the

output as a list as shown in the following example and sample output:

get-acl c:\windows\system32\windowspowershell | format-list

get-acl c:\windows\system32\windowspowershell | format-list

Path: Microsoft.PowerShell.Core\FileSystem::

Path: Microsoft.PowerShell.Core\FileSystem::

C:\windows\system32\windowspowershell

C:\windows\system32\windowspowershell

Owner : NT AUTHORITY\SYSTEM

Owner : NT AUTHORITY\SYSTEM

Group : NT AUTHORITY\SYSTEM

Group : NT AUTHORITY\SYSTEM

Access : NT SERVICE\TrustedInstaller Allow FullControl

Access : NT SERVICE\TrustedInstaller Allow FullControl

 NT SERVICE\TrustedInstaller Allow 268435456

 NT SERVICE\TrustedInstaller Allow 268435456

 NT AUTHORITY\SYSTEM Allow FullControl

 NT AUTHORITY\SYSTEM Allow FullControl

 NT AUTHORITY\SYSTEM Allow 268435456

 NT AUTHORITY\SYSTEM Allow 268435456

 BUILTIN\Administrators Allow FullControl

 BUILTIN\Administrators Allow FullControl

 BUILTIN\Administrators Allow 268435456

 BUILTIN\Administrators Allow 268435456

 BUILTIN\Users Allow ReadAndExecute, Synchronize

 BUILTIN\Users Allow ReadAndExecute, Synchronize

 BUILTIN\Users Allow -1610612736

 BUILTIN\Users Allow -1610612736

 CREATOR OWNER Allow 268435456

 CREATOR OWNER Allow 268435456

Audit :

Audit :

Sddl : O:SYG:SYD:AI(A;ID;FA;;;S-1-5-80-956008885-3418522649-1831038044-

Sddl : O:SYG:SYD:AI(A;ID;FA;;;S-1-5-80-956008885-3418522649-1831038044-

1853292631-2271478464)(A;CIIOID;GA;;;S-1-5-80-956008885-3418522649-

1853292631-2271478464)(A;CIIOID;GA;;;S-1-5-80-956008885-3418522649-

1831038044-1853292631-2271478464)(A;ID;FA;;;SY) (A;OICIIOID;GA;;;SY)

1831038044-1853292631-2271478464)(A;ID;FA;;;SY) (A;OICIIOID;GA;;;SY)

(A;ID;FA;;;BA)(A;OICIIOID;GA;;;BA)(A;ID;0x1200a9;;;BU)(A;OICIIOID;GXGR;;;

(A;ID;FA;;;BA)(A;OICIIOID;GA;;;BA)(A;ID;0x1200a9;;;BU)(A;OICIIOID;GXGR;;;

BU)(A;OICIIOID;GA;;;CO)

BU)(A;OICIIOID;GA;;;CO)

Here, Get-Acl returns a DirectorySecurity object representing the security

descriptor of the C:\Windows\System32\WindowsPowerShell directory. The result

is then sent to the Format-List cmdlet.

You can work with fi les in the same way. Here is an example:

get-acl –include *.txt, *.log –path c:\logs\log* | format-list

get-acl –include *.txt, *.log –path c:\logs\log* | format-list

Here, Get-Acl returns FileSecurity objects representing the security descriptors of

each matching fi le. The results are then sent to the Format-List cmdlet.

You can work with any properties of security objects separately, including:

N Owner

Shows the owner of the resource

N Group

Shows the primary group the owner is a member of

N Access Shows the access control rules on the resource

N Audit Shows the auditing rules on the resource

N Sddl Shows the full security descriptor as an SDDL string

290

CHAPTER 10 Managing File Systems, Security, and Auditing

 NOTE FileSecurity and DirectorySecurity objects have additional properties that aren’t displayed as part of the standard output. To see these properties, send the output to Format-List *. You’ll then see the following note and script properties: PSPath

(the PowerShell path to the resource), PSParentPath (the PowerShell path to the

 parent resource), PSChildName (the name of the resource), PSDrive (the PowerShell

drive on which the resource is located), AccessToString (an alternate representation of

the access rules on the resource), and AuditToString (an alternate representation of the

audit rules on the resource).

You can use the objects that Get-Acl returns to set the security descriptors on

other system resources, including directories, fi les, and registry keys. To do this,

you’ll want to do the following:

1. Open an elevated administrator PowerShell prompt.

2. Obtain a single security descriptor object for a resource that has the security

settings you want to use.

3. Use the security descriptor object to establish the desired security settings

for another resource.

When you are setting security descriptors in PowerShell, it is a best practice

either to specify exactly what you are including, what you are excluding, or both, or

to specify only a single resource to modify. Previously, we were working with a log

fi le named log1.txt in the C:\Logs directory. If this log fi le has a security descriptor

that you want to apply to another fi le, you can do this as shown in the following

example:

set-acl –path c:\logs\log2.txt -aclobject (get-acl c:\logs\log1.txt)

set-acl –path c:\logs\log2.txt -aclobject (get-acl c:\logs\log1.txt)

Here you use the security descriptor on log1.txt to set the security descriptor for

log2.txt.

You can easily extend this technique. In this example, you use the security

descriptor on log1.txt to set the security descriptor for all other .txt and .log fi les

in the C:\Logs directory:

$secd = get-acl c:\logs\log1.txt

$secd = get-acl c:\logs\log1.txt

set-acl –include *.txt, *.log –path c:\logs* -aclobject $secd

set-acl –include *.txt, *.log –path c:\logs* -aclobject $secd

To include fi les in subdirectories, you need to use Get-ChildItem to obtain

reference objects for all the fi les you want to work with. Here is an example:

$s = get-acl c:\logs\log1.txt

$s = get-acl c:\logs\log1.txt

gci c:\logs -recurse –include *.txt, *.log -force | set-acl -aclobject $s

gci c:\logs -recurse –include *.txt, *.log -force | set-acl -aclobject $s

Here, gci is an alias for Get-ChildItem. You obtain the security descriptor for

log1.txt. Next you get a reference to all .txt and .log fi les in the C:\Logs directory

and all subdirectories. Finally, you use the security descriptor on log1.txt to set the

security descriptor for all these fi les.

Managing File Systems, Security, and Auditing CHAPTER 10

291

If you want to work with directories rather than fi les, you need to limit the results returned by Get-ChildItem. For fi les and directories, each resource object returned

by Get-ChildItem includes a Mode property as shown in the following example and

sample output:

get-childitem c:\

get-childitem c:\

 Directory: C:\

 Directory: C:\

Mode LastWriteTime Length Name

Mode LastWriteTime Length Name

---- ------------- ------ ----

------ ----

d---- 6/20/2008 1:20 PM Backup

d---- 6/20/2008 1:20 PM Backup

d---- 2/19/2008 10:57 AM cabs

d---- 2/19/2008 10:57 AM cabs

d---- 12/18/2008 9:16 AM Documents

d---- 12/18/2008 9:16 AM Documents

-a--- 9/18/2006 2:43 PM 24 autoexec.bat

-a--- 9/18/2006 2:43 PM 24 autoexec.bat

-ar-s 2/29/2008 9:53 AM 8192 BOOTSECT.BAK

-ar-s 2/29/2008 9:53 AM 8192 BOOTSECT.BAK

-a--- 9/18/2006 2:43 PM 10 config.sys

-a--- 9/18/2006 2:43 PM 10 config.sys

The valid values for modes are the following:

N d

(directory)

N a

(archive)

N r

(read-only)

N h

(hidden)

N s

(system)

Therefore, if you want to work only with directories, you can look for resources

where the mode contains a d or is like d*, for example,

where-object {$_.mode -like "d*"}

where-object {$_.mode -like "d*"}

In addition, if you want to work only with fi les, you can use

where-object {$_.mode -notlike "d*"}

where-object {$_.mode -notlike "d*"}

Knowing this, you can copy the security descriptor on C:\Data to C:\Logs and all

its subdirectories as shown in this example:

gci c:\logs -recurse -force | where-object {$_.mode -like "d*"} |

gci c:\logs -recurse -force | where-object {$_.mode -like "d*"} |

set-acl -aclobject (get-acl c:\data)

set-acl -aclobject (get-acl c:\data)

Alternatively, you can copy the security descriptor on C:\Data\key.txt to all fi les in

C:\Logs and all its subdirectories, as shown here:

gci c:\logs -recurse -force | where-object {$_.mode -notlike "d*"} |

gci c:\logs -recurse -force | where-object {$_.mode -notlike "d*"} |

set-acl -aclobject (get-acl c:\data\key.txt)

set-acl -aclobject (get-acl c:\data\key.txt)

292

CHAPTER 10 Managing File Systems, Security, and Auditing

 NOTE For these examples to work, the directories and fi les must exist. If you want to try these examples on your computer, create the C:\Data and C:\Logs directories and

then add several .txt fi les to these directories, including a fi le called key.txt.

Working with Access Rules

As you can see, it is fairly easy and straightforward to copy security descriptors

from one resource to another—and more importantly, the same techniques apply

to any type of resource that has security descriptors, whether you are working with

fi les, directories, registry keys, or whatever. If you want to create your own security

descriptors, we’ll have to dig deeper into the security object model. In this model,

access control rules, such as security descriptors, are represented as objects. The

Access property of security objects is defi ned as a collection of authorization rules.

With directories and fi les, these rules have the following object type:

System.Security.AccessControl.FileSystemAccessRule

You can view the individual access control objects that apply to a resource in

several ways. One way is to get a security descriptor object and then list the contents

of its Access property as shown in the following example and sample output:

$s = get-acl c:\logs

$s = get-acl c:\logs

$s.access

$s.access

FileSystemRights : FullControl

FileSystemRights : FullControl

AccessControlType : Allow

AccessControlType : Allow

IdentityReference : BUILTIN\Administrators

IdentityReference : BUILTIN\Administrators

IsInherited : True

IsInherited : True

InheritanceFlags : None

InheritanceFlags : None

PropagationFlags : None

PropagationFlags : None

FileSystemRights : ReadAndExecute, Synchronize

FileSystemRights : ReadAndExecute, Synchronize

AccessControlType : Allow

AccessControlType : Allow

IdentityReference : BUILTIN\Users

IdentityReference : BUILTIN\Users

IsInherited : True

IsInherited : True

InheritanceFlags : ContainerInherit, ObjectInherit

InheritanceFlags : ContainerInherit, ObjectInherit

PropagationFlags : None

PropagationFlags : None

FileSystemRights : Modify, Synchronize

FileSystemRights : Modify, Synchronize

AccessControlType : Allow

AccessControlType : Allow

IdentityReference : NT AUTHORITY\Authenticated Users

IdentityReference : NT AUTHORITY\Authenticated Users

IsInherited : True

IsInherited : True

InheritanceFlags : None

InheritanceFlags : None

PropagationFlags : None

PropagationFlags : None

Managing File Systems, Security, and Auditing CHAPTER 10

293

Here you get the DirectorySecurity object for the C:\Logs directory and then

display the contents of its Access property. Although each value listed is an access

rule object, you cannot work with each access rule object separately. Note the

following in the output:

N FileSystemRights Shows the fi le system rights being applied

N AccessControlType Shows the access control type as Allow or Deny

N IdentityResource Shows the user or group to which the rule applies

N IsInherited Specifi es whether the access rule is inherited

N InheritanceFlags Shows the way inheritance is being applied

N PropagationFlags Specifi es whether the access rule will be inherited

Another way to work with each access rule object separately is to use a ForEach

loop as shown in this example:

$s = get-acl c:\logs

$s = get-acl c:\logs

foreach($a in $s.access) {

foreach($a in $s.access) {

#work with each access control object

#work with each access control object

if ($a.identityreference -like "*administrator*") {$a | format-list *}

if ($a.identityreference -like "*administrator*") {$a | format-list *}

}

FileSystemRights : FullControl

FileSystemRights : FullControl

AccessControlType : Allow

AccessControlType : Allow

IdentityReference : BUILTIN\Administrators

IdentityReference : BUILTIN\Administrators

IsInherited : True

IsInherited : True

InheritanceFlags : None

InheritanceFlags : None

PropagationFlags : None

PropagationFlags : None

Here, you examine each access rule object separately, which allows you to take

action on specifi c access rules. In this example, you look for access rules that apply

to administrators.

As an administrator, you’ll often want to perform similar searches to fi nd

fi les and folders that aren’t confi gured to allow access that might be required to

perform backups or other administrative tasks. Previously, we discussed using

Get-ChildItem to work with directories and fi les. For directories and fi les, each

resource object returned by Get-ChildItem includes a Mode property that you can

use to work with either directories or fi les. In the following example and sample

294

CHAPTER 10 Managing File Systems, Security, and Auditing

output, you list every directory and fi le on drive C that doesn’t allow administrators full control:

$resc = gci c:\ -recurse -force | where-object {$_.mode -notlike "*hs*"}

$resc = gci c:\ -recurse -force | where-object {$_.mode -notlike "*hs*"}

foreach($r in $resc) {

foreach($r in $resc) {

$s = get-acl $r.FullName

$s = get-acl $r.FullName

$found = $false

$found = $false

foreach($a in $s.access) {

foreach($a in $s.access) {

if (($a.identityreference -like "*administrator*") –and ìf (($a.identityreference -like "*administrator*") –and `

($a.filesystemrights –eq "fullcontrol")) {

($a.filesystemrights –eq "fullcontrol")) {

if ($a.accesscontroltype -eq "allow") { $found = $true }

if ($a.accesscontroltype -eq "allow") { $found = $true }

}

}

}

}

if (-not $found) { write-host $r.FullName}

if (-not $found) { write-host $r.FullName}

}

C:\logs\backup

C:\logs\backup

C:\logs\backup2

C:\logs\backup2

C:\logs\logs

C:\logs\logs

C:\logs\data.ps1

C:\logs\data.ps1

C:\logs\log1.txt

C:\logs\log1.txt

C:\logs\log2.txt

C:\logs\log2.txt

C:\logs\log3.txt

C:\logs\log3.txt

C:\logs\log4.txt

C:\logs\log4.txt

C:\logs\backup\backup

C:\logs\backup\backup

C:\logs\backup\backup\b2

C:\logs\backup\backup\b2

Here, you should run the code using an elevated administrator PowerShell

prompt. The $resc variable stores a collection of objects that includes all fi les and

directories on C:\, except for fi les and directories marked as Hidden or System. Using

a ForEach loop, you then examine each related resource object. First, you get the

access control list for the object by referencing the full name of the object. Then

you initialize the $found variable to False so that you can use this variable to track

whether a fi le has the access rights you are looking for.

In the second ForEach loop, you examine each access control object associated

with a particular fi le or folder. If a resource allows administrators full control, you

set $found to True. Because you are checking the status of three properties, you

use a logical AND to check two properties fi rst. If those properties are both set as

expected, you check the third property to see if it is True also. Finally, if $found

is not True (meaning it’s False), you write the full name of the fi le or folder to the

output. The result is a list of all fi les and folders that are not confi gured so that all

administrators have full control.

Managing File Systems, Security, and Auditing CHAPTER 10

295

Configuring File and Directory Permissions

On NTFS volumes, you can assign two types of access permissions to files and

directories: Basic and Special. These permissions grant or deny access to users and

groups.

Setting Basic Permissions

The basic permissions you can assign to directories and files are shown in Table 10-1

and Table 10-2. These permissions are made up of multiple special permissions.

Note the rule flag for each permission because this is the value you must reference

when creating an access rule.

TABLE 10-1 Basic Folder Permissions

PERMISSION

DESCRIPTION

RULE FLAG

Full Control

This permission permits reading, writing, chang-

FullControl

ing, and deleting files and subdirectories. If a user

has Full Control over a folder, she can delete files

in the folder regardless of the permission on the

files.

Modify

This permission permits reading and writing to

Modify

files and subdirectories, and it allows deletion of

the folder.

List Folder

This permission permits viewing and listing files

Synchronize

Contents

and subdirectories as well as executing files; it’s

inherited by directories only.

Read &

This permission permits viewing and listing files

ReadAnd-

Execute

and subdirectories as well as executing files; it’s

Execute

inherited by files and directories.

Write

This permission permits adding files and subdi-

Write

rectories.

Read

This permission permits viewing and listing files

Read

and subdirectories.

296

 CHAPTER 10 Managing File Systems, Security, and Auditing

TABLE 10-2 Basic File Permissions

PERMISSION

DESCRIPTION

RULE FLAG

Full Control

This permission permits reading, writing, changing, FullControl

and deleting the file.

Modify

This permission permits reading and writing of the Modify

file; it allows deletion of the file.

Read &

This permission permits viewing and accessing the ReadAnd-

Execute

file’s contents as well as executing the file.

Execute

Write

This permission permits writing to a file. Giving a

Write

user permission to write to a file but not to delete

it doesn’t prevent the user from deleting the file’s

contents.

Read

This permission permits viewing or accessing the

Read

file’s contents. Read is the only permission needed

to run scripts. Read access is required to access a

shortcut and its target.

When you are configuring basic permissions for users and groups, you can

specify the access control type as either Allowed or Denied. If a user or group

should be granted an access permission, you allow the permission. If a user

or group should be denied an access permission, you deny the permission.

You configure basic permissions for resources using access rules. Access rules

contain collections of arrays that define

N The user or group to which the rule applies.

N The access permission that applies.

N The allow or deny status.

This means regardless of whether you are adding or modifying rules, the basic

syntax for an individual access rule is

"UserOrGroupName", "ApplicablePermission", "ControlType"

where UserOrGroupName is the name of the user or group to which the access rule

applies, ApplicablePermission is the basic permission you are applying, and ControlType specifies the allow or deny status. User and group names are specified in

COMPUTER\Name or DOMAIN\Name format. In the following example, you grant

full control to BackupOpUser:

"BackupOpUser", "FullControl", "Allow"

When you are working with folders, you can use the basic syntax to configure

permissions for folders. You also can use an expanded syntax to configure permis-

sions for a folder and its contents. The expanded syntax for an access rule is

Managing File Systems, Security, and Auditing CHAPTER 10

297

"UserOrGroupName", "ApplicablePermission", "InheritanceFlag",

"PropagationFlag","ControlType”

where UserOrGroupName is the name of the user or group to which the access rule

applies, ApplicablePermission is the basic permission you are applying, Inheritance-

Flag controls inheritance, PropagationFlag controls propagation of inherited rules,

and ControlType specifies the type of access control. In the following example, you

grant full control to DeploymentTesters and apply inheritance to the folder and all

its subfolders:

"BackupOpUser", "FullControl", "ContainerInherit", "None", "Allow"

With the inheritance flag, you can specify one of the following flag values:

N None The access rule is not inherited by child objects.

N ContainerInherit The access rule is inherited by subfolders (child container

objects).

N ObjectInherit The access rule is inherited by files (child objects).

N ContainerInherit, ObjectInherit The access rule is inherited by files and

subfolders (child objects and child container objects).

With the propagation flag, you can specify the following flag values:

N None The access rule is propagated without modification.

N InheritOnly The access rule is propogated to immediate child and child

container objects.

N NoPropagateInherit The access rule applies to child objects and to child

container objects but not to child objects of child container objects.

N NoPropagateInherit, InheritOnly The access rule applies to child container

objects.

You add access rules to a resource using either the SetAccessRule() method or

the AddAccessRule() method of the access control object. You remove access rules

from a resource using the RemoveAccessRule() method of the access control object.

As discussed previously, access rules are defined as having the System.Security.Access-

Control.FileSystemAccessRule type.

The easiest way to add and remove access rules is to

1. Get an access control object. This object can be the one that applies to the

resource you want to work with or one that applies to a resource that has the

closest access control permissions to those you want to use.

2. Create one or more instances of the System.Security.AccessControl.File-

SystemAccessRule type, and store the desired permissions in these object

instances.

3. Call AddAccessRule() or RemoveAccessRule() to add or remove access

rules as necessary. These methods operate on the access control object

you retrieved in the first step.

298

 CHAPTER 10 Managing File Systems, Security, and Auditing

 4. To apply the changes you’ve made to an actual resource, you must apply the access control object to a specifi ed resource.

Consider the following example:

$acl = get-acl c:\logs

$perm = "cpandl\dev","fullcontrol","allow"

$perm = "cpandl\dev","fullcontrol","allow"

$r = new-object system.security.accesscontrol.filesystemaccessrule $perm

$r = new-object system.security.accesscontrol.filesystemaccessrule $perm

$acl.addaccessrule($r)

$acl.addaccessrule($r)

$acl | set-acl c:\logs

$acl | set-acl c:\logs

Here, you get the access control object on C:\Logs. You store the values for an

access rule in a variable called $perm and then create a new instance of the FileSystem-

AccessRule type for this access rule. The Dev group in the Cpandl domain must

exist to create the access rule. To add the permission to the access control object

you retrieved previously, you call its AddAccessRule() method. Although you could

have created additional permissions and added or removed these, you didn’t in this

example. Finally, you applied the access control object to a specifi c resource using

Set-Acl.

You can easily extend the previous examples to apply to multiple directories and

fi les as shown in the following example:

$acl = get-acl c:\logs

$acl = get-acl c:\logs

$perm = "room5\test","fullcontrol","allow"

$perm = "room5\test","fullcontrol","allow"

$r = new-object system.security.accesscontrol.filesystemaccessrule $perm

$r = new-object system.security.accesscontrol.filesystemaccessrule $perm

$acl.addaccessrule($r)

$acl.addaccessrule($r)

$resc = gci c:\logs -recurse -force

$resc = gci c:\logs -recurse -force

foreach($f in $resc) {

foreach($f in $resc) {

write-host $f.fullname

write-host $f.fullname

$acl | set-acl $f.FullName

$acl | set-acl $f.FullName

}

C:\logs\backup

C:\logs\backup

C:\logs\backup2

C:\logs\logs

C:\logs\logs

C:\logs\data.ps1

C:\logs\data.ps1

C:\logs\log1.txt

C:\logs\log1.txt

C:\logs\log2.txt

C:\logs\log2.txt

C:\logs\log3.txt

C:\logs\log3.txt

C:\logs\log4.txt

C:\logs\log4.txt

C:\logs\backup\backup

C:\logs\backup\backup

C:\logs\backup\backup\b2

C:\logs\backup\backup\b2

Here, you apply an access control list with a modifi ed permission set to every

subdirectory of C:\Logs and every fi le in C:\Logs and its subdirectories. The Test

Managing File Systems, Security, and Auditing CHAPTER 10

299

group on the local computer (named Room5) must exist to create the access rule. In the output, you list the names of the directories and files you’ve modified. This helps

you keep track of the changes.

Setting Special Permissions

The special permissions you can assign to directories and files are shown in Table 10-3.

Because special permissions are combined to make the basic permissions, they are

also referred to as atomic permissions. As with basic permissions, note the rule flag

for each permission because this is the value you must reference when creating an

access rule. When an item has two rule flags, you need to reference only one or

the other to set the related special permission.

TABLE 10-3 Special Permissions

PERMISSION

DESCRIPTION

RULE FLAG

Traverse Folder/

Traverse Folder lets you directly

Traverse, ExecuteFile

Execute File

access a folder even if you don’t

have explicit access to read the

data it contains. Execute File lets

you run an executable file.

List Folder/Read

List Folder lets you view file and ListDirectory, ReadData

Data

folder names. Read Data lets

you view the contents of a file.

Read Attributes

Lets you read the basic attri-

ReadAttributes

butes of a file or folder. These

attributes include Read-Only,

Hidden, System, and Archive.

Read Extended

Lets you view the extended

ReadExtendedAttributes

Attributes

attributes (named data streams)

associated with a file. These

include Summary fields, such

as Title, Subject, and Author, as

well as other types of data.

Create Files/Write Create Files lets you put new

CreateFiles, WriteData

Data

files in a folder. Write Data

allows you to overwrite existing

data in a file (but not add new

data to an existing file because

this is covered by Append Data).

300

 CHAPTER 10 Managing File Systems, Security, and Auditing

TABLE 10-3 Special Permissions

PERMISSION

DESCRIPTION

RULE FLAG

Create Folders/

Create Folders lets you create

CreateFolders, AppendData

Append Data

subfolders within folders.

Append Data allows you to add

data to the end of an existing

file (but not to overwrite existing

data because this is covered by

Write Data).

Write Attributes

Lets you change the basic

WriteAttributes

attributes of a file or folder. These

attributes include Read-Only,

Hidden, System, and Archive.

Write Extended

Lets you change the extended

WriteExtendedAttributes

Attributes

attributes (named data streams)

associated with a file. These

include Summary fields, such

as Title, Subject, and Author, as

well as other types of data.

Delete Subfolders Lets you delete the contents

DeleteSubdirectoriesAnd-

and Files

of a folder. If you have this

Files

permission, you can delete the

subfolders and files in a folder

even if you don’t specifically

have Delete permission on the

subfolder or file.

Delete

Lets you delete a file or folder.

Delete

If a folder isn’t empty and you

don’t have Delete permission

for one of its files or subfolders,

you won’t be able to delete it.

You can do this only if you have

the Delete Subfolders and Files

permission.

Read Permissions

Lets you read all basic and

ReadPermissions

special permissions assigned to

a file or folder.

Change

Lets you change basic and

ChangePermissions

Permissions

special permissions assigned to

a file or folder.

Managing File Systems, Security, and Auditing CHAPTER 10

301

TABLE 10-3 Special Permissions

PERMISSION

DESCRIPTION

RULE FLAG

Take Ownership

Lets you take ownership of a file TakeOwnership

or folder. By default, administra-

tors can always take ownership

of a file or folder and can also

grant this permission to others.

Tables 10-4 and 10-5 show how special permissions are combined to make the

basic permissions for files and folders.

TABLE 10-4 Special Permissions for Folders

FULL

READ &

LIST FOLDER

SPECIAL PERMISSIONS

CONTROL

MODIFY

EXECUTE

CONTENTS

READ

WRITE

Traverse Folder/

X

X

X

X

Execute File

List Folder/Read

X

X

X

X

X

Data

Read Attributes

X

X

X

X

X

Read Extended

X

X

X

X

X

Attributes

Create Files/Write

X

X

X

Data

Create Folders/

X

X

X

Append Data

Write Attributes

X

X

X

Write Extended

X

X

X

Attributes

Delete Subfolders

X

and Files

Delete

X

X

Read Permissions

X

X

X

X

X

X

Change Permissions

X

Take Ownership

X

302

 CHAPTER 10 Managing File Systems, Security, and Auditing

 TABLE 10-5 Special Permissions for Files

FULL

READ &

 SPECIAL PERMISSIONS

 CONTROL

MODIFY

EXECUTE

READ

WRITE

Traverse Folder/Execute File

X

X

X

List Folder/Read Data

X

X

X

X

Read Attributes

X

X

X

X

Read Extended Attributes

X

X

X

X

Create Files/Write Data

X

X

X

Create Folders/Append Data

X

X

X

Write Attributes

X

X

X

Write Extended Attributes

X

X

X

Delete Subfolders and Files

X

Delete

X

X

Read Permissions

X

X

X

X

X

Change Permissions

X

Take Ownership

X

You confi gure special permissions for directories and fi les in the same way as ba-

sic permissions. You add access rules to a resource using either the SetAccessRule()

method or the AddAccessRule() method of the access control object. You remove

access rules from a resource using the RemoveAccessRule() method of the access

control object.

Consider the following example:

$acl = get-acl c:\logs

$acl = get-acl c:\logs

$p1 = "cpandl\dev","executefile","allow"

$p1 = "cpandl\dev","executefile","allow"

$r1 = new-object system.security.accesscontrol.filesystemaccessrule $p1

$r1 = new-object system.security.accesscontrol.filesystemaccessrule $p1

$acl.addaccessrule($r1)

$acl.addaccessrule($r1)

$p2 = "cpandl\dev","listdirectory","allow"

$p2 = "cpandl\dev","listdirectory","allow"

$r2 = new-object system.security.accesscontrol.filesystemaccessrule $p2

$r2 = new-object system.security.accesscontrol.filesystemaccessrule $p2

$acl.addaccessrule($r2)

$acl.addaccessrule($r2)

$acl | set-acl c:\logs

$acl | set-acl c:\logs

Here, you get the access control object on C:\Logs. After you defi ne an access

rule and store the related values in $p1, you create a new instance of the FileSystem-

AccessRule type and add the permission to the access control object by calling the

Managing File Systems, Security, and Auditing CHAPTER 10

303

AddAccessRule() method. After you defi ne a second access rule and store the related values in $p2, you create a new instance of the FileSystemAccessRule type and add

the permission to the access control object by calling the AddAccessRule() method.

Finally, you apply the access control object to a specifi c resource using Set-Acl. The

Dev group in the Cpandl domain must exist to create the access rules.

Taking Ownership

In Windows, the fi le or directory owner isn’t necessarily the fi le or directory’s creator.

Instead, the fi le or directory owner is the person who has direct control over the fi le

or directory. File or directory owners can grant access permissions and give other

users permission to take ownership of a fi le or directory.

The way ownership is assigned initially depends on where the fi le or directory is

being created. By default, the user who created the fi le or directory is listed as the

current owner. Ownership can be taken or transferred in several ways. Any admin-

istrator can take ownership. Any user or group with the Take Ownership permis-

sion can take ownership. Any user who has the Restore Files And Directories right,

such as a member of the Backup Operators group, can take ownership as well. Any

current owner can transfer ownership to another user as well.

You can take ownership using a fi le or directory using the SetOwner() method of

the access control object. The easiest way to take ownership is to

1. Get an access control object for the resource you want to work with.

2. Get the IdentityReference for the user or group that will take ownership. This

user or group must already have permission on the resource (as discussed

previously).

3. Call SetOwner to specify that you want the user or group to be the owner.

4. Apply the changes you’ve made to the resource.

Consider the following example:

$acl = get-acl c:\logs

$acl = get-acl c:\logs

$found = $false

$found = $false

foreach($rule in $acl.access) {

foreach($rule in $acl.access) {

if ($rule.identityreference -like "*administrators*") {

if ($rule.identityreference -like "*administrators*") {

$global:ref = $rule.identityreference; $found = $true; break}

$global:ref = $rule.identityreference; $found = $true; break}

}

if ($found) {

if ($found) {

$acl.setowner($ref)

$acl.setowner($ref)

$acl | set-acl c:\logs

}

Here, you get the access control object on C:\Logs. You then examine each access

rule on this object, looking for the one that applies to the group you want to work

with. If you fi nd a match, you set $ref to the IdentityReference for this group, change

304

CHAPTER 10 Managing File Systems, Security, and Auditing

$found to $true, and then break out of the ForEach loop. After you break out of the loop, you check to see if $found is True. If it is, you set the ownership permission on

the access control object you retrieved previously and then apply the access control

object to C:\Logs using Set-Acl.

Configuring File and Directory Auditing

You can use auditing to track what’s happening on your computers. Auditing collects

information related to resource usage, such as a file or directory audit. Any time

an action occurs that you’ve configured for auditing, the action is written to the

system’s security log, where it’s stored for your review. The security log is accessible

from Event Viewer. For most auditing changes, you need to be logged on using an

account that’s a member of the Administrators group, or you need to be granted the

Manage Auditing And Security Log right in Group Policy.

Auditing policies are essential to ensure the security and integrity of your systems.

Just about every computer system on the network should be configured with some type

of auditing. You can set auditing policies for directories and files using auditing rules.

Audit rules contain collections of arrays that define

N The user or group to which the rule applies.

N The permission usage that is audited.

N The type of auditing.

This means regardless of whether you are adding or modifying rules, the basic

syntax for an individual audit rule is

"UserOrGroupName", "PermissionAudited", "AuditType"

where UserOrGroupName is the name of the user or group to which the audit rule

applies, PermissionAudited is the basic or special permission you are tracking, and

 AuditType specifies the type of auditing. Use Success to track successful use of a

specified permission. Use Failure to track failed use of a specified permission. Use

None to turn off auditing of the specified permission. Use Both to track both failure

and success.

As with security permissions, user and group names are specified in COMPUTER\

Name or DOMAIN\Name format. In the following example, you track users in the

Cpandl domain who are trying to access the resource but fail to do so because they

don’t have sufficient access permissions:

"CPANDL\USERS", "ReadData", "Failure"

When you are working with folders, you can use the basic syntax to configure

auditing for folders. You also can use an expanded syntax to configure auditing for

a folder and its contents. The expanded syntax for an access rule is

"UserOrGroupName", "PermissionAudited", "InheritanceFlag",

"PropagationFlag","AuditType"

Managing File Systems, Security, and Auditing CHAPTER 10

305

where UserOrGroupName is the name of the user or group to which the access rule applies, PermissionAudited is the basic or special permission you are tracking, InheritanceFlag controls inheritance, PropagationFlag controls propagation of inherited

rules, and AuditType specifies the type of auditing. In the following example, you

apply an auditing rule to a resource as well as the files and subfolders it contains:

"CPANDL\USERS", "ReadData", "ContainerInherit", "None", "Failure"

With the inheritance flag, you can specify one of the following flag values:

N None The access rule is not inherited by child objects.

N ContainerInherit The access rule is inherited by subfolders (child container

objects).

N ObjectInherit The access rule is inherited by files (child objects).

N ContainerInherit, ObjectInherit The access rule is inherited by files and

subfolders (child objects and child container objects).

With the propagation flag, you can specify the following flag values:

N None The access rule is propagated without modification.

N InheritOnly The access rule is propogated to immediate child and child

container objects.

N NoPropagateInherit The access rule applies to child objects and to child

container objects but not to child objects of child container objects.

N NoPropagateInherit, InheritOnly The access rule applies to child container

objects.

You add audit rules to a resource using either the SetAuditRule() method or the

AddAuditRule() method of the access control object. You remove audit rules from

a resource using the RemoveAuditRule() method of the access control object. Audit

rules are defined as having the System.Security.AuditControl.FileSystemAuditRule

type.

The easiest way to add and remove audit rules is to do the following:

1. Get an access control object. This object can be the one that applies to the

resource you want to work with or one that applies to a resource that has the

closest audit control permissions to those you want to use.

2. Create one or more instances of the System.Security.AuditControl.FileSystem-

AuditRule type, and store the desired auditing settings in these object

instances.

3. Call AddAuditRule() or RemoveAuditRule() to add or remove audit rules as

necessary. These methods operate on the access control object you retrieved

in the first step.

4. Apply the changes you’ve made to an actual resource.

306

 CHAPTER 10 Managing File Systems, Security, and Auditing

 Consider the following example:

$acl = get-acl d:\data

$acl = get-acl d:\data

$audit = "cpandl\users","readdata","failure"

$audit = "cpandl\users","readdata","failure"

$r = new-object system.security.accesscontrol.filesystemauditrule $audit

$r = new-object system.security.accesscontrol.filesystemauditrule $audit

$acl.addauditrule($r)

$acl.addauditrule($r)

$acl | set-acl d:\data

$acl | set-acl d:\data

Here, you get the access control object on D:\Data. You store the values for

an audit rule in a variable called $audit, and then you create a new instance of the

FileSystem AuditRule type with this auditing rule. The Users group in the Cpandl domain

must exist to create the auditing rule. To add the auditing setting to the access control

object you retrieved previously, you call its AddAuditRule() method. Although you

could have created additional auditing rules and added or removed these, you didn’t

in this example. Finally, you apply the access control object to a specifi c resource

using Set-Acl.

You can easily extend the previous examples to apply to multiple directories and

fi les as shown in the following example:

$acl = get-acl d:\data

$acl = get-acl d:\data

$audit = "cpandl\users","readdata","failure"

$audit = "cpandl\users","readdata","failure"

$r = new-object system.security.accesscontrol.filesystemauditrule $audit

$r = new-object system.security.accesscontrol.filesystemauditrule $audit

$acl.addauditrule($r)

$acl.addauditrule($r)

$resc = gci d:\data -recurse -force

$resc = gci d:\data -recurse -force

foreach($f in $resc) {

foreach($f in $resc) {

write-host $f.fullname

write-host $f.fullname

$acl | set-acl $f.FullName

$acl | set-acl $f.FullName

}

D:\data\backup

D:\data\backup

D:\data\backup\historydat.txt

D:\data\backup\historydat.txt

D:\data\logs\datlog.log

D:\data\logs\datlog.log

D:\data\data.ps1

D:\data\data.ps1

D:\data\transcript1.txt

D:\data\transcript1.txt

D:\data\transcript2.txt

D:\data\transcript2.txt

D:\data\backup\backup

D:\data\backup\backup

Here, you apply an auditing rule to every subdirectory of D:\Data and every fi le

in D:\Data and its subdirectories. In the output, you list the names of the directories

and fi les you’ve modifi ed. This helps you keep track of the changes. The Users group

in the Cpandl domain must exist to create the auditing rule.

Managing File Systems, Security, and Auditing CHAPTER 10

307

C H A P T E R 1 1

Managing Shares, Printers,

and TCP/IP Networking

N

Managing Network Shares 309

N

Managing Printers 314

N

Managing TCP/IP Networking 319

N

Configuring Windows Firewall 328

As an administrator, you enable networked computers to communicate and

share resources using the basic networking features built into Windows.

You use TCP/IP to enable network communications. You use network shares and

printers to share resources across the enterprise.

Managing Network Shares

When you share a directory or a drive, you make all its files and subdirectories

available to a specified set of users. You can enable network shares only on disks

formatted with NTFS. When you do, two sets of permissions determine who has

access to shared files: NTFS permissions and share permissions. Together, these

permissions let you control who has access to shared files and the level of access

assigned. You do not need to move the files you are sharing.

With network shares, share permissions are used only when a user attempts

to access a file or directory from a different computer on the network, whereas

access permissions are always used, whether the user is logged on to the console

or using a remote system to access the file or directory over the network. When

data is accessed remotely, first the share permissions are applied, and then

the access permissions are applied. When data is accessed locally, only access

permissions apply.

309

 TIP A computer’s sharing confi guration determines whether directories and drives can be shared. You can access Network And Sharing Center to confi gure these settings

by clicking Start and then clicking Network. On the Explorer toolbar, click Network

And Sharing Center.

Getting Information About Shares

Shared resources are managed differently from drives or other types of fi le system

resources. To work with shares in Windows PowerShell, you use the Win32_Share

class. By typing Get-Wmiobject -Class Win32_Share, you can view the shares that

are available as shown in this example and sample output:

get-wmiobject -class win32_share

get-wmiobject -class win32_share

Name Path Description

Name Path Description

---- ---- -----------

---- ---- -----------

ADMIN$ C:\Windows Remote Admin

ADMIN$ C:\Windows Remote Admin

C$ C:\ Default share

C$ C:\ Default share

D$ D:\ Default share

D$ D:\ Default share

E$ E:\ Default share

E$ E:\ Default share

HP3505-PCL6 HP CLJ CP3505 PCL6,LocalsplOnly HP CLJ CP3505

HP3505-PCL6 HP CLJ CP3505 PCL6,LocalsplOnly HP CLJ CP3505

IPC$ Remote IPC

print$ C:\Windows\system32\spool\drivers Printer Driver

print$ C:\Windows\system32\spool\drivers Printer Driver

W$ W:\ Default share

W$ W:\ Default share

Shares have a number of properties that you can view and manage. To view the

properties of a particular share, limit the results using a Windows Management

Instrumentation (WMI) query or a Where-Object match expression. In the following

example and sample output, you examine the properties of the C$ share:

get-wmiobject -class win32_share | where-object {$_.Name -eq "C$"} |

get-wmiobject -class win32_share | where-object {$_.Name -eq "C$"} |

format-list *

format-list *

Status : OK

Status : OK

Type : 2147483648

Type : 2147483648

Name : C$

Name : C$

__GENUS : 2

__GENUS : 2

__CLASS : Win32_Share

__CLASS : Win32_Share

__SUPERCLASS : CIM_LogicalElement

__SUPERCLASS : CIM_LogicalElement

__DYNASTY : CIM_ManagedSystemElement

__DYNASTY : CIM_ManagedSystemElement

__RELPATH : Win32_Share.Name=”C$”

__RELPATH : Win32_Share.Name=”C$”

__PROPERTY_COUNT : 10

__PROPERTY_COUNT : 10

__DERIVATION : {CIM_LogicalElement, CIM_ManagedSystemElement}

__DERIVATION : {CIM_LogicalElement, CIM_ManagedSystemElement}

__SERVER : TECHPC89

__SERVER : TECHPC89

__NAMESPACE : root\cimv2

__NAMESPACE : root\cimv2

__PATH : \\TECHPC89\root\cimv2:Win32_Share.Name=”C$”

__PATH : \\TECHPC89\root\cimv2:Win32_Share.Name=”C$”

AccessMask :

AccessMask :

310

CHAPTER 11 Managing Shares, Printers, and TCP/IP Networking

AllowMaximum : True

AllowMaximum : True

Caption : Default share

Caption : Default share

Description : Default share

Description : Default share

InstallDate :

InstallDate :

MaximumAllowed :

MaximumAllowed :

Path : C:\

Path : C:\

Scope : System.Management.ManagementScope

Scope : System.Management.ManagementScope

Options : System.Management.ObjectGetOptions

Options : System.Management.ObjectGetOptions

ClassPath : \\TECHPC89\root\cimv2:Win32_Share

ClassPath : \\TECHPC89\root\cimv2:Win32_Share

Properties : {AccessMask, AllowMaximum, Caption, Description...}

Properties : {AccessMask, AllowMaximum, Caption, Description...}

SystemProperties : {__GENUS, __CLASS, __SUPERCLASS, __DYNASTY...}

SystemProperties : {__GENUS, __CLASS, __SUPERCLASS, __DYNASTY...}

Qualifiers : {dynamic, Locale, provider, UUID}

Qualifiers : {dynamic, Locale, provider, UUID}

Site :

Container :

Container :

 NOTE To query multiple computers, use the –ComputerName parameter of the

 Get-Wmiobject cmdlet. Here is an example:

get-wmiobject -class win32_share -computername Server43,

get-wmiobject -class win32_share -computername Server43,

Server27, Server82

Server27, Server82

The Type property specifi es the type of share. Values you’ll see include the

following:

Share

Share

Share

Share

Changing Share Settings

At an elevated administrator PowerShell prompt, you can modify several settings on

a share, including the maximum number of allowed users and the description. The

MaxAllow property controls the maximum number of simultaneous connections to

the share. The Description property describes the purpose of the share.

You set the MaxAllow and Description properties using the SetShareInfo()

method of the Win32_Share object. The basic syntax is

 $shareObject.setShareInfo(MaxAllow, Description)

Managing Shares, Printers, and TCP/IP Networking CHAPTER 11

311

where $shareObject is a reference to a Win32_Share object, MaxAllow is the desired maximum number of users, and Description is the desired description. Set the maximum number of users with a value between 1 and 2,147,483,647. Use a value of 0 to

allow an unlimited number of users.

You also can set the Name, Path Caption, Description, and MaximumAllowed

values using the related properties.

You can reference a Win32_Share object by storing the object in a variable.

A quick way to specify a WMI query is to use the –Filter parameter. This parameter

specifi es a Where clause to use as a fi lter. In the following example, you get a refer-

ence to the Logs share and store the related object in the $share variable:

$share = get-wmiobject -class win32_share -filter "name='logs'"

Note the syntax for the Where clause in the string passed to the –Filter parameter.

The share must exist or the value won’t be set. Because you use double quotes to

enclose the string, you must use single quotes to match a specifi c property value.

After you have a reference to the Win32_Share object, you can call the SetShare-

Info() method to set the desired values. An example and sample output follow:

$share = get-wmiobject -class win32_share -filter "name='logs'"

$share = get-wmiobject -class win32_share -filter "name='logs'"

$share.setShareInfo(255,"Logging Share")

$share.setShareInfo(255,"Logging Share")

__GENUS : 2

__GENUS : 2

__CLASS : __PARAMETERS

__CLASS : __PARAMETERS

__SUPERCLASS :

__SUPERCLASS :

__DYNASTY : __PARAMETERS

__DYNASTY : __PARAMETERS

__RELPATH :

__RELPATH :

__PROPERTY_COUNT : 1

__PROPERTY_COUNT : 1

__DERIVATION : {}

__DERIVATION : {}

__SERVER :

__SERVER :

__NAMESPACE :

__NAMESPACE :

__PATH :

__PATH :

ReturnValue : 2

ReturnValue : 2

The return value in the output is what you want to focus on. A return value of

0 indicates success. Any other return value indicates an error. Here, the return value

of 2 indicates an Access Denied error, which can occur if you forget to use an admin-

istrator prompt or don’t have the correct privileges to manage the share.

You can store the return value in a variable and then process the results. Here’s

an example with sample output:

$share = get-wmiobject -class win32_share -filter "name='logs'"

$share = get-wmiobject -class win32_share -filter "name='logs'"

$results = $share.setShareInfo(255,"Logging Share")

$results = $share.setShareInfo(255,"Logging Share")

write-host $results.returnvalue

write-host $results.returnvalue

0

312

CHAPTER 11 Managing Shares, Printers, and TCP/IP Networking

 Here, you obtain a reference to the Logs share. You then set the maximum

number of users to 255 and the description to Logging Share. To verify the change,

you store the results in a variable and display the return value.

Creating Shares

At an elevated administrator PowerShell prompt, you can create shares using a

static Create() method of the Win32_Share class. The basic syntax is

 $shareObject.Create(FolderPath, ShareName, ShareType, MaxAllow, Description) where $shareObject is a reference to a Win32_Share object, FolderPath is the path to the share, ShareName is the name of the share, ShareType is a valid type indicator, MaxAllow is the desired maximum number of users, and Description is the desired description. As long as you have the appropriate permissions, PowerShell should be

able to create the share. A common error you might see occurs when a like-named

share already exists.

The easiest way to create a class instance for Win32_Share is to use the [wmiclass]

alias as shown in this example:

$share = [wmiclass]"Win32_Share"

After you’ve created a class instance, you can create the share.

$share.Create("c:\data", "Data", 0, 255,"Data Share")

The format and values of the returned results are the same as those for the

SetShareInfo() method. A return value of 0 indicates success. Any other return value

indicates an error. A complete example and sample output follow:

$share = [wmiclass]"Win32_Share"

$share = [wmiclass]"Win32_Share"

$results = $share.Create("c:\data", "Data", 0, 0,"Data Share")

$results = $share.Create("c:\data", "Data", 0, 0,"Data Share")

write-host $results.returnvalue

write-host $results.returnvalue

0

Here, you obtain a reference to the Win32_Share class. You then create a Data

share mapped to C:\Data. You specify the share type as a disk share and allow an

unlimited number of users to connect to the share. To verify the change, you store

the results in a variable and display the return value.

 NOTE After you create a share, you’ll want to set the share permissions. By default, the share is created so that the implicit group Everyone has Read access and no other

groups or users have access.

Managing Shares, Printers, and TCP/IP Networking CHAPTER 11

313

Deleting Shares

At an elevated administrator PowerShell prompt, you can delete a share using the

Delete() method of a Win32_Share object. The basic syntax is

 $shareObject.delete()

where $shareObject is a reference to a Win32_Share object that you want to delete.

As with the other methods, the Delete() method returns results that indicate success

or failure. The format and values are the same as those discussed previously.

You can delete the Data share created previously as shown in the following

example and sample output:

$share = get-wmiobject -class win32_share -filter "name='data'"

$share = get-wmiobject -class win32_share -filter "name='data'"

$results = $share.delete()

$results = $share.delete()

write-host $results.returnvalue

write-host $results.returnvalue

0

Managing Printers

As an administrator, you need to do two main things to allow users throughout a

network to access print devices connected to a Windows computer: you need to set

up a print server, and you need to use the print server to share print devices on the

network. A print server provides a central location for sharing printers on a network.

When many users require access to the same printers, you should confi gure print

servers in the domain. With Windows Server 2008 and later, you must specifi cally

confi gure a server to be a print server.

Two types of print devices are used on a network: local print devices and network

 print devices. A local print device is a print device that’s physically attached to the user’s computer and employed only by the user who is logged on to that computer.

A network print device is a print device that’s set up for remote access over the net-

work. This can be a print device attached directly to a print server or a print device

attached directly to the network through a network interface card (NIC).

A print server is a workstation or server confi gured to share one or more printers.

These printers can be physically attached to the computer or the network. A limit

on the number of allowed connections is the disadvantage to using a workstation

operating system over a server operating system. With Windows Server 2008 or

later, on the other hand, you don’t have to worry about operating system–enforced

connection limits.

314

CHAPTER 11 Managing Shares, Printers, and TCP/IP Networking

 The print server’s primary job is to share the print device out to the network and to handle print spooling. The main advantages of print servers are that the printer

will have a centrally managed print queue and you don’t have to install printer driv-

ers on client systems.

You don’t have to use a print server, however. You can connect users directly to

a network-attached printer. When you do this, the network printer is handled much

like a local printer attached directly to the user’s computer. The key differences are

that multiple users can connect to the printer and that each user has a different

print queue. Each print queue is managed separately, which can make administra-

tion and problem resolution diffi cult.

Getting Information About Printers

In PowerShell, you use the Win32_Printer class to work with printers. By typing

Get-Wmiobject -Class Win32_Printer, you can view the printers that are available

as shown in this example and sample output:

get-wmiobject -class win32_printer

get-wmiobject -class win32_printer

Location : 18th Floor

Location : 18th Floor

Name : HP CLJ CP3505 PCL6

Name : HP CLJ CP3505 PCL6

PrinterState : 131072

PrinterState : 131072

PrinterStatus : 1

PrinterStatus : 1

ShareName : HP3505-PCL6

SystemName : PrinterServer08

SystemName : PrinterServer08

Location : 17th Floor

Location : 17th Floor

Name : magicolor 2300 DL

Name : magicolor 2300 DL

PrinterState : 0

PrinterState : 0

PrinterStatus : 3

PrinterStatus : 3

ShareName : Color2300

ShareName : Color2300

SystemName : PrintServer21

SystemName : PrintServer21

 NOTE To query multiple computers, use the –ComputerName parameter of the Get-

WmiObject cmdlet. Here is an example:

get-wmiobject -class win32_printer -computername EngPC45,

get-wmiobject -class win32_printer -computername EngPC45,

TechPC15, EngPC82

TechPC15, EngPC82

Printers have a number of properties that you can view and manage. To view

the properties of a particular printer, limit the results using a WMI query or a

Where-Object match expression. In the following example and partial output, you

examine the properties of the printer shared as HP3505-PCL6:

Managing Shares, Printers, and TCP/IP Networking CHAPTER 11

315

get-wmiobject -class win32_printer -filter "ShareName='HP3505-PCL6'" |

get-wmiobject -class win32_printer -filter "ShareName='HP3505-PCL6'" |

format-list *

format-list *

Status : OK

Status : OK

Name : HP CLJ CP3505 PCL6

Name : HP CLJ CP3505 PCL6

__GENUS : 2

__GENUS : 2

__CLASS : Win32_Printer

__CLASS : Win32_Printer

__SUPERCLASS : CIM_Printer

__SUPERCLASS : CIM_Printer

__DYNASTY : CIM_ManagedSystemElement

__DYNASTY : CIM_ManagedSystemElement

__RELPATH : Win32_Printer.DeviceID=”HP CLJ CP3505 PCL6”

__RELPATH : Win32_Printer.DeviceID=”HP CLJ CP3505 PCL6”

__PROPERTY_COUNT : 86

__PROPERTY_COUNT : 86

__DERIVATION : {CIM_Printer, CIM_LogicalDevice, CIM_

__DERIVATION : {CIM_Printer, CIM_LogicalDevice, CIM_

LogicalElement, CIM_ManagedSystemElement}

LogicalElement, CIM_ManagedSystemElement}

__SERVER : TECHPC87

__SERVER : TECHPC87

__NAMESPACE : root\cimv2

__NAMESPACE : root\cimv2

__PATH : \\TECHPC87\root\cimv2:Win32_Printer.

__PATH : \\TECHPC87\root\cimv2:Win32_Printer.

DeviceID=”HP CLJ CP3505 PCL6”

DeviceID=”HP CLJ CP3505 PCL6”

Attributes : 588

Attributes : 588

Availability :

Availability :

AvailableJobSheets :

AvailableJobSheets :

AveragePagesPerMinute : 0

AveragePagesPerMinute : 0

Capabilities : {4, 2, 3, 5}

Capabilities : {4, 2, 3, 5}

CapabilityDescriptions : {Copies, Color, Duplex, Collate}

CapabilityDescriptions : {Copies, Color, Duplex, Collate}

Caption : HP CLJ CP3505 PCL6

Caption : HP CLJ CP3505 PCL6

Description :

Description :

DetectedErrorState : 5

DetectedErrorState : 5

DeviceID : HP CLJ CP3505 PCL6

DeviceID : HP CLJ CP3505 PCL6

Direct : False

Direct : False

DoCompleteFirst : True

DoCompleteFirst : True

DriverName : HP Color LaserJet CP3505 PCL 6

DriverName : HP Color LaserJet CP3505 PCL 6

To check the TCP/IP confi guration of a network printer, you use the Win32_

TcpIpPrinterPort class. Type Get-Wmiobject -Class Win32_TcpIpPrinterPort,

and you can view all the TCP/IP printer ports that are confi gured, as shown in this

example and sample output:

get-wmiobject -class win32_tcpipprinterport

get-wmiobject -class win32_tcpipprinterport

__GENUS : 2

__GENUS : 2

__CLASS : Win32_TCPIPPrinterPort

__CLASS : Win32_TCPIPPrinterPort

__SUPERCLASS : CIM_ServiceAccessPoint

__SUPERCLASS : CIM_ServiceAccessPoint

__DYNASTY : CIM_ManagedSystemElement

__DYNASTY : CIM_ManagedSystemElement

__RELPATH : Win32_TCPIPPrinterPort.Name=”192.168.0.90”

__RELPATH : Win32_TCPIPPrinterPort.Name=”192.168.0.90”

__PROPERTY_COUNT : 17

__DERIVATION : {CIM_ServiceAccessPoint, CIM_LogicalElement,

__DERIVATION : {CIM_ServiceAccessPoint, CIM_LogicalElement,

CIM_ManagedSystemElement}

CIM_ManagedSystemElement}

__SERVER : TECHPC87

__SERVER : TECHPC87

316

CHAPTER 11 Managing Shares, Printers, and TCP/IP Networking

__NAMESPACE : root\cimv2

__NAMESPACE : root\cimv2

__PATH : \\TECHPC87\root\cimv2:Win32_TCPIPPrinterPort.

__PATH : \\TECHPC87\root\cimv2:Win32_TCPIPPrinterPort.

Name=”192.168.0.90”

Name=”192.168.0.90”

ByteCount :

ByteCount :

Caption :

Caption :

CreationClassName : Win32_TCPIPPrinterPort

CreationClassName : Win32_TCPIPPrinterPort

Description :

Description :

HostAddress : 192.168.0.90

HostAddress : 192.168.0.90

InstallDate :

InstallDate :

Name : 192.168.0.90

Name : 192.168.0.90

PortNumber : 9100

PortNumber : 9100

Protocol : 1

Protocol : 1

Queue :

Queue :

SNMPCommunity :

SNMPCommunity :

SNMPDevIndex :

SNMPDevIndex :

SNMPEnabled : False

SNMPEnabled : False

Status :

Status :

SystemCreationClassName : Win32_ComputerSystem

SystemCreationClassName : Win32_ComputerSystem

SystemName :

SystemName :

Type :

Type :

 NOTE To query multiple computers, use the –ComputerName parameter of the

 Get-WmiObject cmdlet. Here is an example:

get-wmiobject -class win32_tcpipprinterport -computername

get-wmiobject -class win32_tcpipprinterport -computername

EngPC45, TechPC15, EngPC82

EngPC45, TechPC15, EngPC82

 D

 D

Checking Printer Drivers

Many standard printer drivers are installed by default on computers running the

Windows operating system. Windows stores printer drivers in the %SystemRoot%

\Inf folder. In this folder, printer drivers are stored in fi les beginning with Prn, and

you’ll fi nd driver defi nition fi les with the .pnf extension as well as driver fi les with the

.inf extension. Knowing this, you can write a command to examine the print drivers

that are available on a computer. An example and sample output follow:

get-childitem ((get-item env:systemroot).value + "\inf") -exclude *.pnf |

get-childitem ((get-item env:systemroot).value + "\inf") -exclude *.pnf |

where-object {$_.name -match "prn"} | format-list Fullname

where-object {$_.name -match "prn"} | format-list Fullname

D FullName : C:\Windows\inf\prnao001.inf

D FullName : C:\Windows\inf\prnao001.inf

FullName : C:\Windows\inf\prnbr001.inf

FullName : C:\Windows\inf\prnbr001.inf

FullName : C:\Windows\inf\prnca001.inf

FullName : C:\Windows\inf\prnca001.inf

Managing Shares, Printers, and TCP/IP Networking CHAPTER 11

317

Here, you use the Get-ChildItem cmdlet to get fi les in the %SystemRoot%\Inf

folder. You search for fi les that begin with Prn while excluding fi les that end with

.pnf. You use Get-Item Env:Systemroot to retrieve the value of the %SystemRoot%

environment variable, and then you add its string value to “\Inf,” resulting in a full

fi le path, such as C:\Windows\Inf.

Managing Printer Connections

As I write this, PowerShell 2.0 is not ideally suited for the tasks of creating and

managing printer connections—even if you go through WMI to do it. My preferred

workaround is to access Windows Script Host (WSH) via the Component Object

Model (COM). To do this, you can create an instance of the WScript.Network object

via COM and then use its related methods to work with printers. Note that if you

are confi guring printers for a particular user, you should log on as the user or

modify permissions later as appropriate for the user.

The default printer is the primary printer for a user. This printer is used whenever

a user prints a document and doesn’t select a specifi c destination printer. You can

set a default printer using the SetDefaultPrinter() method of the WScript.Network

object. This method automatically updates the user’s profi le to use the default

printer.

When you set the default printer, you must specify either the printer’s name or the

share path, such as “HP CLJ CP3505 PCL6” or “\\PrintServer72\Color Printer03” .

Here is an example:

$wn = New-Object -ComObject WScript.Network

$wn = New-Object -ComObject WScript.Network

$wn.SetDefaultPrinter("\\PrintServer72\ColorPrinter03")

$wn.SetDefaultPrinter("\\PrintServer72\ColorPrinter03")

You can manage connections to network printers in much the same way as

you manage connections to network drives. You map printer connections using

the AddWindowsPrinterConnection() method of the WScript.Network object. You

remove printer connections using the RemovePrinterConnection() method of the

WScript.Network object.

The AddWindowsPrinterConnection() method expects to be passed the path to

the network printer, such as

$wn = New-Object -ComObject WScript.Network

$wn = New-Object -ComObject WScript.Network

$wn.AddWindowsPrinterConnection("\\PrintServer72\ColorPrinter03")

$wn.AddWindowsPrinterConnection("\\PrintServer72\ColorPrinter03")

After you call AddWindowsPrinterConnection(), WSH attempts to connect to

the print server and validate that the printer is available. If WSH can connect to the

print server and the printer is valid, Windows creates the printer connection and

automatically transfers the appropriate print drivers from the print server to the

local computer.

318

CHAPTER 11 Managing Shares, Printers, and TCP/IP Networking

 When you are fi nished working with a network printer, you might want to

remove the connection. To do this, you can use the RemovePrinterConnection()

method. Specify the local name of the printer you want to disconnect, like this:

$wn = New-Object -ComObject WScript.Network

$wn = New-Object -ComObject WScript.Network

$wn.RemovePrinterConnection("HP CLJ CP3505 PCL6")

$wn.RemovePrinterConnection("HP CLJ CP3505 PCL6")

Managing TCP/IP Networking

Windows PowerShell provides a dynamic environment for working with TCP/IP

confi gurations. If you want to install networking on a computer, you must install

TCP/IP networking and a network adapter. Windows uses TCP/IP as the default wide

area network (WAN) protocol.

Normally, networking is installed during Windows setup. You can also install

TCP/IP networking through local area connection properties. Windows computers

support IP version 4 (IPv4) addressing and IP version 6 (IPv6) addressing.

Getting Information About Network Adapters

A local area connection is created automatically if a computer has a network adapter

and is connected to a network. If a computer has multiple network adapters and is

connected to a network, you’ll have one local area connection for each adapter.

If no network connection is available, you should connect the computer to the

network or create a different type of connection.

Computers use IP addresses to communicate over TCP/IP. Windows provides the

following ways to confi gure IP addressing:

N Manually IP addresses that are assigned manually are called static IP

 addresses. Static IP addresses are fi xed and don’t change unless you change

them. You usually assign static IP addresses to Windows servers, and when

you do this, you need to confi gure additional information to help the server

navigate the network.

N Dynamically A Dynamic Host Confi guration Protocol (DHCP) server (if

one is installed on the network) assigns dynamic IP addresses at startup, and

the addresses might change over time. Dynamic IP addressing is the default

confi guration.

N Alternatively (IPv4 only) When a computer is confi gured to use DHCPv4

and no DHCPv4 server is available, Windows Server 2008 assigns an alternate

private IP address automatically. By default, the alternate IPv4 address is

in the range from 169.254.0.1 to 169.254.255.254, with a subnet mask of

255.255.0.0. You can also specify a user-confi gured alternate IPv4 address,

which is particularly useful for laptop users.

Managing Shares, Printers, and TCP/IP Networking CHAPTER 11

319

You can use Win32_NetworkAdapter and Win32_NetworkAdapterConfi gura-

tion objects to examine the confi guration of each network adapter on a computer.

While Win32_NetworkAdapter stores basic information for each network adapter,

Win32_NetworkAdapterConfi guration stores the detailed confi guration for each

adapter. Knowing this, you might be tempted to use only Win32_NetworkAdapter-

Confi guration.

However, most computers have a large number of pseudoadapters. As a result, if

you don’t know the specifi c adapter you want to examine, you’re going to get lots of

extraneous information. Therefore, the technique you want to use is this:

1. Use Win32_NetworkAdapter to get the index value of a specifi c adapter. On

most computers, the primary network adapter has a network connection ID

of Local Area Connection.

2. Use

Win32_NetworkAdapterConfi guration with a Where clause or fi lter that

gets the information for a specifi c adapter. The confi guration details provide

complete information on the TCP/IP confi guration of the adapter as well as

the media access control (MAC) address of the adapter, which you need in

order to make reservations on a DHCP server.

Knowing this, you can get the confi guration for a computer’s primary adapter as

shown in the following example and sample output:

$na = get-wmiobject Win32_NetworkAdapter -filter `

$na = get-wmiobject Win32_NetworkAdapter -filter `

"NetConnectionID='Local Area Connection'"

"NetConnectionID='Local Area Connection'"

$index = $na.index

$index = $na.index

get-wmiobject Win32_NetworkAdapterConfiguration -filter "Index=$index"

get-wmiobject Win32_NetworkAdapterConfiguration -filter "Index=$index"

__PATH : \\ROOM5\root\cimv2:Win32_NetworkAdapterConfiguration.Index=4

__PATH : \\ROOM5\root\cimv2:Win32_NetworkAdapterConfiguration.Index=4

DHCPLeaseExpires : 20090129095440.000000-480

DHCPLeaseExpires : 20090129095440.000000-480

Index : 4

Index : 4

Description : Intel(R) PRO/1000 PM Network Connection

Description : Intel(R) PRO/1000 PM Network Connection

DHCPEnabled : True

DHCPEnabled : True

DHCPLeaseObtained : 20090128095440.000000-480

DHCPLeaseObtained : 20090128095440.000000-480

DHCPServer : 192.168.1.1

DHCPServer : 192.168.1.1

DNSDomain :

DNSDomain :

DNSDomainSuffixSearchOrder :

DNSDomainSuffixSearchOrder :

DNSEnabledForWINSResolution : False

DNSEnabledForWINSResolution : False

DNSHostName : TechPC242

DNSHostName : TechPC242

DNSServerSearchOrder : {68.87.78.177, 68.77.75.78, 68.77.79.176}

DNSServerSearchOrder : {68.87.78.177, 68.77.75.78, 68.77.79.176}

DomainDNSRegistrationEnabled : False

DomainDNSRegistrationEnabled : False

FullDNSRegistrationEnabled : True

FullDNSRegistrationEnabled : True

IPAddress : {192.168.1.104, fe80::7330:2226:ee62:2312}

IPAddress : {192.168.1.104, fe80::7330:2226:ee62:2312}

IPConnectionMetric : 1

IPConnectionMetric : 1

IPEnabled : True

IPEnabled : True

IPFilterSecurityEnabled : False

IPFilterSecurityEnabled : False

WINSEnableLMHostsLookup : True

WINSEnableLMHostsLookup : True

WINSHostLookupFile :

WINSHostLookupFile :

320

CHAPTER 11 Managing Shares, Printers, and TCP/IP Networking

WINSPrimaryServer :

WINSPrimaryServer :

WINSScopeID :

WINSScopeID :

WINSSecondaryServer :

WINSSecondaryServer :

DatabasePath : %SystemRoot%\System32\drivers\etc

DatabasePath : %SystemRoot%\System32\drivers\etc

DeadGWDetectEnabled :

DeadGWDetectEnabled :

DefaultIPGateway : {192.168.1.1}

DefaultIPGateway : {192.168.1.1}

DefaultTOS :

DefaultTOS :

DefaultTTL :

DefaultTTL :

ForwardBufferMemory :

ForwardBufferMemory :

GatewayCostMetric : {0}

GatewayCostMetric : {0}

IGMPLevel :

IGMPLevel :

InterfaceIndex : 7

InterfaceIndex : 7

IPPortSecurityEnabled :

IPPortSecurityEnabled :

IPSecPermitIPProtocols : {}

IPSecPermitIPProtocols : {}

IPSecPermitTCPPorts : {}

IPSecPermitTCPPorts : {}

IPSecPermitUDPPorts : {}

IPSecPermitUDPPorts : {}

IPSubnet : {255.255.255.0, 64}

IPSubnet : {255.255.255.0, 64}

MACAddress : 89:76:FF:D4:D6:35

MACAddress : 89:76:FF:D4:D6:35

MTU :

MTU :

NumForwardPackets :

NumForwardPackets :

TcpipNetbiosOptions : 0

TcpMaxConnectRetransmissions :

TcpMaxConnectRetransmissions :

TcpMaxDataRetransmissions : 5

TcpMaxDataRetransmissions : 5

TcpNumConnections :

TcpNumConnections :

TcpWindowSize :

TcpWindowSize :

Scope : System.Management.ManagementScope

Scope : System.Management.ManagementScope

From this information, you can determine the computer’s

N IPv4 and IPv6 addresses.

N IPv4 subnet mask.

N Default IP gateway.

N MAC address.

N DNS domain.

N DNS domain suffi x search order.

N DNS server search order.

N Domain DNS registration status.

N DHCP status.

N DHCP lease.

N DHCP server.

With Win32_NetworkAdapter, you also can use the value of the NetConnection-

Status property to check for connected adapters because all connected adapters

are in use and active. This ensures you check the confi guration of all active adapt-

ers on a computer. The value you are looking for is 2. Knowing this, you can get

confi guration details for each connected adapter using the technique shown in this

example and sample output:

Managing Shares, Printers, and TCP/IP Networking CHAPTER 11

321

$na = get-wmiobject Win32_NetworkAdapter –filter "NetConnectionStatus=2"

$na = get-wmiobject Win32_NetworkAdapter –filter "NetConnectionStatus=2"

$na | foreach {

$na | foreach {

$index = $_.index

$index = $_.index

get-wmiobject Win32_NetworkAdapterConfiguration -filter "Index=$index"

get-wmiobject Win32_NetworkAdapterConfiguration -filter "Index=$index"

}

DHCPEnabled : True

DHCPEnabled : True

IPAddress : {192.168.10.152}

IPAddress : {192.168.10.152}

DefaultIPGateway : {192.168.10.1}

DefaultIPGateway : {192.168.10.1}

DNSDomain :

DNSDomain :

ServiceName : e1express

ServiceName : e1express

Description : Intel(R) PRO/1000 PM Network Connection

Description : Intel(R) PRO/1000 PM Network Connection

Index : 4

Index : 4

A complete list of values for the NetConnectionStatus and their meaning are

as follows: 0 (disconnected), 1 (connecting), 2 (connected), 3 (disconnecting),

4 (hardware not present), 5 (hardware disabled), 6 (hardware malfunction), 7 (media

disconnected), 8 (authenticating), 9 (authentication succeeded), and 10 (authentica-

tion failed).

In the following example, you check for and display the state of the local area

connection:

$na = get-wmiobject Win32_NetworkAdapter -filter "NetConnectionID='Local

$na = get-wmiobject Win32_NetworkAdapter -filter "NetConnectionID='Local

Area Connection'"

Area Connection'"

$status = $na.NetConnectionStatus

$status = $na.NetConnectionStatus

switch -regex ($status) {

switch -regex ($status) {

[0] { "Disconnected." }

[0] { "Disconnected." }

[1] { "Connecting." }

[1] { "Connecting." }

[2] { "Connected. The connection is active." }

[2] { "Connected. The connection is active." }

[3] { "Disconnecting." }

[3] { "Disconnecting." }

[4-6] { "Hardware is disabled, malfunctioning or not present. Check and

[4-6] { "Hardware is disabled, malfunctioning or not present. Check and

enable hardware."}

enable hardware."}

[7] { "Media is disconnected; connect the network cable."}

[7] { "Media is disconnected; connect the network cable."}

[8-9] { "Authenticating."}

[8-9] { "Authenticating."}

[10] { "Authentication failed."}

[10] { "Authentication failed."}

}

Connected. The connection is active.

Connected. The connection is active.

322

CHAPTER 11 Managing Shares, Printers, and TCP/IP Networking

Configuring Static IP Addressing

When you assign a static IP address, you need to tell the computer the IP address

you want to use, the subnet mask for this IP address, and, if necessary, the default

gateway to use for internetwork communications. An IP address is a numeric identi-

fier for a computer. IP addressing schemes vary according to how your network is

configured, but they’re normally assigned based on a particular network segment.

IPv6 addresses and IPv4 addresses are very different. With IPv6, the first

64 bits represent the network ID, and the remaining 64 bits represent the network

interface. With IPv4, a variable number of the initial bits represent the network ID,

and the rest of the bits represent the host ID. For example, if you’re working with

IPv4 and a computer on the network segment 192.168.1.0 with a subnet mask of

255.255.255.0, the first three bits represent the network ID, and the address range

you have available for computer hosts is from 192.168.1.1 to 192.168.1.254. In this

range, the address 192.168.1.255 is reserved for network broadcasts.

If you’re on a private network that is indirectly connected to the Internet,

you should use private IPv4 addresses. Table 11-1 summarizes private network IPv4

addresses.

TABLE 11-1 Private IPv4 Network Addressing

PRIVATE NETWORK ID

SUBNET MASK

NETWORK ADDRESS RANGE

10.0.0.0

255.0.0.0

10.0.0.0–10.255.255.255

172.16.0.0

255.240.0.0

172.16.0.0–172.31.255.255

192.168.0.0

255.255.0.0

192.168.0.0–192.168.255.255

All other IPv4 network addresses are public and must be leased or purchased.

If the network is connected directly to the Internet and you’ve obtained a range of

IPv4 addresses from your Internet service provider, you can use the IPv4 addresses

you’ve been assigned.

When you are working with an elevated administrator PowerShell prompt, you

can use the methods Win32_NetworkAdapterConfiguration provides to change

a computer’s TCP/IP configuration. Computers that have directly assigned IP

addresses are said to use static IP addressing. Win32_NetworkAdapterConfigura-

tion provides methods and properties for working with static IP addressing. Useful

properties include the following:

N DNSDomain Specifies the DNS suffix for the connection that overrides the

default DNS names already configured for use. Normally the entry is blank.

N DNSDomainSuffixSearchOrder Specifies the DNS suffixes to use for the

connection and their search order. DNS suffixes are used to resolve unquali-

fied computer names. Normally, this entry includes the parent domain as the

first entry, which means the DNS suffix for the parent domain is added to

unqualified computer names.

Managing Shares, Printers, and TCP/IP Networking CHAPTER 11

323

N DNSEnabledForWINSResolution Specifi es whether DNS can be used for

resolving Windows Internet Naming Service (WINS) lookups. By default, this

is normally set to False.

N DNSServerSearchOrder Specifi es IP addresses of DNS servers in the order

in which they should be used.

N DomainDNSRegistrationEnabled Specifi es whether IP addresses for this

connection are registered in DNS under the DNS suffi x provided for the

connection. By default, this is normally set to False.

N FullDNSRegistrationEnabled Specifi es whether IP addresses for this

connection are registered in DNS under the computer’s fully qualifi ed

domain name. By default, this is normally set to True.

Useful methods include the following:

N SetDNSDomain() Sets the DNS domain suffi x for the connection. This

overrides the default DNS names already confi gured for use. This method

accepts a string value that specifi es the suffi x to use.

N SetDNSServerSearchOrder() Sets the IP addresses of DNS servers in the

order in which they should be used. This method accepts a string or array of

strings that sets the IP addresses of the DNS servers to use.

N SetDynamicDNSRegistration() Enables automatic registration of

IP addresses used for this connection. The IP addresses are registered in

DNS under the computer’s fully qualifi ed domain name. This method accepts

a Boolean value of $True or $False.

N SetGateways() Sets the IP addresses and metric of gateways to use.

Accepts a string or array of strings containing gateway IP addresses as the

fi rst value. This method accepts an integer or array of integers specifying

the metric as the second parameter.

N SetWINSServer() Sets the IP addresses of WINS servers in the order in

which they should be used. This method accepts a string or array of strings

that sets the IP addresses of the WINS servers to use.

If a computer uses dynamic or static IP addressing and you want to change the

TCP/IP confi guration, you can use the EnableStatic() method to enable static IP

addressing and specify the IP addresses and subnet masks to use. The basic syntax is

 $nacObject.EnableStatic(IPAddress, SubnetMask)

where $nacObject is a reference to a Win32_NetworkAdapterConfi guration object,

 IPAddress is the desired IP address entered as a string, and SubnetMask is the desired subnet mask entered as a string value, as shown in this example and sample

output:

$na = get-wmiobject Win32_NetworkAdapter -filter `

$na = get-wmiobject Win32_NetworkAdapter -filter `

"NetConnectionID='Local Area Connection'"

"NetConnectionID='Local Area Connection'"

$index = $na.index

$index = $na.index

324

CHAPTER 11 Managing Shares, Printers, and TCP/IP Networking

$nac = get-wmiobject Win32_NetworkAdapterConfiguration -filter `

$nac = get-wmiobject Win32_NetworkAdapterConfiguration -filter `

"Index=$index"

"Index=$index"

$nac.EnableStatic("192.168.1.100","255.255.255.0")

$nac.EnableStatic("192.168.1.100","255.255.255.0")

__GENUS : 2

__GENUS : 2

__CLASS : __PARAMETERS

__CLASS : __PARAMETERS

__SUPERCLASS :

__SUPERCLASS :

__DYNASTY : __PARAMETERS

__DYNASTY : __PARAMETERS

__RELPATH :

__RELPATH :

__PROPERTY_COUNT : 1

__PROPERTY_COUNT : 1

__DERIVATION : {}

__DERIVATION : {}

__SERVER :

__SERVER :

__NAMESPACE :

__NAMESPACE :

__PATH :

__PATH :

ReturnValue : 0

ReturnValue : 0

Here, you set an IP address of 192.168.1.100 and a subnet mask of 255.255.255.0.

The return value in the output is what you want to focus on. A return value of

0 indicates success. Any other return value indicates an error. Typically, errors occur

because you aren’t using an elevated administrator PowerShell prompt or haven’t

accessed the correct network adapter.

If a computer uses default gateways that are not set by DHCP, you can use the

SetGateways() method to specify the gateways to use by IP address and metric.

When you assign multiple gateways, Windows uses the gateway metric to deter-

mine which gateway to use fi rst. The basic syntax is

 $nacObject.SetGateways(DefaultIPGateway, Metric)

where $nacObject is a reference to a Win32_NetworkAdapterConfi guration object,

 DefaultIPGateway is the desired gateway address entered as a string value or an

array of strings, and Metric is the desired gateway metric entered as an integer

value or an array of integer values. In the following example, you set a default

gateway address of 192.168.1.1 and a metric of 1:

$nac.SetGateways("192.168.1.1",1)

As before, a return value of 0 indicates success. Any other return value indicates

an error. This is true for all the examples in this section.

In the following example, you set three default gateways, each with a different

metric:

$g = "192.168.1.1", "192.168.2.1", "192.168.3.1"

$g = "192.168.1.1", "192.168.2.1", "192.168.3.1"

$m = 1,2,3

$m = 1,2,3

$nac.setgateways($g,$m)

$nac.setgateways($g,$m)

Managing Shares, Printers, and TCP/IP Networking CHAPTER 11

325

If a computer uses DNS servers that are not set by DHCP, you can use the

SetDNSServerSearchOrder() method to specify the DNS servers to use by IP address.

The basic syntax is

 $nacObject.SetDNSServerSearchOrder(DNSServerIPAddresses)

where $nacObject is a reference to a Win32_NetworkAdapterConfi guration object,

and DNSServerIPAddresses are the IP addresses for the DNS servers to use entered

as a string or an array of strings. In the following example, you specify the IP address

of the primary and secondary DNS servers:

$dns = "10.10.10.52", "10.10.10.68"

$dns = "10.10.10.52", "10.10.10.68"

$nac.SetDNSServerSearchOrder($dns)

$nac.SetDNSServerSearchOrder($dns)

Confi guring Dynamic IP Addressing

Computers can have IP addresses that are dynamically assigned by DHCP servers.

When an IP address is given to a client by a server, the client is said to have a lease

on the IP address. The term lease is used because the assignment is not permanent.

The DHCP server sets the duration of the lease when the lease is granted.

Win32_NetworkAdapterConfi guration provides methods and properties for

working with dynamic IP addressing. Useful properties include the following:

N DHCPEnabled Specifi es whether the adapter uses DHCP. If True, you can

use DHCPLeaseObtained to determine when a computer obtains the lease on

the IP address assigned by DHCP.

N DHCPServer Specifi es the IP addressees of DHCP servers.

N DHCPLeaseObtained Specifi es when the computer obtains the lease on

the IP address assigned by DHCP. The value is specifi ed as a DateTime string.

N DHCPLeaseExpires Specifi es when the lease on the IP address expires. The

value is specifi ed as a DateTime string.

Useful methods include the following:

N EnableDHCP() Enables DHCP on the selected adapter. This method

requires no parameters.

N ReleaseDHCPLease() Releases the DHCP lease and related addressing

information. This method requires no parameters.

N RenewDHCPLease() Releases the DHCP lease and then renews it. This

method requires no parameters.

When you have a reference to a Win32_NetworkAdapterConfi guration object

for a connection that uses DHCP, you can use the properties of this object to view

DHCP-related information. An example and sample output follow:

$na = get-wmiobject Win32_NetworkAdapter -filter `

$na = get-wmiobject Win32_NetworkAdapter -filter `

"NetConnectionID='Local Area Connection'"

"NetConnectionID='Local Area Connection'"

$index = $na.index

$index = $na.index

326

CHAPTER 11 Managing Shares, Printers, and TCP/IP Networking

$nac = get-wmiobject Win32_NetworkAdapterConfiguration -filter `

$nac = get-wmiobject Win32_NetworkAdapterConfiguration -filter `

"Index=$index"

"Index=$index"

$nac | format-list DHCPLeaseExpires, DHCPEnabled, DHCPLeaseObtained, `

$nac | format-list DHCPLeaseExpires, DHCPEnabled, DHCPLeaseObtained, `

DHCPServer

DHCPServer

DHCPLeaseExpires : 20090220080155.000000-480

DHCPLeaseExpires : 20090220080155.000000-480

DHCPEnabled : True

DHCPEnabled : True

DHCPLeaseObtained : 20090219080155.000000-480

DHCPLeaseObtained : 20090219080155.000000-480

DHCPServer : 192.168.1.1

DHCPServer : 192.168.1.1

To convert the DateTime strings to a more readable form, you can use the

ConvertToDateTime() method as shown in this example and sample output:

$na = get-wmiobject Win32_NetworkAdapter -filter `

$na = get-wmiobject Win32_NetworkAdapter -filter `

"NetConnectionID='Local Area Connection'"

"NetConnectionID='Local Area Connection'"

$index = $na.index

$index = $na.index

$nac = get-wmiobject Win32_NetworkAdapterConfiguration -filter `

$nac = get-wmiobject Win32_NetworkAdapterConfiguration -filter `

"Index=$index"

"Index=$index"

$gotlease = $nac.ConvertToDateTime($nac.dhcpleaseobtained)

$gotlease = $nac.ConvertToDateTime($nac.dhcpleaseobtained)

$explease = $nac.ConvertToDateTime($nac.dhcpleaseexpires)

$explease = $nac.ConvertToDateTime($nac.dhcpleaseexpires)

write-host ("DHCP Lease Obtained: $gotlease")

write-host ("DHCP Lease Obtained: $gotlease")

write-host ("DHCP Lease Expires: $explease")

write-host ("DHCP Lease Expires: $explease")

DHCP Lease Obtained: 02/19/2009 14:42:56

DHCP Lease Obtained: 02/19/2009 14:42:56

DHCP Lease Expires: 02/20/2009 14:42:56

DHCP Lease Expires: 02/20/2009 14:42:56

 NOTE If the adapter you are working with uses static IP addressing, the previous example will not work, and you’ll get multiple errors in the output. The reason for this

is that the DHCP values are set to Null and cannot be converted to DateTime objects.

You manage a computer’s dynamic IP addressing confi guration at an elevated

administrator PowerShell prompt. When you have a reference to a Win32_Network-

AdapterConfi guration object, you can use the EnableDHCP() method to enable

DHCP. As shown in the following example and sample output, all you need to do is

call EnableDHCP() on the Win32_NetworkAdapterConfi guration object:

$na = get-wmiobject Win32_NetworkAdapter -filter `

$na = get-wmiobject Win32_NetworkAdapter -filter `

"NetConnectionID='Local Area Connection'"

"NetConnectionID='Local Area Connection'"

$index = $na.index

$index = $na.index

$nac = get-wmiobject Win32_NetworkAdapterConfiguration -filter `

$nac = get-wmiobject Win32_NetworkAdapterConfiguration -filter `

"Index=$index"

"Index=$index"

$nac.EnableDHCP()

Managing Shares, Printers, and TCP/IP Networking CHAPTER 11

327

__GENUS : 2

__CLASS : __PARAMETERS

__CLASS : __PARAMETERS

__SUPERCLASS :

__SUPERCLASS :

__DYNASTY : __PARAMETERS

__DYNASTY : __PARAMETERS

__RELPATH :

__RELPATH :

__PROPERTY_COUNT : 1

__PROPERTY_COUNT : 1

__DERIVATION : {}

__DERIVATION : {}

__SERVER :

__SERVER :

__NAMESPACE :

__NAMESPACE :

__PATH :

__PATH :

ReturnValue : 0

Here, you enable DHCP on the local area connection. A return value of 0 indicates

success. Any other return value indicates an error. Typically, errors occur because

you aren’t using an elevated administrator PowerShell prompt or haven’t accessed

the correct network adapter.

When you are working with a Win32_NetworkAdapterConfi guration object, you

can release or renew the adapter’s DHCP lease by calling ReleaseDHCPLease() or

RenewDHCPLease() as appropriate. In the following example, you renew the lease

on the local area connection:

$na = get-wmiobject Win32_NetworkAdapter -filter `

$na = get-wmiobject Win32_NetworkAdapter -filter `

"NetConnectionID='Local Area Connection'"

"NetConnectionID='Local Area Connection'"

$index = $na.index

$index = $na.index

$nac = get-wmiobject Win32_NetworkAdapterConfiguration -filter `

$nac = get-wmiobject Win32_NetworkAdapterConfiguration -filter `

"Index=$index"

"Index=$index"

$nac.RenewDHCPLease()

$nac.RenewDHCPLease()

Confi guring Windows Firewall

Windows Firewall is included with Windows XP with Service Pack 2 and later versions

of the Windows operating system. When you are confi guring Windows systems, you’ll

often want to determine whether Windows Firewall is enabled or disabled and then

either enable or disable the fi rewall as appropriate. You might also want to determine

what fi rewall ports are open or closed and then either open or close ports as appro-

priate. In PowerShell, you can easily perform these basic fi rewall management tasks.

Viewing and Managing Windows Firewall Settings

Windows Firewall supports three types of profi les:

N Domain The

profi le applicable when a computer is connected to a domain.

N Private The

profi le applicable when a computer is a member of a work-

group or connected to a home network.

N Public The

profi le applicable when a computer is connected to a public

network.

328

CHAPTER 11 Managing Shares, Printers, and TCP/IP Networking

 You manage Windows Firewall using the HNetCfg.FwMgr COM object. You can

create an instance of this object so that you can work with Windows Firewall, as

shown in the following example:

$firewall = new-object –com HNetCfg.FwMgr

Although you can view Windows Firewall settings at a standard PowerShell

prompt, you must access an elevated administrator PowerShell prompt to change

most fi rewall settings. As shown in the following example and sample output, the

top-level fi rewall object has several methods and properties you can use:

$firewall = new-object -com HNetCfg.FwMgr

$firewall = new-object -com HNetCfg.FwMgr

$firewall | get-member

 TypeName: System.__ComObject#{f7898af5-cac4-4632-a2ec-da06e5111af2}

 TypeName: System.__ComObject#{f7898af5-cac4-4632-a2ec-da06e5111af2}

Name MemberType Definition

Name MemberType Definition

---- ---------- ----------

---- ---------- ----------

IsIcmpTypeAllowed Method void IsIcmpTypeAllowed (NET_FW_IP_VERSION

IsIcmpTypeAllowed Method void IsIcmpTypeAllowed (NET_FW_IP_VERSION

IsPortAllowed Method void IsPortAllowed (string, NET_FW_IP_VERSION

IsPortAllowed Method void IsPortAllowed (string, NET_FW_IP_VERSION

RestoreDefaults Method void RestoreDefaults ()

RestoreDefaults Method void RestoreDefaults ()

CurrentProfileType Property NET_FW_PROFILE_TYPE_ CurrentProfileType ()

CurrentProfileType Property NET_FW_PROFILE_TYPE_ CurrentProfileType ()

LocalPolicy Property INetFwPolicy LocalPolicy () {get}

LocalPolicy Property INetFwPolicy LocalPolicy () {get}

Calling the RestoreDefaults() method on the fi rewall object restores the default

settings as shown in this example:

$firewall = new-object -com HNetCfg.FwMgr

$firewall = new-object -com HNetCfg.FwMgr

$firewall.restoredefaults()

$firewall.restoredefaults()

Accessing the CurrentProfi leType property displays the current profi le type:

0 (Private), 1 (Public), or 2 (Domain). This is shown in the following example and

sample output:

$firewall = new-object -com HNetCfg.FwMgr

$firewall = new-object -com HNetCfg.FwMgr

$firewall.currentprofiletype

$firewall.currentprofiletype

1

Most of the time, you’ll want to work with the LocalPolicy property, which

returns an object representing the local fi rewall policy. Using this object, you can

get objects representing the current, active profi le or any specifi c fi rewall profi le

by name.

Managing Shares, Printers, and TCP/IP Networking CHAPTER 11

329

You use the CurrentProfi le property of the Local Firewall Policy object to get the current, active profi le, as shown in this example and sample output:

$firewall = new-object -com HNetCfg.FwMgr

$firewall = new-object -com HNetCfg.FwMgr

$current = $firewall.localpolicy.currentprofile

$current = $firewall.localpolicy.currentprofile

$current | format-list *

$current | format-list *

Type : 1

Type : 1

FirewallEnabled : False

FirewallEnabled : False

ExceptionsNotAllowed : False

ExceptionsNotAllowed : False

NotificationsDisabled : False

NotificationsDisabled : False

UnicastResponsesToMulticastBroadcastDisabled : False

UnicastResponsesToMulticastBroadcastDisabled : False

RemoteAdminSettings : System.__ComObject

RemoteAdminSettings : System.__ComObject

IcmpSettings : System.__ComObject

IcmpSettings : System.__ComObject

GloballyOpenPorts : {Intel(R) Viiv(TM) Media}

GloballyOpenPorts : {Intel(R) Viiv(TM) Media}

Services : {File and Printer Sharing}

Services : {File and Printer Sharing}

AuthorizedApplications : {Roxio Upnp Service, SPCM}

AuthorizedApplications : {Roxio Upnp Service, SPCM}

You use the GetProfi leByType() method of the Local Firewall Policy object to get

a specifi c profi le, as shown in the following example and sample output:

$firewall = new-object -com HNetCfg.FwMgr

$firewall = new-object -com HNetCfg.FwMgr

$private = $firewall.localpolicy.getprofilebytype(0)

$private = $firewall.localpolicy.getprofilebytype(0)

$private | format-list *

$private | format-list *

Type : 0

Type : 0

FirewallEnabled : True

FirewallEnabled : True

ExceptionsNotAllowed : False

ExceptionsNotAllowed : False

NotificationsDisabled : True

NotificationsDisabled : True

UnicastResponsesToMulticastBroadcastDisabled : True

UnicastResponsesToMulticastBroadcastDisabled : True

RemoteAdminSettings : System.__ComObject

RemoteAdminSettings : System.__ComObject

IcmpSettings : System.__ComObject

IcmpSettings : System.__ComObject

GloballyOpenPorts : {Intel(R) Viiv(TM) Media}

GloballyOpenPorts : {Intel(R) Viiv(TM) Media}

Services : {File and Printer Sharing}

Services : {File and Printer Sharing}

AuthorizedApplications : {Roxio Upnp Service, SPCM}

AuthorizedApplications : {Roxio Upnp Service, SPCM}

Regardless of whether you are working with the current profi le or a profi le of a

specifi c type, you have the following properties available:

N AuthorizedApplications Returns a collection of objects representing

applications authorized to communicate through the fi rewall. By accessing

individual objects in the collection, you control authorized applications.

Properties can be viewed or set by their name as shown in the following

example and sample output:

330

CHAPTER 11 Managing Shares, Printers, and TCP/IP Networking

$firewall = new-object -com HNetCfg.FwMgr

$firewall = new-object -com HNetCfg.FwMgr

$apps = $firewall.localpolicy.currentprofile.authorizedapplications

$apps = $firewall.localpolicy.currentprofile.authorizedapplications

foreach ($a in $apps) {$a}

foreach ($a in $apps) {$a}

Name : Roxio Upnp Service

Name : Roxio Upnp Service

ProcessImageFileName : C:\Program Files\Roxio\Easy Media Creator 8\

ProcessImageFileName : C:\Program Files\Roxio\Easy Media Creator 8\

Digital Home\RoxUpnpServer.exe

Digital Home\RoxUpnpServer.exe

IpVersion : 2

Scope : 0

Scope : 0

RemoteAddresses : *

RemoteAddresses : *

Enabled : True

Enabled : True

N ExceptionsNotAllowed Displays or controls whether fi rewall exceptions

are allowed. This property accepts a Boolean value.

$firewall = new-object -com HNetCfg.FwMgr

$firewall = new-object -com HNetCfg.FwMgr

$cp = $firewall.localpolicy.currentprofile

$cp = $firewall.localpolicy.currentprofile

$cp.exceptionsnotallowed = $True

$cp.exceptionsnotallowed = $True

write-host $cp.exceptionsnotallowed

write-host $cp.exceptionsnotallowed

True

True

N FirewallEnabled Displays or controls whether the fi rewall is enabled. This

property accepts a Boolean value.

$firewall = new-object -com HNetCfg.FwMgr

$firewall = new-object -com HNetCfg.FwMgr

$cp = $firewall.localpolicy.currentprofile

$cp = $firewall.localpolicy.currentprofile

$cp.firewallenabled = $True

$cp.firewallenabled = $True

write-host $cp.firewallenabled

write-host $cp.firewallenabled

True

N GloballyOpenPorts Returns a collection of objects representing open

ports. By accessing individual objects in the collection, you control open

ports. Properties can be viewed or set by their name as shown in the follow-

ing example and sample output:

$firewall = new-object -com HNetCfg.FwMgr

$firewall = new-object -com HNetCfg.FwMgr

$oports = $firewall.localpolicy.currentprofile.globallyopenports

$oports = $firewall.localpolicy.currentprofile.globallyopenports

foreach ($o in $oports) {$o}

foreach ($o in $oports) {$o}

Managing Shares, Printers, and TCP/IP Networking CHAPTER 11

331

Name : Adobe Version Cue CS3 Server

Name : Adobe Version Cue CS3 Server

IpVersion : 2

IpVersion : 2

Protocol : 6

Protocol : 6

Port : 50901

Port : 50901

Scope : 0

Scope : 0

RemoteAddresses : *

RemoteAddresses : *

Enabled : True

Enabled : True

BuiltIn : False

BuiltIn : False

N IcmpSettings Returns a collection of objects representing Internet Control

Message Protocol (ICMP) settings. By accessing individual objects in the

collection, you control ICMP settings.

$firewall = new-object -com HNetCfg.FwMgr

$firewall = new-object -com HNetCfg.FwMgr

$icmpsettings = $firewall.localpolicy.currentprofile.icmpsettings

$icmpsettings = $firewall.localpolicy.currentprofile.icmpsettings

foreach ($i in $icmpsettings) {$i}

foreach ($i in $icmpsettings) {$i}

AllowOutboundDestinationUnreachable : False

AllowOutboundDestinationUnreachable : False

AllowRedirect : False

AllowRedirect : False

AllowInboundEchoRequest : False

AllowInboundEchoRequest : False

AllowOutboundTimeExceeded : False

AllowOutboundTimeExceeded : False

AllowOutboundParameterProblem : False

AllowOutboundParameterProblem : False

AllowOutboundSourceQuench : False

AllowOutboundSourceQuench : False

AllowInboundRouterRequest : False

AllowInboundRouterRequest : False

AllowInboundTimestampRequest : False

AllowInboundTimestampRequest : False

AllowInboundMaskRequest : False

AllowInboundMaskRequest : False

AllowOutboundPacketTooBig : True

AllowOutboundPacketTooBig : True

N Notifi cationsDisabled Displays or controls whether notifi cations are

disabled. When notifi cations are enabled, messages are displayed to the user

when a program is blocked from receiving inbound connections. This prop-

erty accepts a Boolean value.

$firewall = new-object -com HNetCfg.FwMgr

$firewall = new-object -com HNetCfg.FwMgr

$cp = $firewall.localpolicy.currentprofile

$cp = $firewall.localpolicy.currentprofile

$cp.notificationsdisabled = $True

$cp.notificationsdisabled = $True

write-host $cp.notificationsdisabled

write-host $cp.notificationsdisabled

True

True

N RemoteAdminSettings Returns a collection of objects representing

remote administration settings. By accessing individual objects in the collec-

tion, you control these settings.

332

CHAPTER 11 Managing Shares, Printers, and TCP/IP Networking

$firewall = new-object -com HNetCfg.FwMgr

$firewall = new-object -com HNetCfg.FwMgr

$ras = $firewall.localpolicy.currentprofile.remoteadminsettings

$ras = $firewall.localpolicy.currentprofile.remoteadminsettings

foreach ($r in $ras) {$r | format-list *}

foreach ($r in $ras) {$r | format-list *}

IpVersion : 2

IpVersion : 2

Scope : 1

Scope : 1

RemoteAddresses : LocalSubnet

RemoteAddresses : LocalSubnet

Enabled : False

Enabled : False

N UnicastResponsesToMulticastBroadcastDisabled Displays or controls

whether unicast responses are disabled. When unicast responses are en-

abled, Windows Firewall allows unicast responses to multicast or broadcast

network traffi c. This property accepts a Boolean value.

$firewall = new-object -com HNetCfg.FwMgr

$firewall = new-object -com HNetCfg.FwMgr

$cp = $firewall.localpolicy.currentprofile

$cp = $firewall.localpolicy.currentprofile

$cp.unicastresponsestomulticastbroadcastdisabled = $True

$cp.unicastresponsestomulticastbroadcastdisabled = $True

write-host $cp.unicastresponsestomulticastbroadcastdisabled

write-host $cp.unicastresponsestomulticastbroadcastdisabled

True

N Type Displays the type of profi le you are working with as 0 (Private),

1 (Public), or 2 (Domain).

$firewall = new-object -com HNetCfg.FwMgr

$firewall = new-object -com HNetCfg.FwMgr

$cp = $firewall.localpolicy.currentprofile

$cp = $firewall.localpolicy.currentprofile

write-host $cp.

write-host $

type

cp. type

1

Adding and Removing Firewall Ports

At an elevated administrator PowerShell prompt, you can open and close fi rewall

ports using the Add() and Remove() methods accessible via the HNetCfg.FWOpen-

Port COM object. To add a port, you create a reference to this COM object and then

defi ne the settings for the port as shown in this example:

$PROTOCOL_TCP = 6

$PROTOCOL_TCP = 6

$firewall = new-object -com HNetCfg.FwMgr

$firewall = new-object -com HNetCfg.FwMgr

$port = new-object –com HNetCfg.FWOpenPort

$port = new-object –com HNetCfg.FWOpenPort

$port.name = "Web Services"

$port.name = "Web Services"

$port.port = 8080

$port.port = 8080

$port.protocol = $PROTOCOL_TCP

$port.protocol = $PROTOCOL_TCP

$firewall.localpolicy.currentprofile.globallyopenports.Add($port)

$firewall.localpolicy.currentprofile.globallyopenports.Add($port)

Managing Shares, Printers, and TCP/IP Networking CHAPTER 11

333

The port name is a descriptive value for anyone who reviews the fi rewall settings.

The port number is the TCP or UDP port to open on the fi rewall. The protocol is the

specifi c TCP or UDP protocol that will be used.

After you create a port, you can verify the settings using the GloballyOpenPorts

property of the applicable profi le. Here is an example and sample output:

$firewall = new-object -com HNetCfg.FwMgr

$firewall = new-object -com HNetCfg.FwMgr

$oports = $firewall.localpolicy.currentprofile.globallyopenports

$oports = $firewall.localpolicy.currentprofile.globallyopenports

$oports | where-object {$_.name -eq "Web Services"}

$oports | where-object {$_.name -eq "Web Services"}

Name : Web Services

Name : Web Services

IpVersion : 2

IpVersion : 2

Protocol : 6

Protocol : 6

Port : 8080

Port : 8080

Scope : 0

Scope : 0

RemoteAddresses : *

RemoteAddresses : *

Enabled : True

Enabled : True

BuiltIn : False

BuiltIn : False

To remove a port, you create a reference to the HNetCfg.FWOpenPort COM

object and then identify the port to remove by its port address and protocol

identifi er as shown in this example:

$PROTOCOL_TCP = 6

$PROTOCOL_TCP = 6

$firewall = new-object -com HNetCfg.FwMgr

$firewall = new-object -com HNetCfg.FwMgr

$cp = $firewall.localpolicy.currentprofile

$cp = $firewall.localpolicy.currentprofile

$cp.globallyopenports.Remove(8080, $PROTOCOL_TCP)

$cp.globallyopenports.Remove(8080, $PROTOCOL_TCP)

You can verify that the port was removed using the same technique you use to

verify that a port was added. If you can no longer fi nd the port by its name, the port

was removed successfully.

334

CHAPTER 11 Managing Shares, Printers, and TCP/IP Networking

C H A P T E R 1 2

Managing and Securing

the Registry

N

Understanding Registry Keys and Values 336

N

Navigating the Registry 338

N

Managing Registry Keys and Values 341

N

Comparing Registry Keys 346

N

Viewing and Managing Registry Security Settings 347

N

Auditing the Registry 357

The Windows registry stores configuration settings. Using the Registry provider

built into Windows PowerShell, you can view, add, delete, compare, and copy

registry entries. Because the Windows registry is essential to the proper operation

of the operating system, make changes to the registry only when you know how

these changes will affect the system. You should perform all registry changes

within the context of a transaction. Transactions were discussed in the “Creating

Transactions” section in Chapter 7, “Managing Computers with Commands and

Scripts.” With transactions, you can do the following:

1. Use Start-Transaction to start a transaction before you modify the registry.

2. Make changes and then verify your changes.

3. Use Stop-Transaction to finalize your changes or Undo-Transaction to roll

back your changes.

After you finalize a transaction using Stop-Transaction, you can no longer undo

your changes. Additionally, transactions won’t help you identify changes that will

cause problems with the computer and its installed components and applications.

Therefore, before you edit the registry in any way, you should create a system

restore point. This way, if you make a mistake, you can recover the registry and the

system.

335

 CAUTION Improperly modifying the Windows registry can cause serious problems.

If the registry becomes corrupted, you might have to reinstall the operating system.

Double-check the commands you use. Make sure that they do exactly what you intend.

Understanding Registry Keys and Values

The Windows registry stores configuration settings for the operating system,

applications, users, and hardware. Registry settings are stored as keys and values,

which are placed under a specific root key controlling when and how the keys

and values are used.

Table 12-1 lists the registry root keys you can work with in PowerShell as well as

a description and the reference name you use to refer to the root key when working

with the Registry provider. Under the root keys, you’ll find the main keys that control

system, user, application, and hardware settings. These keys are organized into a

tree structure, with folders representing keys. Within these folders are the registry

keys that store important service configuration settings and their subkeys.

TABLE 12-1 Keys in the Windows Registry

ROOT KEY

REFERENCE NAME

DESCRIPTION

HKEY_CURRENT_USER

HKCU

Stores configuration settings for the

current user.

HKEY_LOCAL_MACHINE

HKLM

Stores system-level configuration

settings.

HKEY_CLASSES_ROOT

HKCR

Stores configuration settings for

applications and files. It also ensures

that the correct application is

opened when a file is accessed.

HKEY_USERS

HKU

Stores default-user and other-user

settings by profile.

HKEY_CURRENT_CONFIG

HKCC

Stores information about the

hardware profile being used.

Keys that you want to work with must be designated by their folder path. For

example, under HKLM\SYSTEM\CurrentControlSet\Services, you’ll find folders for all

services installed on the system. Values associated with the DNS key in this folder

path allow you to work with the Domain Name System (DNS) service and its

configuration settings.

Key values are stored as a specific data type. Table 12-2 provides a summary of

the main data types used with keys.

336

 CHAPTER 12 Managing and Securing the Registry

TABLE 12-2 Registry Key Values and Data Types

DATA TYPE

DESCRIPTION

REFERENCE NAME EXAMPLE

REG_BINARY

Identifies a binary

Binary

01 00 14 80 90 00 00

value. Binary values

9C 00

are stored using

base2 (0 or 1 only)

but are displayed and

entered in hexadecimal

(base16) format.

REG_DWORD

Identifies a binary

Dword

0x00000002

data type in which

32-bit integer values

are stored as four

byte-length values in

hexadecimal.

REG_EXPAND_

Identifies an expand-

Expandstring

%SystemRoot%\dns.exe

SZ

able string value,

which is usually used

with directory paths.

REG_MULTI_SZ

Identifies a multiple-

Multistring

Tcpip Afd RpcSc

string value.

REG_NONE

Identifies data without None

23 45 67 80

a particular type.

This data is written as

binary values but is

displayed and entered

in hexadecimal

(base16) format.

REG_QWORD

Identifies a binary

Qword

0x0000EA3FC

data type in which

64-bit integer values

are stored as eight

byte-length values in

hexadecimal.

REG_SZ

Identifies a string

String

DNS Server

value containing a

sequence of characters.

Managing and Securing the Registry CHAPTER 12

337

Navigating the Registry

The core set of features for performing related procedures was discussed previously

in the “Using Providers” section in Chapter 3, “Managing Your Windows PowerShell

Environment,” and include the Registry provider, the cmdlets for working with data

stores listed in Table 3-4, and the cmdlets for working with provider drives listed in

Table 3-5. As long as you know the key path and understand the available key data

types, you can use the Registry provider to view and manipulate keys in a variety of ways.

By default, only the HKLM and HKCU root keys are available in PowerShell. To

make other root keys available, you can register them as new PowerShell drives. The

following example shows how to register HKCR, HKU, and HKCC:

new-psdrive –name hkcr –psprovider registry –root hkey_classes_root

new-psdrive –name hkcr –psprovider registry –root hkey_classes_root

new-psdrive –name hku –psprovider registry –root hkey_users

new-psdrive –name hku –psprovider registry –root hkey_users

new-psdrive –name hkcc –psprovider registry –root hkey_current_config

new-psdrive –name hkcc –psprovider registry –root hkey_current_config

Now you can directly access these additional root keys. For example, if you want

to access HKCC, you type

set-location hkcc:

set-location hkcc:

You can access keys and values in any Registry location using Set-Location. For

example, if you want to change the location to HKLM, you type

set-location hklm:

set-location hklm:

You can then work with registry keys and values in HKLM. Locations under HKLM

(or any other root key) are navigated in the same way you navigate directory paths.

If you are working with HKLM, for example, you can use Set-Location (or CD) to

change to HKLM\SYSTEM\CurrentControlSet\Services by typing

set-location system\currentcontrolset\services

set-location system\currentcontrolset\services

Alternatively, to access HKLM and start in this location in the fi rst place, you can

type

set-location hklm:\system\currentcontrolset\services

set-location hklm:\system\currentcontrolset\services

 NOTE If you specify a nonexistent path, key, or value, an error message is displayed.

Typically, it reads: Cannot find _________ because it does not exist.

When you are working with a Registry location and want to view the available

keys, type get-childitem (or dir) as shown in the following example and sample

output:

338

CHAPTER 12 Managing and Securing the Registry

set-location hklm:\system\currentcontrolset\services

set-location hklm:\system\currentcontrolset\services

get-childitem

get-childitem

 Hive: HKEY_LOCAL_MACHINE\system\currentcontrolset\services

 Hive: HKEY_LOCAL_MACHINE\system\currentcontrolset\services

SKC VC Name Property

SKC VC Name Property

--- -- ---- --------

-- ----

 2 0 .NET CLR Data {}

 2 0 .NET CLR Data {}

 2 0 .NET CLR Networking {}

 2 0 .NET CLR Networking {}

 2 0 .NET Data Provider for Oracle {}

 2 0 .NET Data Provider for Oracle {}

 2 0 .NET Data Provider for SqlS... {}

 2 0 .NET Data Provider for SqlS... {}

 1 0 .NETFramework {}

 1 0 .NETFramework {}

 2 7 ACPI {Tag, DisplayName, Group...}

 2 7 ACPI {Tag, DisplayName, Group...}

 1 7 Adobe LM Service {Description, DisplayName...}

 1 7 Adobe LM Service {Description, DisplayName...}

 1 6 Adobe Version Cue CS2 {DisplayName, Type, Start...}

 1 6 Adobe Version Cue CS2 {DisplayName, Type, Start...}

 1 7 Adobe Version Cue CS3 {Type, Start, ErrorControl...}

 1 7 Adobe Version Cue CS3 {Type, Start, ErrorControl...}

The following information is provided in this output:

N SKC shows the subkey count under the named key.

N VC shows the value count, which is the number of values under the named

key.

N Name shows the name of the subkey.

N Property lists the names of properties for the named key.

To learn more about navigating the registry, let’s focus on the APCI key. In this

example, you know ACPI has a number of named property values. You can list these

property values by typing get-itemproperty as shown in the following example

and sample output:

set-location hklm:\system\currentcontrolset\services\acpi

set-location hklm:\system\currentcontrolset\services\acpi

get-itemproperty .

get-itemproperty .

PSPath : Microsoft.PowerShell.Core\Registry::HKEY_LOCAL_MACHINE\

PSPath : Microsoft.PowerShell.Core\Registry::HKEY_LOCAL_MACHINE\

system\currentcontrolset\services\acpi

system\currentcontrolset\services\acpi

PSParentPath : Microsoft.PowerShell.Core\Registry::HKEY_LOCAL_MACHINE\

PSParentPath : Microsoft.PowerShell.Core\Registry::HKEY_LOCAL_MACHINE\

system\currentcontrolset\services

system\currentcontrolset\services

PSChildName : acpi

PSChildName : acpi

PSDrive : HKLM

PSDrive : HKLM

PSProvider : Microsoft.PowerShell.Core\Registry

PSProvider : Microsoft.PowerShell.Core\Registry

Tag : 1

Tag : 1

DisplayName : Microsoft ACPI Driver

DisplayName : Microsoft ACPI Driver

Group : Boot Bus Extender

Group : Boot Bus Extender

ImagePath : system32\drivers\acpi.sys

ImagePath : system32\drivers\acpi.sys

ErrorControl : 3

ErrorControl : 3

Start : 0

Start : 0

Type : 1

Type : 1

Managing and Securing the Registry CHAPTER 12

339

You don’t have to access a location to view its properties. The value you provide to Get-Item Property is a path. In the previous example, the dot (.) refers to the

current working location. If you were working with another drive or location, you

could enter the full path to the key to get the same results, as shown in this example:

get-itemproperty hklm:\system\currentcontrolset\services\acpi

get-itemproperty hklm:\system\currentcontrolset\services\acpi

Continuing this example, you know there are two source keys and seven key

values under ACPI. If you access ACPI, you can list the two source keys by typing

get-childitem (or dir) as shown in this example and sample output:

set-location hklm:\system\currentcontrolset\services\acpi

set-location hklm:\system\currentcontrolset\services\acpi

get-childitem

get-childitem

 Hive: HKEY_LOCAL_MACHINE\system\currentcontrolset\services\acpi

 Hive: HKEY_LOCAL_MACHINE\system\currentcontrolset\services\acpi

SKC VC Name Property

SKC VC Name Property

--- -- ---- --------

-- ----

 1 2 Parameters {AMLIMaxCTObjs,

 1 2 Parameters {AMLIMaxCTObjs,

WHEAOSCImplemented}

WHEAOSCImplemented}

 0 3 Enum {0, Count, NextInstance}

 0 3 Enum {0, Count, NextInstance}

As with Get-ItemProperty, Get-ChildItem also accepts a path. This means you can

use Get-ChildItem and enter the full path to the key to get the same results shown

in the previous example:

get-childitem hklm:\system\currentcontrolset\services\acpi

get-childitem hklm:\system\currentcontrolset\services\acpi

If you access the enum key under ACPI, you’ll fi nd several properties, including

Count and NextInstance. Although you can use Get-ChildItem to view the values of

all related properties, you’ll more typically want to view and work with individual

property values. To do this, get the properties and store the results in a variable.

This allows you to then view and work with properties individually as shown in the

following example and sample output:

$p = get-itemproperty hklm:\system\currentcontrolset\services\acpi\enum

$p = get-itemproperty hklm:\system\currentcontrolset\services\acpi\enum

$p.count

$p.count

1

Alternatively, you can read registry values by referencing the full path and name

of the property value that you want to examine. The basic syntax is

get-itemproperty [–path]

get-itemproperty [–path] KeyPath

 KeyPath [–name]

[–name] ValueName

 ValueName

340

CHAPTER 12 Managing and Securing the Registry

 where KeyPath is the path of the key you want to examine and ValueName is an optional parameter that specifi es a specifi c key value. Here is an example with

sample output:

get-itemproperty hklm:\system\currentcontrolset\services\acpi\enum count

get-itemproperty hklm:\system\currentcontrolset\services\acpi\enum count

PSPath : Microsoft.PowerShell.Core\Registry::HKEY_LOCAL_MACHINE\

PSPath : Microsoft.PowerShell.Core\Registry::HKEY_LOCAL_MACHINE\

system\currentcontrolset\services\acpi\enum

system\currentcontrolset\services\acpi\enum

PSParentPath : Microsoft.PowerShell.Core\Registry::HKEY_LOCAL_MACHINE\

PSParentPath : Microsoft.PowerShell.Core\Registry::HKEY_LOCAL_MACHINE\

system\currentcontrolset\services\acpi

system\currentcontrolset\services\acpi

PSChildName : enum

PSChildName : enum

PSDrive : HKLM

PSDrive : HKLM

PSProvider : Microsoft.PowerShell.Core\Registry

PSProvider : Microsoft.PowerShell.Core\Registry

Count : 1

Count : 1

As you can see, the output includes path, drive, and provider values as well as

the value of the property you are examining. You can fi lter the output so that you

see only the property value using Format-List, as shown in the following example:

get-itemproperty hklm:\system\currentcontrolset\services\acpi\enum `

get-itemproperty hklm:\system\currentcontrolset\services\acpi\enum `

count | format-list –property count

count | format-list –property count

Count : 1

Count : 1

 NOTE To work with the registry on remote computers, use the Invoke-Command

cmdlet as discussed in Chapter 4, “Using Sessions, Jobs, and Remoting.” Here is an

example:

invoke-command -computername Server43, Server27, Server82 ìnvoke-command -computername Server43, Server27, Server82 `

-scriptblock { get-itemproperty `

-scriptblock { get-itemproperty `

hklm:\system\currentcontrolset\services\acpi\enum }

hklm:\system\currentcontrolset\services\acpi\enum }

 Alternatively, you can establish remote sessions using the New-PSSession cmdlet

and then run individual commands against each computer automatically. Here is an

example:

$s = new-PSSession –computername Server43, Server27, Server82

$s = new-PSSession –computername Server43, Server27, Server82

invoke-command –session $s -scriptblock {get-itemproperty ìnvoke-command –session $s -scriptblock {get-itemproperty `

hklm:\system\currentcontrolset\services\acpi\enum}

hklm:\system\currentcontrolset\services\acpi\enum}

Managing Registry Keys and Values

When you are working with the Registry provider, you have many Item and Item-

Property cmdlets available for managing registry keys and values. You’ll use these

cmdlets to create, copy, move, rename, and delete registry items.

Managing and Securing the Registry CHAPTER 12

341

Creating Registry Keys and Values

You can easily add subkeys and values to the Windows registry using PowerShell. To

create keys, you use the New-Item cmdlet. To create key values, you use the New-

ItemProperty cmdlet. The basic syntax for creating a key is

new-item [–type registrykey] [–path] Path

where you can optionally specify the type of item you are creating as Registrykey

and then use Path to specify where the key should be created. When you create

a registry key, New-Item displays results that confi rm the creation process. In the

following example, you create an HKCU:\Software\Test key, and the resulting output

confi rms that the key was successfully created:

new-item -type registrykey -path hkcu:\software\test

new-item -type registrykey -path hkcu:\software\test

 Hive: HKEY_CURRENT_USER\software

 Hive: HKEY_CURRENT_USER\software

SKC VC Name Property

SKC VC Name Property

--- -- ---- --------

--- -- ---- --------

 0 0 test {}

 0 0 test {}

 NOTE To create keys and set key values on remote computers, use the Invoke-Command cmdlet as discussed in Chapter 4. Here is an example:

invoke-command -computername Server43, Server27, Server82 ìnvoke-command -computername Server43, Server27, Server82 `

-scriptblock { new-item hkcu:\software\test }

-scriptblock { new-item hkcu:\software\test }

As long as you have the appropriate permissions to create the key in the specifi ed

location, the creation process should be successful. If the key already exists, however,

you’ll see an error stating the following: “A key at this path already exists.”

The basic syntax for creating a key value is

new-itemproperty [–path] Path [-name] Name [-type Type] [-value Value]

where Path is the path to an existing registry key, Name is the name of the value, Type is the value type, and Value is the value to assign. Permitted value types are listed by their reference name in Table 12-2. As the table shows, valid types include

Binary, Dword, Expandstring, Multistring, None, and String.

When you create a key value, New-ItemProperty displays results that confi rm

the creation process. In the following example, you create a string value called Data

under the HKCU:\Software\Test key, and the resulting output confi rms that the key

value was successfully created:

new-itemproperty -path hkcu:\software\test Data –type "string" `

new-itemproperty -path hkcu:\software\test Data –type "string" `

–value "Current"

–value "Current"

342

CHAPTER 12 Managing and Securing the Registry

PSPath : Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_USER\

PSPath : Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_USER\

software\test

software\test

PSParentPath : Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_USER\

PSParentPath : Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_USER\

software

software

PSChildName : test

PSChildName : test

PSDrive : HKCU

PSDrive : HKCU

PSProvider : Microsoft.PowerShell.Core\Registry

PSProvider : Microsoft.PowerShell.Core\Registry

Data : Current

Data : Current

As long as you have the appropriate permissions to create the key in the speci-

fi ed location, the creation process should be successful. If the key value already

exists, however, you’ll see an error stating the following: “The property already exists.”

Copying Registry Keys and Values

You can copy registry keys using Copy-Item. The basic syntax is

copy-item SourcePath DestinationPath

where SourcePath is the path to the registry key to copy and DestinationPath is where you’d like to create a copy of the registry. In the following example, you copy

the HKCU:\Software\Test key (and all its contents) to HKLM:\Software\Dev:

copy-item hkcu:\software\test hklm:\software\dev

copy-item hkcu:\software\test hklm:\software\dev

As long as you have the appropriate permissions, you should be able to copy

registry keys. When you copy a key, Copy-ItemProperty displays an error that

indicates failure but doesn’t display any output to indicate success.

You can copy registry values using Copy-ItemProperty. The basic syntax is

copy-itemproperty [–path] SourcePath [- destination] DestinationPath [–name]

 KeyValueToCopy

where SourcePath is the current path to the key value, DestinationPath is the new path for the copy of the key value, and KeyValueToCopy identifi es the key value you

want to copy. In the following example, you copy the Data value from the HKCU:\

Software\Test key to the HKLM:\Software\Dev key:

copy-itemproperty -path hkcu:\software\test -destination `

copy-itemproperty -path hkcu:\software\test -destination `

hklm:\software\dev -name data

hklm:\software\dev -name data

As long as you have the appropriate permissions and the source value exists, you

should be able to copy the key value. You can use Copy-ItemProperty to copy multiple

key values. Use comma-separated values or wildcard characters as appropriate.

Managing and Securing the Registry CHAPTER 12

343

Moving Registry Keys and Values

You can move keys and their associated values using Move-Item. The basic syntax is

move-item SourcePath DestinationPath

where SourcePath is the current path to the key and DestinationPath is the new path to the key. When you move a key, Move-Item displays an error that indicates failure

but doesn’t display any output to indicate success. In the following example, you

move the HKCU:\Software\Test key (and all its contents) to the HKCU:\Software\Test2

key:

move-item hkcu:\software\test hkcu:\software\test2

move-item hkcu:\software\test hkcu:\software\test2

As long as you have the appropriate permissions, you should be able to move

keys. You can use Move-Item to move keys from one root to another. For example,

you can move HKCU:\Software\Test to HKLM:\Software\Test.

You can move key values using Move-ItemProperty. The basic syntax is

move-itemproperty [–path] SourcePath [- destination] DestinationPath [–name]

 KeyValueToMove

where SourcePath is the current path to the key value, DestinationPath is the new path to the key value, and KeyValueToMove identifi es the key value you want to

move. When you move a key value, Move-ItemProperty displays an error that

indicates failure but doesn’t display any output to indicate success. In the following

example, you move the Data value from the HKCU:\Software\Test key to the

HKLM:\Software\Test key:

move-itemproperty -path hkcu:\software\test -destination `

move-itemproperty -path hkcu:\software\test -destination `

hklm:\software\test2 -name data

hklm:\software\test2 -name data

As long as you have the appropriate permissions and the source and destination

keys exist, you should be able to move the key value. You can use Move-ItemProperty

to move multiple key values. Use comma-separated values or wildcard characters

as appropriate.

Renaming Registry Keys and Values

To rename keys, you use the Rename-Item cmdlet. Rename-Item has the following

syntax

rename-item OriginalNamePath NewName

where OriginalNamePath is the full path to the key and NewName is the new name for the key. In the following example, you rename Test under HKCU:\Software as

Test2:

rename-item hkcu:\software\test test2

rename-item hkcu:\software\test test2

344

CHAPTER 12 Managing and Securing the Registry

 As long as you have the appropriate permissions, you should be able to rename keys.

To rename key values, you use the Rename-ItemProperty cmdlet. Rename-

ItemProperty has the following syntax

rename-item [-path] OriginalNamePath [-name] CurrentName [–newname] NewName where OriginalNamePath is the full path to the key value and NewName is the

new name for the key value. In the following example, you rename Data under the

HKCU:\Software\Test key as EntryType:

rename-itemproperty –path hkcu:\software\test2 –name datà

rename-itemproperty –path hkcu:\software\test2 –name datà

–newname entrytype

–newname entrytype

As long as you have the appropriate permissions, you should be able to rename

keys.

Deleting Registry Keys and Values

You can delete registry keys using the Remove-Item cmdlet. Remove-Item has the

following syntax

remove-item NamePath [-Force]

where NamePath is the full path to the registry key that you want to remove, and

–Force is an optional parameter to force the removal of the key. In the following

example, you delete the HKCU:\Software\Test2 key (and all its contents):

remove-item hkcu:\software\test2

remove-item hkcu:\software\test2

As long as you have the appropriate permissions, you should be able to remove

registry keys.

You can delete key values using the Remove-ItemProperty cmdlet. Remove-

ItemProperty has the following syntax

remove-itemproperty [-Path] KeyPath [-Name] ValueName [-Force]

where KeyPath is the full path to the registry key that contains the value that you

want to remove, ValueName is the name of the value to remove, and –Force is an

optional parameter to force the removal of the key value. In the following example,

you delete the Data value for the HKCU:\Software\Test key:

remove-itemproperty –path hkcu:\software\test –name data

remove-itemproperty –path hkcu:\software\test –name data

As long as you have the appropriate permissions, you should be able to remove

key values.

Managing and Securing the Registry CHAPTER 12

345

Comparing Registry Keys

You can compare registry entries and values between and among computers or

between two different keys on the same system. Performing registry comparisons is

useful in the following situations:

N When you are trying to troubleshoot service and application confi guration

issues.

At such times, it is useful to compare the registry confi gurations between two

different systems. Ideally, these systems include one registry that appears to

be confi gured properly and one that you suspect is misconfi gured. You can

then perform a comparison of the confi guration areas that you suspect are

causing problems.

N When you want to ensure that an application or service is confi gured the

same way on multiple systems.

Here you use one system as the basis for testing the other system confi gura-

tions. Ideally, the basis system is confi gured exactly as expected before you

start comparing its confi guration with other systems.

To see how you can compare registry values across computers, consider the fol-

lowing example and sample output:

$c1 = "techpc18"

$c1 = "techpc18"

$c2 = "engpc25"

$c2 = "engpc25"

$p = invoke-command -computername $c1 -scriptblock { get-itemproperty `

$p = invoke-command -computername $c1 -scriptblock { get-itemproperty `

hklm:\system\currentcontrolset\services\acpi\enum }

hklm:\system\currentcontrolset\services\acpi\enum }

$h = invoke-command -computername $c2 -scriptblock { get-itemproperty `

$h = invoke-command -computername $c2 -scriptblock { get-itemproperty `

hklm:\system\currentcontrolset\services\acpi\enum }

hklm:\system\currentcontrolset\services\acpi\enum }

if ($p = $h) {write-host $True} else {

if ($p = $h) {write-host $True} else {

write-host "Computer: $c1"

write-host "Computer: $c1"

write-host $p

write-host $p

write-host "Computer: $c2"

write-host "Computer: $c2"

write-host $h}

write-host $h}

True

True

When you run these commands at an elevated administrator PowerShell prompt

and the remote computers are confi gured for remoting, you get a comparison of

the specifi ed keys on both computers. If the keys have the same values, PowerShell

writes True to the output as shown. Otherwise, PowerShell writes the values associated

with each key on each computer, allowing you to see where there are differences.

346

CHAPTER 12 Managing and Securing the Registry

 You can easily extend this comparison technique so that you can compare the

values on a computer you know is confi gured correctly with multiple computers in

the enterprise that you want to check. An example and sample output follow:

$clist = "techpc18", "techpc25", "techpc36"

$clist = "techpc18", "techpc25", "techpc36"

$src = "engpc25"

$src = "engpc25"

$ps = invoke-command -computername $clist -scriptblock { `

$ps = invoke-command -computername $clist -scriptblock { `

get-itemproperty hklm:\system\currentcontrolset\services\acpi\enum }

get-itemproperty hklm:\system\currentcontrolset\services\acpi\enum }

$h = invoke-command -computername $src -scriptblock { get-itemproperty `

$h = invoke-command -computername $src -scriptblock { get-itemproperty `

hklm:\system\currentcontrolset\services\acpi\enum }

hklm:\system\currentcontrolset\services\acpi\enum }

$index = 0

$index = 0

foreach ($p in $ps) {

foreach ($p in $ps) {

if ($p = $h) {write-host $clist[$index] "same as $src" } else {

if ($p = $h) {write-host $clist[$index] "same as $src" } else {

write-host "Computer:" $clist[$index]

write-host "Computer:" $clist[$index]

write-host $p

write-host $p

write-host "Computer: $src"

write-host "Computer: $src"

write-host $h

write-host $h

$index++}

$index++}

}

techpc18 same as engpc25

techpc18 same as engpc25

techpc25 same as engpc25

techpc25 same as engpc25

techpc36 same as engpc25

techpc36 same as engpc25

Here, you check the registry on multiple target computers and compare key

values with a source computer. If a target computer has different values for the key

compared, you list the target computer’s values followed by the source computer’s

values. This allows you to see where there are differences.

Viewing and Managing Registry Security Settings

As an administrator, you’ll sometimes need to view and manage security settings in

the registry. In PowerShell, these tasks are accomplished using Get-Acl and Set-Acl.

The syntax for these commands is as follows:

N Get-Acl Gets objects that represent the security descriptor of registry keys.

Use –Audit to get the audit data for the security descriptor from the access

control list.

Managing and Securing the Registry CHAPTER 12

347

Get-Acl [-Path]

Get-Acl [-Path] KeyPaths

 KeyPaths {AddtlParams}

{AddtlParams}

AddtlParams=

AddtlParams=

[-Audit] [-Exclude

[-Audit] [-Exclude KeysToExclude

 KeysToExclude] [-Include

] [-Include KeysToInclude]

N Set-Acl Changes the security descriptor of registry keys. Use –Aclobject to

specify the desired security settings.

Set-Acl [-Path]

Set-Acl [-Path] KeyPaths

 KeyPaths [-Aclobject]

[-Aclobject] Security {AddtlParams}

 y

AddtlParams=

AddtlParams=

[-Exclude

[-Exclude KeysToExclude

 KeysToExclude] [-Include

] [-Include KeysToInclude

 KeysToInclude]

Whenever you are working with registry keys, you might want to view or modify

the security descriptor. Use Get-Acl with the –Path parameter to specify the path to

resources you want to work with. You can use wildcard characters in the path, and

you can also include or exclude keys using the –Include and –Exclude parameters.

Getting and Setting Registry Security Descriptors

Get-Acl returns a separate object containing the security information for each

matching key. By default, Get-Acl displays the path to the resource, the owner of the

resource, and a list of the access control entries on the resource. The access control

list is controlled by the resource owner. To get additional information, including the

security group of the owner, a list of auditing entries, and the full security descriptor

as an SDDL (Security Descriptor Defi nition Language) string, format the output as a

list as shown in the following example and sample output:

get-acl hklm:\software\test | format-list

Path:Microsoft.PowerShell.Core\Registry::HKEY_LOCAL_MACHINE\software\test

Path:Microsoft.PowerShell.Core\Registry::HKEY_LOCAL_MACHINE\software\test

Owner : BUILTIN\Administrators

Owner : BUILTIN\Administrators

Group : ENGPC18\None

Group : ENGPC18\None

Access : BUILTIN\Users Allow ReadKey

Access : BUILTIN\Users Allow ReadKey

 BUILTIN\Users Allow -2147483648

 BUILTIN\Users Allow -2147483648

 BUILTIN\Administrators Allow FullControl

 BUILTIN\Administrators Allow FullControl

 BUILTIN\Administrators Allow 268435456

 BUILTIN\Administrators Allow 268435456

 NT AUTHORITY\SYSTEM Allow FullControl

 NT AUTHORITY\SYSTEM Allow FullControl

 NT AUTHORITY\SYSTEM Allow 268435456

 NT AUTHORITY\SYSTEM Allow 268435456

 CREATOR OWNER Allow 268435456

 CREATOR OWNER Allow 268435456

Audit :

Audit :

Sddl : O:BAG:S-1-5-21-3603280705-3559929044-3306537903-

Sddl : O:BAG:S-1-5-21-3603280705-3559929044-3306537903-

513D:AI(A;ID;KR;;;BU)(A;CIIOID;GR;;;BU)(A;ID;KA;;;BA)(A;CIIOID;GA;;;BA)

513D:AI(A;ID;KR;;;BU)(A;CIIOID;GR;;;BU)(A;ID;KA;;;BA)(A;CIIOID;GA;;;BA)

(A;ID;KA;;;SY)(A;CIIOID;GA;;;SY)(A;CIIOID;GA;;;CO)

(A;ID;KA;;;SY)(A;CIIOID;GA;;;SY)(A;CIIOID;GA;;;CO)

348

CHAPTER 12 Managing and Securing the Registry

 NOTE You can view and manage registry security on remote computers using any of the remoting techniques discussed in Chapter 4. Here is an example:

invoke-command -computername Server16, Server12, Server18 ìnvoke-command -computername Server16, Server12, Server18 `

-scriptblock { get-acl hklm:\software\test | format-list }

scriptblock { get-acl hklm:\software\test | format-list }

Here, Get-Acl returns a RegistrySecurity object representing the security descriptor

of the HKLM:\Software\Test key. The result is then sent to the Format-List cmdlet. You

can work with any properties of security objects separately, including the following:

N Owner

Shows the owner of the resource

N Group

Shows the primary group the owner is a member of

N Access Shows the access control rules on the resource

N Audit Shows the auditing rules on the resource

N Sddl Shows the full security descriptor as an SDDL string

 NOTE RegistrySecurity objects have additional properties that aren’t displayed as part of the standard output. To see these properties, send the output to Format-List *. You’ll

then see the following note and script properties: PSPath (the PowerShell path to the

resource), PSParentPath (the PowerShell path to the parent resource), PSChildName (the

name of the resource), PSDrive (the PowerShell drive on which the resource is located),

AccessToString (an alternate representation of the access rules on the resource), and

AuditToString (an alternate representation of the audit rules on the resource).

You can use the objects that Get-Acl returns to set the security descriptors on

registry keys. To do this, open an elevated administrator PowerShell prompt, obtain

a single security descriptor object for a registry key that has the security settings

you want to use, and then use the security descriptor object to establish the desired

security settings for another registry key. An example and sample output follow:

set-acl –path hkcu:\software\dev -aclobject (get-acl hklm:\software\test)

set-acl –path hkcu:\software\dev -aclobject (get-acl hklm:\software\test)

Here you use the security descriptor on HKLM:\Software\Test to set the security

descriptor for HKCU:\Software\Dev.

You can easily extend this technique. In this example, you use the security

descriptor on HKLM:\Software\Test to set the security descriptor for subkeys directly

under the HKCU:\Software\Dev key:

$secd = get-acl hklm:\software\test

$secd = get-acl hklm:\software\test

set-acl –path hkcu:\software\dev* -aclobject $secd

set-acl –path hkcu:\software\dev* -aclobject $secd

To include keys in subpaths, you need to use Get-ChildItem to obtain reference

objects for all the keys you want to work with. Here is an example:

$s = get-acl hklm:\software\test

$s = get-acl hklm:\software\test

gci hkcu:\software\dev -recurse -force | set-acl -aclobject $s

gci hkcu:\software\dev -recurse -force | set-acl -aclobject $s

Managing and Securing the Registry CHAPTER 12

349

Here, gci is an alias for Get-ChildItem. You obtain the security descriptor for HKLM:\Software\Test. Next you get a reference to all subpaths of HKCU:\Software\

Dev. Finally, you use the security descriptor on HKLM:\Software\Test to set the

security descriptor for these subkeys.

Working with Registry Access Rules

To create your own security descriptors, you need to work with access control rules.

The Access property of security objects is defi ned as a collection of authorization

rules. With registry keys, these rules have the following object type:

 System.Security.AccessControl.RegistryAccessRule

One way to view the individual access control objects that apply to a registry key

is shown in this example and sample output:

$s = get-acl hklm:\software\test

$s = get-acl hklm:\software\test

$s.access

RegistryRights : FullControl

RegistryRights : FullControl

AccessControlType : Allow

AccessControlType : Allow

IdentityReference : ENGPC72\Bubba

IdentityReference : ENGPC72\Bubba

IsInherited : True

IsInherited : True

InheritanceFlags : ContainerInherit, ObjectInherit

InheritanceFlags : ContainerInherit, ObjectInherit

PropagationFlags : None

PropagationFlags : None

RegistryRights : FullControl

RegistryRights : FullControl

AccessControlType : Allow

AccessControlType : Allow

IdentityReference : NT AUTHORITY\SYSTEM

IdentityReference : NT AUTHORITY\SYSTEM

IsInherited : True

IsInherited : True

InheritanceFlags : ContainerInherit, ObjectInherit

InheritanceFlags : ContainerInherit, ObjectInherit

PropagationFlags : None

PropagationFlags : None

RegistryRights : FullControl

RegistryRights : FullControl

RegistryRights : FullControl

RegistryRights : FullControl

AccessControlType : Allow

AccessControlType : Allow

IdentityReference : BUILTIN\Administrators

IdentityReference : BUILTIN\Administrators

IsInherited : True

IsInherited : True

InheritanceFlags : ContainerInherit, ObjectInherit

InheritanceFlags : ContainerInherit, ObjectInherit

PropagationFlags : None

PropagationFlags : None

Here you get the RegistrySecurity object for the HKLM:\Software\Test key and

then display the contents of its Access property. Although each value listed is an

access rule object, you cannot work with each access rule object separately. Note

the following in the output:

N RegistryRights Shows the registry rights being applied

N AccessControlType Shows the access control type as Allow or Deny

N IdentityReference Shows the user or group to which the rule applies

350

CHAPTER 12 Managing and Securing the Registry

N IsInherited Specifi es whether the access rule is inherited

N InheritanceFlags Shows the way inheritance is being applied

N PropagationFlags Specifi es whether the access rule will be inherited

Another way to work with each access rule object separately is to use a ForEach

loop as shown in this example:

$s = get-acl hklm:\software\test

$s = get-acl hklm:\software\test

foreach($a in $s.access) {

foreach($a in $s.access) {

#work with each access control object

#work with each access control object

if ($a.identityreference -like "*administrator*") {$a | format-list *}

if ($a.identityreference -like "*administrator*") {$a | format-list *}

}

RegistryRights : FullControl

RegistryRights : FullControl

AccessControlType : Allow

AccessControlType : Allow

IdentityReference : BUILTIN\Administrators

IdentityReference : BUILTIN\Administrators

IsInherited : True

IsInherited : True

InheritanceFlags : ContainerInherit, ObjectInherit

InheritanceFlags : ContainerInherit, ObjectInherit

PropagationFlags : None

PropagationFlags : None

Here, you examine each access rule object separately, which allows you to take

action on specifi c access rules. In this example, you look for access rules that apply

to administrators.

Confi guring Registry Permissions

You can assign two types of access permissions to registry keys: basic and special.

These permissions grant or deny access to users and groups.

The basic permissions you can assign to registry keys are shown in Table 12-3.

The basic permissions are made up of multiple special permissions. Note the rule

fl ag for each permission, because this is the value you must reference when creating

an access rule.

 TABLE 12-3 Basic Registry Permissions

 PERMISSION

DESCRIPTION

RULE FLAG

Full

This permission permits reading, writing, changing,

FullControl

Control

and deleting registry keys and values.

Read

This permission permits reading registry keys and

ReadKey,

their values.

ExecuteKey

Write

This permission permits reading and writing registry WriteKey

keys and their values.

Managing and Securing the Registry CHAPTER 12

351

When you are configuring basic permissions for users and groups, you can specify the access control type as either Allowed or Denied. If a user or group should be

granted an access permission, you allow the permission. If a user or group should

be denied an access permission, you deny the permission.

You configure basic permissions for resources using access rules. Access rules

contain collections of arrays that define:

N The user or group to which the rule applies.

N The access permission that applies.

N The Allow or Deny status.

This means regardless of whether you are adding or modifying rules, the basic

syntax for an individual access rule is

" UserOrGroupName", " ApplicablePermission", " ControlType"

where UserOrGroupName is the name of the user or group to which the access

rule applies, ApplicablePermission is the basic permission you are applying, and

 ControlType specifies the Allow or Deny status. User and group names are specified

in COMPUTER\Name or DOMAIN\Name format. In the following example, you

grant full control to DeploymentTesters:

"DeploymentTesters", "FullControl", "Allow"

The expanded syntax for an access rule is

" UserOrGroupName", " ApplicablePermission", " InheritanceFlag",

" PropagationFlag", " ControlType"

where UserOrGroupName is the name of the user or group to which the access rule

applies, ApplicablePermission is the basic permission you are applying, InheritanceFlag controls inheritance, PropagationFlag controls propagation of inherited rules, and ControlType specifies the type of access control. In the following example, you

grant full control to DeploymentTesters and apply inheritance to the key and all its

subkeys:

"DeploymentTesters", "FullControl", "ContainerInherit", "None", "Allow"

With the inheritance flag, you can specify one of the following flag values:

N None The access rule is not inherited by subkeys of the current key.

N ContainerInherit The access rule is inherited by child container objects.

N ObjectInherit The access rule is inherited by child leaf objects.

Because all registry keys are containers, the only inheritance flag that is mean-

ingful for registry keys is the ContainerInherit flag for InheritanceFlags. If this flag is

not used, the propagation flags are ignored, and only the key you are working with

is affected. If you use the ContainerInherit flag, the rule is propagated according to

the propagation flags.

352

 CHAPTER 12 Managing and Securing the Registry

 With the propagation fl ag, you can specify the following fl ag values:

N None The access rule is propagated without modifi cation. This means the

rule applies to subkeys, subkeys with child keys, and subkeys of child keys.

N InheritOnly The access rule is propagated to container and leaf child

objects. This means the rule applies to subkeys with child keys and subkeys

of child keys; the rule does not apply to subkeys of the key.

N NoPropagateInherit The access rule applies to its child objects. This

means the rule applies to subkeys of the key and subkeys with child keys but

not to subkeys of child keys.

N NoPropagateInherit, InheritOnly The access rule applies to containers.

This means the rule applies to subkeys with child keys but not to subkeys of

child keys or to subkeys of the key.

You add access rules to a resource using either the SetAccessRule() method or

the AddAccessRule() method of the access control object. You remove access rules

from a resource using the RemoveAccessRule() method of the access control object.

As discussed previously, access rules are defi ned as having the System.Security

. AccessControl.RegistryAccessRule type.

The easiest way to add and remove access rules is to follow these steps:

1. Get an access control object. This object can be the one that applies to the

registry key you want to work with or one that applies to a registry key that

has the closest access control permissions to those you want to use.

2. Create one or more instances of the System.Security.AccessControl

.RegistryAccessRule type, and store the desired permissions in these object

instances.

3. Call AddAccessRule() or RemoveAccessRule() to add or remove access rules

as necessary. These methods operate on the access control object you

retrieved in the fi rst step.

4. To apply the changes you’ve made to an actual registry key, you must apply

the access control object to a specifi ed resource.

Consider the following example:

$acl = get-acl hklm:\software\test

$acl = get-acl hklm:\software\test

$perm = "cpandl\deploymenttesters","fullcontrol","allow"

$perm = "cpandl\deploymenttesters","fullcontrol","allow"

$r = new-object system.security.accesscontrol.registryaccessrule $perm

$r = new-object system.security.accesscontrol.registryaccessrule $perm

$acl.addaccessrule($r)

$acl.addaccessrule($r)

$acl | set-acl hkcu:\software\dev

$acl | set-acl hkcu:\software\dev

Here, you get the access control object on HKLM:\Software\Test. You store the

values for an access rule in a variable called $perm and then create a new instance

of the RegistryAccessRule type for this access rule. To add the permission to the

access control object you retrieved previously, you call its AddAccessRule() method.

Although you could have created additional permissions and added or removed

these, you didn’t in this example. Finally, you applied the access control object to a

specifi c resource using Set-Acl.

Managing and Securing the Registry CHAPTER 12

353

You can easily extend the previous examples to apply to multiple registry keys as shown in the following example:

$acl = get-acl hklm:\software\test

$acl = get-acl hklm:\software\test

$perm = "cpandl\devtesters","fullcontrol","allow"

$perm = "cpandl\devtesters","fullcontrol","allow"

$r = new-object system.security.accesscontrol.registryaccessrule $perm

$r = new-object system.security.accesscontrol.registryaccessrule $perm

$acl.addaccessrule($r)

$acl.addaccessrule($r)

$resc = gci hkcu:\software\test -force

$resc = gci hkcu:\software\test -force

foreach($f in $resc) {

foreach($f in $resc) {

write-host $f.pspath

write-host $f.pspath

$acl | set-acl $f.pspath

$acl | set-acl $f.pspath

}

Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_USER\software\test\Dt\IO

Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_USER\software\test\Dt\IO

Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_USER\software\test\Queue

Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_USER\software\test\Queue

Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_USER\software\test\Stats

Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_USER\software\test\Stats

Here, you apply an access control list with a modifi ed permission set to every

subkey of HKCU:\Software\Test. In the output, you list the names of the keys you’ve

modifi ed. This helps you keep track of the changes.

The special permissions you can assign to registry keys are shown in Table 12-4.

As with basic permissions, note the rule fl ag for each permission, because this is the

value you must reference when creating an access rule.

 TABLE 12-4 Special Permissions

 PERMISSION

DESCRIPTION

RULE FLAG

Query Values Allows the user or group to read the values

QueryValues

within a key.

Set Value

Allows the user or group to set the values

SetValue

within a key.

Create

Allows the user or group to create subkeys

CreateSubKey

Subkey

under the selected key.

Enumerate

Allows the user or group to list the subkeys

EnumerateSubKeys

Subkeys

under a key.

Notify

Allows the user or group to get notifi cations

Notify

for changes that occur in a key.

Create Link

Allows the user or group to create links from CreateLink

one key to another key.

354

CHAPTER 12 Managing and Securing the Registry

TABLE 12-4 Special Permissions

PERMISSION

DESCRIPTION

RULE FLAG

Delete

Allows the user or group to delete the key,

Delete

subkeys, and values associated with the key.

Delete permission must apply on the key and

on all the key’s subkeys in order for a user or

group to delete a registry key.

Write DAC

Allows the user or group to change the key’s ChangePermissions

security permissions.

Take

Allows the user or group to modify owner-

TakeOwnership

Ownership

ship of a key.

Read Control Allows the user or group to read the key’s

ReadPermissions

security permissions.

Table 12-5 shows how special permissions are combined to make the basic per-

missions for registry keys.

TABLE 12-5 Combining Special Permissions

PERMISSION

FULL CONTROL

READ

WRITE

Query Values

X

X

Set Value

X

X

Create Subkey

X

X

Enumerate Subkeys

X

X

Notify

X

X

Create Link

X

Delete

X

Write DAC

X

Write Owner

X

Read Control

X

X

X

You configure special permissions for registry keys in the same way as basic

permissions. You add access rules to a resource using either the SetAccessRule()

method or the AddAccessRule() method of the access control object. You remove

access rules from a resource using the RemoveAccessRule() method of the access

control object.

Managing and Securing the Registry CHAPTER 12

355

Consider the following example:

$acl = get-acl hklm:\software\test

$acl = get-acl hklm:\software\test

$p1 = "cpandl\dev","queryvalues","allow"

$r1 = new-object system.security.accesscontrol.registryaccessrule $p1

$r1 = new-object system.security.accesscontrol.registryaccessrule $p1

$acl.addaccessrule($r1)

$acl.addaccessrule($r1)

$p2 = "cpandl\dev","enumeratesubkeys","allow"

$p2 = "cpandl\dev","enumeratesubkeys","allow"

$r2 = new-object system.security.accesscontrol.registryaccessrule $p2

$r2 = new-object system.security.accesscontrol.registryaccessrule $p2

$acl.addaccessrule($r2)

$acl | set-acl hklm:\software\test

$acl | set-acl hklm:\software\test

Here, you get the access control object on the HKLM:\Software\Test key. This

key must exist for the example to work. After you defi ne an access rule and store

the related values in $p1, you create a new instance of the RegistryAccessRule type

and add the permission to the access control object by calling the AddAccessRule()

method. After you defi ne a second access rule and store the related values in $p2,

you create a new instance of the RegistryAccessRule type and add the permission to

the access control object by calling the AddAccessRule() method. Finally, you apply

the access control object to a specifi c resource.

Taking Ownership of Registry Keys

You can take ownership using a registry key using the SetOwner() method of the

access control object. The easiest way to take ownership is to complete the follow-

ing steps:

1. Get an access control object for the registry you want to work with.

2. Get the IdentityReference for the user or group that will take ownership. This

user or group must already have permission on the registry key.

3. Call SetOwner to specify that you want the user or group to be the owner.

4. Apply the changes you’ve made to the registry key.

Consider the following example:

$acl = get-acl hklm:\software\test

$acl = get-acl hklm:\software\test

$found = $false

$found = $false

foreach($rule in $acl.access) {

foreach($rule in $acl.access) {

if ($rule.identityreference -like "*administrators*") {

if ($rule.identityreference -like "*administrators*") {

$global:ref = $rule.identityreference; $found = $true; break}

$global:ref = $rule.identityreference; $found = $true; break}

}

if ($found) {

if ($found) {

$acl.setowner($ref)

$acl.setowner($ref)

$acl | set-acl hklm:\software\test

$acl | set-acl hklm:\software\test

}

356

CHAPTER 12 Managing and Securing the Registry

Here, you get the access control object on HKLM:\Software\Test. You then exam-

ine each access rule on this object, looking for the one that applies to the group you

want to work with. If you find a match, you set $ref to the IdentityReference for this

group, change $found to $true, and then break out of the ForEach loop. After you

break out of the loop, you check to see if $found is True. If it is, you set the owner-

ship permission on the access control object you retrieved previously and then

apply the access control object to HKLM:\Software\Test using Set-Acl.

Auditing the Registry

Access to the registry can be audited, as can access to other areas of the operating

system. Auditing allows you to track which users access the registry and what

they’re doing. All the permissions listed previously in Tables 12-1 and 12-2 can be

audited. However, you usually limit what you audit to only the essentials to reduce

the amount of data that is written to the security logs and to reduce the resources

used to track registry usage.

Before you can enable auditing of the registry, you must enable the auditing

function on the computer you are working with. You can do this either through the

server’s local policy or through the appropriate Group Policy object. The policy that

controls auditing is Computer Configuration\Windows Settings\Security Settings

\Local Policies\Audit Policy.

After auditing is enabled for a computer, you can configure how you want

auditing to work for the registry. This means configuring auditing for each key you

want to track. Thanks to inheritance, this doesn’t mean you have to go through

every key in the registry and enable auditing for it. Instead, you can select a root

key or any subkey to designate the start of the branch for which you want to track

access, and then ensure the auditing settings are inherited for all subkeys below it.

(Inheritance is the default setting.)

You can set auditing policies for registry keys using auditing rules. Auditing rules

contain collections of arrays that define the following:

N The user or group to which the rule applies

N The permission usage that is audited

N The inheritance flag specifying whether the audit rule applies to subkeys of

the current key

N The propagation flag specifying how an inherited audit rule is propagated to

subkeys of the current key

N The type of auditing

Managing and Securing the Registry CHAPTER 12

357

This means regardless of whether you are adding or modifying rules, the basic

syntax for an individual audit rule is

" UserOrGroupName", " PermissionAudited", " InheritanceFlag",

" PropagationFlag", " AuditType"

where UserOrGroupName is the name of the user or group to which the audit rule

applies, PermissionAudited is the basic or special permission you are tracking,

 InheritanceFlag controls inheritance, PropagationFlag controls propagation of

inherited rules, and AuditType specifies the type of auditing.

With the inheritance flag, you can specify one of the following flag values:

N None The audit rule is not inherited by subkeys of the current key.

N ContainerInherit The audit rule is inherited by child container objects.

N ObjectInherit The audit rule is inherited by child leaf objects.

Because all registry keys are containers, the only inheritance flag that is mean-

ingful for registry keys is the ContainerInherit flag for InheritanceFlags. If this flag is

not used, the propagation flags are ignored, and only the key you are working with

is affected. If you use the ContainerInherit flag, the rule is propagated according to

the propagation flags.

With the propagation flag, you can specify the following flag values:

N None The audit rule is propagated without modification. This means the

rule applies to subkeys, subkeys with child keys, and subkeys of child keys.

N InheritOnly The audit rule is propagated to container and leaf child objects.

This means the rule applies to subkeys with child keys and subkeys of child

keys; the rule does not apply to subkeys of the key.

N NoPropagateInherit The audit rule applies to its child objects. This means

the rule applies to subkeys of the key and subkeys with child keys but not to

subkeys of child keys.

N NoPropagateInherit,

InheritOnly The audit rule applies to containers.

This means the rule applies to subkeys with child keys but not to subkeys of

child keys or to subkeys of the key.

With audit type, use Success to track successful use of a specified permission,

Failure to track failed use of a specified permission, and None to turn off auditing of

the specified permission. Use Both to track success and failure.

As with security permissions, user and group names are specified in COMPUTER

\Name or DOMAIN\Name format. In the following example, you track users in the

358

 CHAPTER 12 Managing and Securing the Registry

CPANDL domain who are trying to query key values but fail to do so because they don’t have suffi cient access permissions:

"CPANDL\USERS", "QueryValues", "ContainerInherit", "None", "Failure"

You add audit rules to a resource using either the SetAuditRule() method or the

AddAuditRule() method of the access control object. You remove audit rules from

a resource using the RemoveAuditRule() method of the access control object. Audit

rules are defi ned as having the System.Security.AuditControl.RegistryAuditRule

type.

The easiest way to add and remove audit rules is to complete these steps:

1. Get an access control object. This object can be the one that applies to the

registry key you want to work with or one that applies to a registry key that

has the closest audit control permissions to those you want to use.

2. Create one or more instances of the System.Security.AuditControl

.Registry AuditRule type, and store the desired auditing settings in these

object instances.

3. Call AddAuditRule() or RemoveAuditRule() to add or remove audit rules as

necessary. These methods operate on the access control object you retrieved

in the fi rst step.

4. Apply the changes you’ve made to an actual resource.

Consider the following example:

$acl = get-acl hklm:\software\test

$acl = get-acl hklm:\software\test

$audit = "cpandl\users","queryvalues","containerinherit","none","failure"

$audit = "cpandl\users","queryvalues","containerinherit","none","failure"

$r = new-object system.security.accesscontrol.registryauditrule $audit

$r = new-object system.security.accesscontrol.registryauditrule $audit

$acl.addauditrule($r)

$acl.addauditrule($r)

$acl | set-acl hklm:\software\test

$acl | set-acl hklm:\software\test

Here, you get the access control object on HKLM:\Software\Test. You store the

values for an audit rule in a variable called $audit, and then you create a new instance

of the RegistryAuditRule type with this auditing rule. To add the auditing setting

to the access control object you retrieved previously, you call its AddAuditRule()

method. Although you could have created additional auditing rules and added or

removed these, you didn’t in this example. Finally, you applied the access control

object to a registry key using Set-Acl.

Managing and Securing the Registry CHAPTER 12

359

You can easily extend the previous examples to apply to multiple registry keys as shown in the following example:

$acl = get-acl hklm:\software\test

$acl = get-acl hklm:\software\test

$audit = "cpandl\users","queryvalues","containerinherit","none","failure"

$audit = "cpandl\users","queryvalues","containerinherit","none","failure"

$r = new-object system.security.accesscontrol.registryauditrule $audit

$r = new-object system.security.accesscontrol.registryauditrule $audit

$acl.addauditrule($r)

$acl.addauditrule($r)

$resc = gci hkcu:\software\test -recurse -force

$resc = gci hkcu:\software\test -recurse -force

foreach($f in $resc) {

foreach($f in $resc) {

write-host $f.pspath

write-host $f.pspath

$acl | set-acl $f.pspath

$acl | set-acl $f.pspath

}

Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_USER\software\test\Dt\IO

Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_USER\software\test\Dt\IO

Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_USER\software\test\Queue

Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_USER\software\test\Queue

Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_USER\software\test\Stats

Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_USER\software\test\Stats

Here, you apply an auditing rule to every subkey of HKCU:\Software\Test. In the

output, you list the names of the registry keys you’ve modifi ed. This helps you keep

track of the changes.

360

CHAPTER 12 Managing and Securing the Registry

C H A P T E R 1 3

Monitoring and Optimizing

Windows Systems

N

Managing Windows Events and Logs 361

N

Managing System Services 375

N

Managing Computers 395

N

Creating and Using System Restore Checkpoints 403

Windows PowerShell can help you to identify and track system problems,

monitor applications and services, and maintain system security. When

systems slow down, behave erratically, or experience other problems, you might

want to look to the event logs to identify the potential source of the problem.

Once you’ve identified problem sources or issues, you can perform maintenance

or preventative tasks to resolve or eliminate them. Using performance monitoring,

you can watch for adverse conditions and take appropriate action to resolve them.

Managing Windows Events and Logs

In Windows, an event is any significant occurrence in the operating system that

requires users or administrators to be notified. Events are recorded in the Windows

event logs and provide important historical information to help you monitor

systems, maintain system security, solve problems, and perform diagnostics. It’s

not just important to sift regularly through the information collected in these

logs, it is essential. Administrators should closely monitor the event logs of every

business server and ensure that workstations are configured to track important

system events. On servers, you want to ensure that systems are secure, that appli-

cations and services are operating normally, and that the server isn’t experiencing

errors that could hamper performance. On workstations, you want to ensure that

the events you need to maintain systems and resolve problems are being logged

and that the logs are accessible to you as necessary.

361

Working with Event Logs

The Windows service that manages event logging is called the Windows Event Log

service. When this service is started, Windows logs important information. The logs

available on a system depend on the system’s role and the services installed. Two

general types of log files are used:

N Windows

Logs Logs that the operating system uses to record general sys-

tem events related to applications, security, setup, and system components

N Applications and Services Logs Logs that specific applications and

services use to record application-specific or service-specific events

Logs you might see include the following:

N Application This log records significant incidents associated with specific

applications. For example, Microsoft Exchange Server logs events related to

mail exchange, including events for the information store, mailboxes, and

service states. By default, this log is stored in %SystemRoot%\System32\

Winevt\Logs\Application.evtx.

N DFS

Replication On domain controllers using DFS replication, this log

records file replication activities on the system, including events for service

status and control, scanning data in system volumes, and managing replica-

tion sets. By default, this log is stored in %SystemRoot%\System32\Winevt\

Logs\DFS Replication.Evtx.

N Directory

Service On domain controllers, this log records incidents from

Active Directory Domain Services (AD DS), including events related to direc-

tory startup, global catalogs, and integrity checking. By default, this log is

stored in %SystemRoot%\System32\Winevt\Logs\Directory Service.Evtx.

N DNS

Server On Domain Name System (DNS) servers, this log records DNS

queries, responses, and other DNS activities. By default, this log is stored in

%SystemRoot%\System32\Winevt\Logs\DNS Server.Evtx.

N File Replication Service This log records file replication activities on the

system. By default, this log is stored in %SystemRoot%\System32\Winevt\

Logs\File Replication Service.Evtx.

N Forwarded

Events When event forwarding is configured, this log records

forwarded events from other servers. The default location is %SystemRoot%\

System32\Winevt\Logs\FordwardedEvents.Evtx.

N Hardware

Events When hardware subsystem event reporting is config-

ured, this log records hardware events reported to the operating system.

The default location is %SystemRoot%\System32\Winevt\Logs\Hardware-

Event.Evtx.

N Microsoft\Windows A group of logs that track events related to specific

Windows services and features. Logs are organized by component type and

event category.

362

 CHAPTER 13 Monitoring and Optimizing Windows Systems

N Security This log records events related to security, such as logon/

logoff, privilege use, and resource access. By default, this log is stored in

% SystemRoot%\System32\Winevt\Logs\Security.Evtx.

 TIP To gain access to security logs, users must be granted the user right named

Manage Auditing And Security Log. By default, members of the administrators

group have this user right. You can learn more about assigning user rights in

the “Configuring User Rights Policies” section in Chapter 10, “Creating User and

Group Accounts,” of the Windows Server 2008 Administrator’s Pocket Consultant

(Microsoft Press, 2008).

N Setup This log records events logged by the operating system or

its components during setup and installation. The default location is

% SystemRoot%\System32\Winevt\Logs\Setup.Evtx.

N System This log records events from the operating system or its compo-

nents, such as the failure of a service to start, driver initialization, system-

wide messages, and other messages that relate to the system. By default, this

log is stored in %SystemRoot%\System32\Winevt\Logs\System.Evtx.

N Windows

PowerShell This log records activities related to the use of

Windows PowerShell. The default location is %SystemRoot%\System32\

Winevt\Logs\Windows PowerShell.Evtx.

Events range in severity from informational messages to general warnings to

serious incidents such as critical errors and failures. The category of an event is

indicated by its event level. Event levels include:

N Information Indicates an informational event has occurred, which is

generally related to a successful action.

N Warning Indicates a general warning. Warnings are often useful in

preventing future system problems.

N Error Indicates a critical error, such as a DHCPv6 address configuration

problem.

N Critical Indicates a critical error, such as the computer rebooting after a

power loss or crash.

N Audit

Success Indicates the successful execution of an action that you are

tracking through auditing, such as privilege use.

N Audit

Failure Indicates the failed execution of an action that you are

tracking through auditing, such as failure to log on.

 TIP Of the many event types, the two you’ll want to monitor closely are warnings

and errors. Whenever these types of events occur and you’re unsure of the reason, you

should take a closer look to determine whether you need to take further action.

Monitoring and Optimizing Windows Systems CHAPTER 13

363

In addition to having a level, each event has the following common properties

associated with it:

N Computer Identifi es the computer that caused the event to occur.

N Data Any data or error code output by the event.

N Date and Time Specifi es the date and time the event occurred.

N Description Provides a detailed description of the event and can include

details about where to fi nd more information with which to resolve or handle

an issue. This fi eld is available when you double-click a log entry in Event

Viewer.

N Event

ID Details the specifi c event that occurred with a numeric identifi er.

Event IDs are generated by the event source and used to uniquely identify

the event.

N Log

Name Specifi es the name of the log in which the event was entered.

N Source Identifi es the source of the event, such as an application, service, or

system component. The event source is useful for pinpointing the cause of

an event.

N Task

Category Specifi es the category of the event, which is sometimes

used to further describe the related action. Each event source has its own

event categories. For example, with the security source, categories include

logon/logoff, privilege use, policy change, and account management.

N User Identifi es the user account that caused the event to be generated.

Users can include special identities, such as Local Service, Network Service,

and Anonymous Logon, as well as actual user accounts. The user account can

also be listed as N/A to indicate that a user account is not applicable in this

particular situation.

The GUI tool you use to manage events is Event Viewer. You can start this tool

by typing eventvwr at the PowerShell prompt for the local computer or eventvwr

 ComputerName, where ComputerName is the name of the remote computer

whose events you want to examine. As with most GUI tools, Event Viewer is easy to

use, and you might want to continue to use it for certain management tasks.

PowerShell provides several commands for working with the event logs, includ-

ing the following:

N Get-WinEvent Gets events from event logs and event tracing log fi les on

the local computer or specifi ed remote computers. It is supported only on

Windows Vista, Windows Server 2008, and later versions of Windows.

Get-WinEvent [-ListLog]

Get-WinEvent [-ListLog] LogNames

 LogNames {BasicParams}

{BasicParams}

Get-WinEvent [-ListProvider]

Get-WinEvent [-ListProvider] ProviderNames

 ProviderNames {BasicParams}

{BasicParams}

Get-WinEvent [-Path]

Get-WinEvent [-Path] LogFilePath

 LogFilePath {BasicParams} {AddtlParams}

{BasicParams} {AddtlParams}

Get-WinEvent [-LogName]

Get-WinEvent [-LogName] LogName

 LogName {BasicParams} {AddtlParams}

{BasicParams} {AddtlParams}

Get-WinEvent [-ProviderName]

Get-WinEvent [-ProviderName] Name

 Name {BasicParams} {AddtlParams}

{BasicParams} {AddtlParams}

Get-WinEvent –FilterHashTable

Get-WinEvent –FilterHashTabl

 Values

e Values {BasicParams} {AddtlParams}

{BasicParams} {AddtlParams}

364

CHAPTER 13 Monitoring and Optimizing Windows Systems

{BasicParams}

{BasicParams}

[-ComputerName ComputerName

[-ComputerName ComputerName] [-Credential

] [-Credential CredentialObject

 CredentialObject]

{AddtlParams}

[-FilterXPath

[-FilterXPath XPathQuery

 XPathQuery] [-Oldest] [-MaxEvents

] [-Oldest] [-MaxEvents NumEvents

 NumEvents]

 REAL WORLD XPath queries help you create custom or fi ltered views of event

logs, allowing you to quickly and easily fi nd events that match specifi c criteria.

Because XPath queries can be used on any compatible system, you can re-create

custom and fi ltered views on other computers simply by running the query on a

target computer.

N Clear-EventLog

Deletes all entries from specifi ed event logs on the local

computer or specifi ed remote computers.

Clear-EventLog [[-ComputerName]

Clear-EventLog [[-ComputerName] ComputerNames

 ComputerNames] [-LogName]

] [-LogName] LogNames

 LogNames

N Get-EventLog Gets a list of the event logs or the events in a specifi ed

event log on local or remote computers.

Get-EventLog [-List] [-ComputerName

Get-EventLog [-List] [-ComputerName ComputerNames

 ComputerNames] [-AsString]

] [-AsString]

Get-EventLog [-ComputerName

Get-EventLog [-ComputerName ComputerNames

 ComputerNames] [-LogName]

] [-LogName] LogName

 LogName

[-AsBaseObject] [-After

[-AsBaseObject] [-Af

 DateTime

ter DateTime] [-Before

] [-Before DateTime

 DateTime]

[-EntryType

[-EntryType EntryTypes

 EntryTypes] [-Index

] [-Index IndexValues

 IndexValues] [[-InstanceID]

] [[-InstanceID] ID]

[-Message

[-Message Message

 Message] [-Newest

] [-Newest NumEvents

 NumEvents] [-Source

] [-Source Sources

 Sources]

[-UserName

[

 UserNames

-UserName UserNames]

N Limit-EventLog Confi gures limits on event log size and event retention for

specifi ed logs on specifi ed computers.

Limit-EventLog [-ComputerName

Limit-EventLog [-ComputerName ComputerNames

 ComputerNames] [-MaximumKiloBytes

] [-MaximumKiloBytes

 MaxSize

 MaxSiz] [-OverFlowAction {DoNotOverwrite | OverwriteAsNeeded |

 e] [-OverFlowAction {DoNotOverwrite | OverwriteAsNeeded |

OverwriteOlder] [-Retention

OverwriteOlder] [-Retention MinDays

 MinDays] [-LogName]

] [-LogName] LogNames

 LogNames

N Show-EventLog Displays the event logs of the local computer or a remote

computer in Event Viewer.

Show-EventLog [[-ComputerName]

Show-EventLog [[-ComputerName] ComputerName

 ComputerName]

 NOTE You can use Get-Event, Wait-Event, and Remove-Event to work with the

PowerShell event log. When you are creating your own event logs, you can use

 New-EventLog, Register-ObjectEvent, Register-EngineEvent, Unregister-Event,

 Get-EventSubscriber, and Register-WmiEvent.

Monitoring and Optimizing Windows Systems CHAPTER 13

365

Monitoring system events isn’t something you should do haphazardly. Rather, it is something you should do routinely and thoroughly. With servers, you will want to

examine event logs at least once a day. With desktop computers, you will want to

examine logs on specifi c computers as necessary, such as when a user reports a problem.

Viewing and Filtering Event Logs

You can obtain detailed information from the event logs using either Get-EventLog

or Get-WinEvent. Get-EventLog is handy for its versatility and simplicity. Use

Get-WinEvent when you want to apply complex fi lters, such as those based on XPath

queries or hashtable strings. If you don’t use complex fi lters, you really don’t need

Get-WinEvent.

The basic syntax for Get-EventLog is

get-eventlog "

get-eventlog LogName

" LogName" [–computername

" [–computername ComputerNames

 ComputerNames]

where LogName is the name of the log you want to work with—such as

“ Application,” “System,” or “Directory Service”—and ComputerNames are the names

of remote computers you want to work with. In this example, you examine the

Application log:

get-eventlog "Application" –computername fileserver87, dbserver23

get-eventlog "Application" –computername fileserver87, dbserver23

 NOTE Technically, the quotation marks are necessary only when the log name

 contains a space, as is the case with the DNS Server, Directory Service, and File

 Replication Service logs.

The output of this query will look similar to the following:

Index Time EntryType Source InstanceID Message

Index Time EntryType Source InstanceID Message

----- ---- --------- ------ ---------- -------

----- ---- --------- ------ ---------- -------

22278 Feb 27 10:54 Information DQLWinService 0 The description

22278 Feb 27 10:54 Information DQLWinService 0 The description

for Event ID '0' in Source 'DQL

for Event ID '0' in Source 'DQL

22277 Feb 27 10:49 Information DQLWinService 0 The description

22277 Feb 27 10:49 Information DQLWinService 0 The description

for Event ID '0' in Source 'DQL

for Event ID '0' in Source 'DQL

As you can see, the output shows the Index, Time, EntryType, Source, InstanceID,

and Message properties of events. The Index is the position of the event in the event

log. The Time is the time the event was written. The EntryType shows the category

of the event. The Source shows the source of the event. The InstanceID shows the

specifi c event that occurred with a numeric identifi er (and is the same as the EventID

fi eld in the event logs). The Message shows the description of the event.

Because the index is the position of the event in the log, this example lists events

22,277 and 22,278. By default, Get-EventLog returns every event in the specifi ed

event log from newest to oldest. In most cases, this is simply too much information,

366

CHAPTER 13 Monitoring and Optimizing Windows Systems

and you’ll need to fi lter the events to get a usable amount of data. One way to fi lter the event logs is to specify that you want to see details about only the newest

events. For example, you might want to see only the 50 newest events in a log.

Using the –Newest parameter, you can limit the return to the newest events. The

following example lists the 50 newest events in the security log:

get-eventlog "security" -newest 50

get-eventlog "security" -newest 50

One of the key reasons for using Get-EventLog is its ability to group and fi lter

events in the result set. When you group events by type, you can more easily sepa-

rate informational events from critical, warning, and error events. When you group

by source, you can more easily track events from specifi c sources. When you group

by event ID, you can more easily correlate the recurrence of specifi c events.

You can group events by Source, EventId, EntryType, and TimeGenerated using

the following technique:

1. Get the events you want to work with, and store them in a variable, such as

$e = get-eventlog -newest 100 -logname "application"

$e = get-eventlog -newest 100 -logname "application"

2. Use the Group-Object cmdlet to group the event objects by a specifi ed

property. In this example, you group by EventType:

$e | group-object -property eventtype

$e | group-object -property eventtype

Another way to work with events is to sort them according to a specifi c property.

You can sort by Source, EventId, EntryType, or TimeGenerated using the following

technique:

1. Get the events you want to work with, and store them in a variable, such as

$e = get-eventlog -newest 100 -logname "application"

$e = get-eventlog -newest 100 -logname "application"

2. Use the Sort-Object cmdlet to sort the event objects by a specifi ed property.

In this example, you sort by EntryType:

$e | sort-object -property entrytype

$e | sort-object -property entrytype

Typically, you won’t want to see every event generated on a system. More often,

you will want to see only warnings or critical errors, and that is precisely what fi lters

are for. Using fi lters, you can include only events that match the criteria you specify.

To do this, you search the EntryType property for occurrences of the word error.

Here is an example:

1. Get the events you want to work with, and store them in a variable, such as

$e = get-eventlog -newest 500 -logname "application"

$e = get-eventlog -newest 500 -logname "application"

Monitoring and Optimizing Windows Systems CHAPTER 13

367

 2. Use the Where-Object cmdlet to search for specifi c text in a named property of the event objects stored in $e. In this example, you match events with the

Error entry type:

$e | where-object {$_.EntryType -match "error"}

$e | where-object {$_.EntryType -match "error"}

With the –Match parameter, the Where-Object cmdlet uses a search algorithm

that is not case-sensitive, meaning you can type Error, error, or ERROR to match error events. You can also search for warning, critical, and information events.

Because Where-Object considers partial text matches to be valid, you don’t want to

enter the full entry type. You can also search for warn, crit, or info, such as $e = get-eventlog -newest 100 -logname "application"

$e = get-eventlog -newest 100 -logname "application"

$e | where-object {$_.EntryType -match "warn"}

$e | where-object {$_.EntryType -match "warn"}

You can use Where-Object with other event object properties as well. The fol-

lowing example searches for event sources containing the text User Profi le Service:

$e = get-eventlog -newest 500 -logname "application"

$e = get-eventlog -newest 500 -logname "application"

$e | where-object {$_.Source -match "User Profile Service"}

$e | where-object {$_.Source -match "User Profile Service"}

The following example searches for event ID 1530:

$e = get-eventlog -newest 500 -logname "application"

$e = get-eventlog -newest 500 -logname "application"

$e | where-object {$_.EventID -match "1530"}

$e | where-object {$_.EventID -match "1530"}

Sometimes, you’ll want to fi nd events that occurred before or after a specifi c

date, and you can do this using the –Before and –After parameters. The –Before

parameter gets only the events that occur before a specifi ed date and time. The –After

parameter gets only the events that occur after a specifi ed date and time.

In the following example, you get all of the errors in the System log that occurred

in July 2010:

$Jun30 = get-date 6/30/10

$Aug1 = get-date 8/01/10

$Aug1 = get-date 8/01/10

get-eventlog -log "system" -entrytype Error -after $jun30 -before $aug1

get-eventlog -log "system" -entrytype Error -after $jun30 -before $aug1

In the following example, you get all of the errors in the System log that occurred

in the last seven days:

$startdate = (get-date).adddays(-7)

$startdate = (get-date).adddays(-7)

get-eventlog -log "system" -entrytype Error -after $startdate

get-eventlog -log "system" -entrytype Error -after $startdate

368

CHAPTER 13 Monitoring and Optimizing Windows Systems

 You can automate the event querying process by creating a script that obtains the event information you want to see and then writes it to a text fi le. Consider the

following example:

$e = get-eventlog -newest 100 -logname "system" $e | where-object

$e = get-eventlog -newest 100 -logname "system" $e | where-object

{$_.EntryType -match "error"} > \\FileServer18\www\currentlog.txt

{$_.EntryType -match "error"} > \\FileServer18\www\currentlog.txt

$e = get-eventlog -newest 100 -logname "application" $e | where-object

$e = get-eventlog -newest 100 -logname "application" $e | where-object

{$_.EntryType -match "error"} >> \\FileServer18\www\currentlog.txt

{$_.EntryType -match "error"} >> \\FileServer18\www\currentlog.txt

$e = get-eventlog -newest 100 -logname "security" $e | where-object

$e = get-eventlog -newest 100 -logname "security" $e | where-object

{$_.EntryType -match "error"} >> \\FileServer18\www\currentlog.txt

{$_.EntryType -match "error"} >> \\FileServer18\www\currentlog.txt

Here, you are examining the system, application, and security event logs and

writing any resulting output to a network share on FileServer18. If any of the named

logs have error events among the 100 most recent events in the logs, the errors are

written to the CurrentLog.txt fi le. Because the fi rst redirection is overwrite (>) and

the remaining entries are append (>>), any existing Currentlog.txt fi le is overwritten

each time the script runs. This ensures that only current events are listed. To take the

automation process a step further, you could create a scheduled task that runs the

script each day or at specifi c intervals during the day.

 Setting Log Options

Log options allow you to control the size of the event logs as well as how logging

is handled. By default, event logs are set with a maximum fi le size. Then, when a

log reaches this limit, events are overwritten to prevent the log from exceeding the

maximum fi le size.

You use Limit-EventLog to set log options. The basic syntax is

Limit-EventLog [-ComputerName

Limit-EventLog [-ComputerName ComputerNames

 ComputerNames] [-LogName]

] [-LogName] LogNames Options

Here ComputerNames are the names of the computers you are confi guring,

 LogNames sets the logs to modify, and Options includes one or more of the following: N –MaximumSize Sets the maximum size in bytes of a log fi le. The size must

be in the range 64 KB to 4 GB, in increments of 64 KB. Make sure that the

drive containing the operating system has enough free space for the maxi-

mum log size you select. Most log fi les are stored in the %SystemRoot%\

System32\Winevt\Logs directory by default.

N –OverFlowAction Sets the event log wrapping mode. The options are

DoNotOverwrite, OverwriteAsNeeded, and OverwriteOlder. With DoNot-

Overwrite, the computer generates error messages telling you the event log

is full when the maximum fi le size is reached. With OverwriteAsNeeded, each

new entry overwrites the oldest entry when the maximum fi le size is reached,

Monitoring and Optimizing Windows Systems CHAPTER 13

369

and there are no limitations. With Overwrite Older, new events overwrite only

events older than the value specifi ed by the Retention property when the

maximum fi le size is reached. If there are no events older than the minimum

retention value, the computer generates error messages telling you events

cannot be overwritten.

N –Retention Sets the minimum number of days that an event must remain

in the event log.

In the following example, you confi gure the system log with a maximum size of

4096 KB, an overfl ow action of OverwriteOlder, and a minimum retention period of

seven days:

limit-eventlog –maximumsize 4096kb –overflowaction overwriteolder

limit-eventlog –maximumsize 4096kb –overflowaction overwriteolder

–retention 7 –logname system

–retention 7 –logname system

If you are confi guring multiple computers, you can use the –ComputerName

property to specify the computer names. Or you can get the list of computer names

from a text fi le as shown in the following example:

limit-eventlog -computername (get-content c:\data\clist.txt)

limit-eventlog -computername (get-content c:\data\clist.txt)

–maximumkilobytes 4096 –overflowaction overwriteolder –retention 7

–maximumkilobytes 4096 –overflowaction overwriteolder –retention 7

–logname system

–logname system

Here, you get the list of remote computers to manage from a fi le called CList.txt

in the C:\Data directory.

Archiving and Clearing Event Logs

On key systems such as domain controllers and application servers, you’ll want to

keep several months’ worth of event logs. However, it usually isn’t practical to set

the maximum log size to accommodate this. Instead, you should allow Windows to

periodically archive the event logs, or you should manually archive the event logs.

Logs can be archived in four formats:

N Event

fi les (.evtx) format, for access in Event Viewer

N Tab-delimited text (.txt) format, for access in text editors or word processors

or for import into spreadsheets and databases

N Comma-delimited text (.csv) format, for import into spreadsheets or

databases

N XML (.xml) format, for saving as a structured Extensible Markup Language

(XML) fi le.

The best format to use for archiving is the .evtx format. Use this format if

you plan to review old logs in the Event Viewer. However, if you plan to review

logs in other applications, you might need to save the logs in a tab-delimited or

comma-delimited format. With the tab-delimited or comma-delimited format,

you sometimes need to edit the log fi le in a text editor for the log to be properly

370

CHAPTER 13 Monitoring and Optimizing Windows Systems

 interpreted. If you have saved the log in the .evtx format, you can always save another copy in the tab-delimited or comma-delimited format later by doing

another Save As after opening the archive in the Event Viewer.

Windows creates log archives automatically when you select the event log-

wrapping mode Archive The Log When Full, Do Not Overwrite Events. This mode is

set in Event Viewer.

You can create a log archive manually by following these steps:

1. In Event Viewer, you should see a list of event logs. Right-click the event log

you want to archive, and select Save Events As from the shortcut menu.

2. In the Save As dialog box, select a directory and type a log fi le name.

3. In the Save As Type dialog box, Event Files (*.evtx) is the default fi le type.

Select a log format as appropriate and then choose Save.

4. If the Display Information dialog box is displayed, choose the appropriate

display options and then click OK.

If you plan to archive logs regularly, you might want to create an archive direc-

tory. This way you can easily locate the log archives. You should also name the log

fi le so that you can easily determine the log fi le type and the period of the archive.

For example, if you’re archiving the system log fi le for January 2010, you might want

to use the fi le name System Log January 2010.

When an event log is full and you want to clear it, you can do so using Clear-

EventLog. The basic syntax is

Clear-EventLog [-ComputerName

Clear-EventLog [-ComputerName ComputerNames

 ComputerNames] [-LogName]

] [-LogName] LogNames

 LogNames

Here ComputerNames are the names of the computers you are confi guring and

 LogNames sets the logs to clear, such as

clear-eventlog system

clear-eventlog system

 Writing Custom Events to the Event Logs

Whenever you work with automated scripts, scheduled tasks, or custom applica-

tions, you might want those scripts, tasks, or applications to write custom events to

the event logs. For example, if a script runs normally, you might want to write an

informational event in the application log that specifi es this so that it is easier to

determine that the script ran and completed normally. Similarly, if a script doesn’t

run normally and generates errors, you might want to log an error or warning event

in the application log so that you’ll know to examine the script and determine what

happened.

Windows PowerShell includes built-in logging features that log events to the

PowerShell event log. You can view events in this log using Get-EventLog. You

Monitoring and Optimizing Windows Systems CHAPTER 13

371

control logging using the following environment variables, which must be set in the appropriate profi le or profi les to be applicable:

N $LogCommandHealthEvent Determines whether errors and exceptions in

command initialization and processing are logged

N $LogCommandLifecycleEvent

Determines whether PowerShell logs the

starting and stopping of commands and command pipelines and security

exceptions in command discovery

N $LogEngineHealthEvent

Determines whether PowerShell logs errors and

failures of sessions

N $LogEngineLifecycleEvent

Determines whether PowerShell logs the

opening and closing of sessions

N $LogProviderHealthEvent

Determines whether PowerShell logs provider

errors, such as read and write errors, lookup errors, and invocation errors

N $LogProviderLifecycleEvent

Determines whether PowerShell logs adding

and removing of PowerShell providers

If you set a logging variable to $True, the related events are logged in the

PowerShell log. Use a value of $False to turn off logging.

You can create custom events using the Eventcreate utility. Custom events can be

logged in any available log except the security log, and they can include the event

source, ID, and description you want to use. The syntax for Eventcreate is as follows:

eventcreate /l

eventcreate /l LogName

 LogName /so

/so EventSource

 EventSource /t

/t EventType

 EventType /id

/id EventID

 EventID

/d

/d EventDescr

 EventDescr

N LogName Sets the name of the log to which the event should be written.

Use quotation marks if the log name contains spaces, as in “DNS Server.”

 TIP Although you cannot write custom events to the security log, you can write

custom events to the other logs. Start by writing a dummy event using the event

source you want to register for use with that log. The initial event for that source

will be written to the application log. You can then use the source with the speci-

fi ed log and your custom events.

N EventSource Specifi es the source to use for the event, and can be any

string of characters. If the string contains spaces, use quotation marks, as in

“Event Tracker.” In most cases, you’ll want the event source to identify the

application, task, or script that is generating the error.

 REAL WORLD Carefully plan the event source you want to use before you write

events to the logs using those sources. Each event source you use must be unique

and cannot have the same name as an existing source used by an installed service or

application. Further, you shouldn’t use event source names used by Windows roles,

role services, or features. For example, you shouldn’t use DNS, W32Time, or Ntfrs

as sources because these sources are used by Windows Server 2008.

372

CHAPTER 13 Monitoring and Optimizing Windows Systems

 Additionally, once you use an event source with a particular log, the event source is registered for use with that log on the specifi ed system. For example, you cannot use

“EventChecker” as a source in the application log and in the system log on FILESERVER82.

If you try to write an event using “EventChecker” to the system log after writing a previ-

ous event with that source to the application log, you will see the following error mes-

sage: “ERROR: Source already exists in 'Application' log. Source cannot be duplicated.”

N EventType Sets the event type as Information, Warning, or Error. Audit

Success and Audit Failure event types are not valid; these events are used with

the security logs, and you cannot write custom events to the security logs.

N EventID Specifi es the numeric ID for the event, and can be any value from

1 to 1,000. Before you assign event IDs haphazardly, you might want to

create a list of the general events that can occur and then break these down

into categories. You can then assign a range of event IDs to each category.

For example, events in the 100s could be general events, events in the 200s

could be status events, events in the 500s could be warning events, and

events in the 900s could be error events.

N EventDescr Sets the description for the event, and can be any string of

characters. Be sure to enclose the description in quotation marks.

Eventcreate runs by default on the local computer with the permissions of the

user who is currently logged on. As necessary, you can also specify the remote com-

puter whose tasks you want to query and the Run As permissions using /S Computer

/u [Domain\] User [/P Password], where Computer is the remote computer name or IP address, Domain is the optional domain name in which the user account is

located, User is the name of the user account whose permissions you want to use,

and Password is the optional password for the user account.

To see how you can use Eventcreate, consider the following examples:

CREATE AN INFORMATION EVENT IN THE APPLICATION LOG WITH THE SOURCE

EVENT TRACKER AND EVENT ID 209:

eventcreate /l "application" /t information /so "Event Tracker"

eventcreate /l "application" /t information /so "Event Tracker"

/id 209 /d "evs.bat script ran without errors."

/id 209 /d "evs.bat script ran without errors."

CREATE A WARNING EVENT IN THE SYSTEM LOG WITH THE SOURCE CUSTAPP AND

EVENT ID 511:

eventcreate /l "system" /t warning /so "CustApp" /id 511

eventcreate /l "system" /t warning /so "CustApp" /id 511

/d "sysck.exe didn't complete successfully."

/d "sysck.exe didn't complete successfully."

CREATE AN ERROR EVENT IN THE SYSTEM LOG ON FILESERVER18 WITH THE SOURCE

“SYSMON” AND EVENT ID 918:

eventcreate /s FileServer18 /l "system" /t error /so "SysMon"

eventcreate /s FileServer18 /l "system" /t error /so "SysMon"

/id 918 /d "sysmon.exe was unable to verify write operation."

/id 918 /d "sysmon.exe was unable to verify write operation."

Monitoring and Optimizing Windows Systems CHAPTER 13

373

Creating and Using Saved Queries

For Windows Vista, Windows Server 2008, and later, Microsoft significantly en-

hanced Event Viewer’s filtering and query capabilities. Because of these enhance-

ments, Event Viewer now supports XPath queries for creating custom views and

filtering event logs. XPath is a non-XML language used to identify specific parts

of XML documents. Event Viewer uses XPath expressions that match and select

elements in a source log and copy them to a destination log to create a custom or

filtered view.

When you are creating a custom or filtered view in Event Viewer, you can copy

the XPath query and save it to an Event Viewer Custom View file. By running this

query again, you can re-create the custom view or filter on any computer run-

ning Windows Vista or Windows Server 2008. For example, if you create a filtered

view of the application log that helps you identify a problem with SQL Server, you

can save the related XPath query to a Custom View file so that you can create the

filtered view on other computers in your organization.

Event Viewer creates several filtered views of the event logs for you automati-

cally. Filtered views are listed under the Custom Views node. When you select the

Administrative Events node, you see a list of all errors and warnings for all logs.

When you expand the Server Roles node and then select a role-specific view, you

see a list of all events for the selected role.

You can create and save your own custom view by following these steps:

1. Start Event Viewer by clicking Event Viewer on the Administrative Tools

menu.

2. Select the Custom Views node. In the Actions pane or on the Action menu,

click Create Custom View.

3. In the Create Custom View dialog box, use the Logged list to select the

included time frame for logged events. You can choose to include events

from Anytime, Last Hour, Last 12 Hours, Last 24 Hours, Last 7 Days, or Last

30 Days. You also can specify a custom range.

4. Use the Event Level check boxes to specify the level of events to include.

Select Verbose to get additional detail.

5. You can create a custom view for either a specific set of logs or a specific set

of event sources:

 Use the Event Logs list to select event logs to include. You can select

multiple event logs by selecting their related check boxes. If you select

specific event logs, all other event logs are excluded.

 Use the Event Sources list to select event sources to include. You can

select multiple event sources by selecting their related check boxes. If you

select specific event sources, all other event sources are excluded.

6. Optionally, use the User and Computer(s) boxes to specify users and comput-

ers that should be included. If you do not specify the users and computers to

be included, events generated by all users and computers are included.

374

 CHAPTER 13 Monitoring and Optimizing Windows Systems

 7. Click the XML tab to display the related XPath query.

8. Click OK to close the Create Custom View dialog box. In the Save Filter To

Custom View dialog box, type a name and description for the custom view.

9. Select where to save the custom view. By default, custom views are saved

under the Custom View node. You can create a new node by clicking New

Folder, typing the name of the new folder, and then clicking OK.

10. Click OK to close the Save Filter To Custom View dialog box. You should now

see a fi ltered list of events.

11. Right-click the custom view and then select Export Custom View. Use the

Save As dialog box to select a save location and enter a fi le name for the

Event Viewer Custom View fi le.

The Custom View fi le contains the XPath query that was displayed on the XML

tab previously. Members of the Event Log Readers group, administrators, and others

with appropriate permissions can run the query to view events on remote comput-

ers using the following syntax:

eventvwr

eventvwr ComputerName

 ComputerName /v:

/v: QueryFile

 QueryFile

Here ComputerName is the name of the remote computer whose events you

want to examine and QueryFile is the name or full path to the Custom View fi le

containing the XPath query, such as

eventvwr fileserver18 /v: importantevents.xml

eventvwr fileserver18 /v: importantevents.xml

When Event Viewer starts, you’ll fi nd the custom view under the Custom Views

node.

Managing System Services

Services provide key functions to workstations and servers. To manage system ser-

vices on local and remote systems, you use the following commands:

N Get-Service Gets information about the services on a local or remote com-

puter, including running and stopped services. You can specify services by

their service names or display names, or you can pass in references to service

objects to work with.

Get-Service [[-Name]

Get-Service [[-Name] ServiceNames

 ServiceNames] [AddlParams]

] [AddlParams]

Get-Service -DisplayName

Get-Service -DisplayName ServiceNames

 ServiceNames [AddlParams]

[AddlParams]

Get-Service [-InputObject

Get-Service [-InputObject ServiceObjects

 ServiceObjects] [AddlParams]

] [AddlParams]

{AddlParams}

{AddlParams}

[-ComputerName ComputerNames

[-ComputerName ComputerNames] [-DependentServices] [-Exclude

] [-DependentServices] [-Exclude

 ServiceNames] [-Include

] [-Include ServiceNames] [-ServicesDependedOn]

] [-ServicesDependedOn]

Monitoring and Optimizing Windows Systems CHAPTER 13

375

N Stop-Service Stops one or more running services. You can specify services by their service names or display names, or you can pass in references to service objects to work with. Services that can be stopped indicate this because

the CanStop property is set to True. Further, you can stop only a service that

is in a state where stopping is permitted.

Stop-Service [-Name]

Stop-Service [-Name] ServiceNames

 ServiceNames [AddlParams]

[AddlParams]

Stop-Service -DisplayName

Stop-Service -Display

 ServiceNames

Name ServiceNames [AddlParams]

[AddlParams]

Stop-Service [-InputObject

Stop-Service [-InputObject ServiceObjects

 ServiceObjects] [AddlParams]

] [AddlParams]

{AddlParams}

{AddlParams}

[-Include

[-Include ServiceNames

 ServiceNames] [-Exclude

] [-Exclude ServiceNames] [-Force]

] [-Force]

[-PassThru]

[-PassThru]

N Start-Service Starts one or more stopped services. You can specify services

by their service names or display names, or you can pass in references to

service objects to work with.

Start-Service [-Name]

Start-Service [-Name] ServiceNames

 ServiceNames [AddlParams]

[AddlParams]

Start-Service -DisplayName

Start-Service -DisplayName ServiceNames

 ServiceNames [AddlParams]

[AddlParams]

Start-Service [-InputObject

Start-Service [-InputObject ServiceObjects

 ServiceObjects] [AddlParams]

] [AddlParams]

{AddlParams}

{AddlParams}

[-Include

[-Include ServiceNames

 ServiceNames] [-Exclude

] [-Exclude ServiceNames

 ServiceNames] [-Force]

] [-Force]

[-PassThru]

[-PassThru]

N Suspend-Service Suspends (pauses) one or more running services. While

paused, a service is still running, but its execution is halted until it is resumed.

You can specify services by their service names or display names, or you

can pass in references to service objects to work with. Services that can be

suspended indicate this because the CanPauseAndContinue property is set

to True. Further, you can pause only a service that is in a state where pausing

is permitted.

Suspend-Service [-Name]

Suspend-Service [-Name] ServiceNames

 ServiceNames [AddlParams]

[AddlParams]

Suspend-Service -DisplayName

Suspend-Service -DisplayName ServiceNames [AddlParams]

[AddlParams]

Suspend-Service [-InputObject

Suspend-Service [-InputObj

 ServiceObjects

ect ServiceObjects] [AddlParams]

] [AddlParams]

{AddlParams}

{AddlParams}

[-Exclude

[-Exclude ServiceNames

 ServiceNames] [-Include

] [-Include ServiceNames

 ServiceNames] [-PassThru]

] [-PassThru]

N Resume-Service Resumes one or more suspended (paused) services. If you

reference a service that is not paused, the control change is ignored. You can

specify services by their service names or display names, or you can pass in

references to service objects to work with.

376

CHAPTER 13 Monitoring and Optimizing Windows Systems

Resume-Service [-Name]

Resume-Service [-Name] ServiceNames

 ServiceNames [AddlParams]

[AddlParams]

Resume-Service -DisplayName

Resume-Service -DisplayName ServiceNames [AddlParams]

[AddlParams]

Resume-Service [-InputObject

Resume-Service [-InputObj

 ServiceObjects

ect ServiceObjects] [AddlParams]

] [AddlParams]

{AddlParams}

{AddlParams}

[-Exclude

[-Exclude ServiceNames

 ServiceNames] [-Include

] [-Include ServiceNames

 ServiceNames] [-PassThru]

] [-PassThru]

N Restart-Service Stops and then starts one or more services. If a service

is already stopped, it is started. You can specify services by their service

names or display names, or you can pass in references to service objects to

work with.

Restart-Service [-Name]

R

 ServiceNames

estart-Service [-Name]

[AddlParams]

[AddlParams]

Restart-Service -DisplayName

Restart-Service -Display

 ServiceNames

Name

[AddlParams]

[AddlParams]

Restart-Service [-InputObject

Restart-Service [-InputObject ServiceObjects

 ServiceObjects] [AddlParams]

] [AddlParams]

{AddlParams}

{AddlParams}

[-Include

[-Include ServiceNames

 ServiceNames] [-Exclude

] [-Exclude ServiceNames

 ServiceNames] [-Force]

] [-Force]

[-PassThru]

[-PassThru]

N Set-Service Changes the properties or status of a service on a local or

remote computer. Use the status to change the state of the service.

Set-Service [-Name]

Set-Service [-Name] ServiceName

 ServiceName [| -InputObject

[| -InputObject ServiceObjects

 ServiceObjects]

[-DisplayName

[-DisplayName DisplayName

 DisplayName] [-Description

] [-Description Description

 Description]

[-StartupType {Automatic | Manual | Disabled}]

[-StartupType {Automatic | Manual | Disabled}]

[-Status {Running | Stopped | Paused}] [-PassThru] [-ComputerName

[-Status {Running | Stopped | Paused}] [-PassThru] [-ComputerName

 ComputerNames

 ComputerName]

 s

N New-Service Creates a new Windows service in the registry and in the

services database. Pass in a credential if required to create the service.

New-Service [-Credential

New-Service [-Credential CredentialObject

 CredentialObject] [-DependsOn

] [-DependsOn

 ServiceNames

 ServiceNames] [-Description

] [-Description Description

 Description] [-DisplayName

] [-DisplayName DisplayName

 DisplayName]

[-StartupType {Automatic | Manual | Disabled}]

[-StartupType {Automatic | Manual | Disabled}]

[-Name] Name [-BinaryPathName]

[-Name] Name [-BinaryPathName] PathtoExeFile

 PathtoExeFile

With some of these commands, you can specify the name of the remote com-

puter whose services you want to work with. To do this, use the –ComputerName

parameter and then specify the NetBIOS name, IP address, or fully qualifi ed domain

name (FQDN) of the remote computer or computers that you want to work with.

In some cases, you might want to specify the local computer as well as a remote

computer. To reference the local computer, type the computer name, a dot (.), or

“localhost”.

Monitoring and Optimizing Windows Systems CHAPTER 13

377

Viewing Confi gured Services

To get a list of all services confi gured on a system, type get-service at the

command prompt. Using the –ComputerName parameter, you can specify a remote

computer to work with, as shown in the following example and sample output:

get-service –computername fileserver86

get-service –computername fileserver86

Status Name DisplayName

Status Name DisplayName

------ ---- -----------

------ ---- -----------

Stopped AppMgmt Application Management

Stopped AppMgmt Application Management

Running AudioEndpointBu... Windows Audio Endpoint Builder

Running AudioEndpointBu... Windows Audio Endpoint Builder

Running Audiosrv Windows Audio

Running Audiosrv Windows Audio

Running BFE Base Filtering Engine

Running BFE Base Filtering Engine

Running BITS Background Intelligent Transfer Ser...

Running BITS Background Intelligent Transfer Ser...

Running Browser Computer Browser

Running Browser Computer Browser

Stopped CertPropSvc Certificate Propagation

Stopped CertPropSvc Certificate Propagation

The –ComputerName parameter accepts multiple name values. You can check

the status of services on multiple computers simply by entering the names of the

computers to check in a comma-separated list as shown in the following example:

get-service –computername fileserver86, dcserver22, printserver31

get-service –computername fileserver86, dcserver22, printserver31

Rather than type computer names each time, you can enter computer names on

separate lines in a text fi le and then get the list of computer names from the text

fi le, as shown in the following example:

get-service -computername (get-content c:\data\clist.txt)

get-service -computername (get-content c:\data\clist.txt)

Here, you get the list of remote computers to check from a fi le called CList.txt in

the C:\Data directory.

When you are looking for a specifi c service, you can reference the service by its

service name or display name. To match partial names, you can use wildcard charac-

ters as shown in the following example and sample output:

get-service –displayname *browser* –computername fileserver86

get-service –displayname *browser* –computername fileserver86

Status Name DisplayName

Status Name DisplayName

------ ---- -----------

Running Browser Computer Browser

Running Browser Computer Browser

Here, you look for all services where the display name includes the word browser.

Get-Service returns objects representing each service matching the criteria you

specify. From previous examples and sample output, you can see that the standard

output includes the Status, Name, and DisplayName properties. To view all of the

378

CHAPTER 13 Monitoring and Optimizing Windows Systems

available properties, you need to format the output as a list, as shown in the following example and sample output:

get-service -displayname *browser* -computername server12 | format-list *

get-service -displayname *browser* -computername server12 | format-list *

Name : Browser

Name : Browser

CanPauseAndContinue : False

CanPauseAndContinue : False

CanShutdown : False

CanShutdown : False

CanStop : True

DisplayName : Computer Browser

DisplayName : Computer Browser

DependentServices : {}

DependentServices : {}

MachineName : Server12

MachineName : Server12

ServiceName : Browser

ServiceName : Browser

ServicesDependedOn : {LanmanServer, LanmanWorkstation}

ServicesDependedOn : {LanmanServer, LanmanWorkstation}

ServiceHandle :

ServiceHandle :

Status : Running

Status : Running

ServiceType : Win32ShareProcess

ServiceType : Win32ShareProcess

Site :

Site :

Container :

Container :

The output shows the exact confi guration of the service. As an administrator, you

will work with the following properties most often:

N Name/ServiceName The abbreviated name of the service. Only services

installed on the system are listed here. If a service you need isn’t listed, you’ll

need to install it.

N DisplayName The descriptive name of the service.

N Status The state of the service as Running, Paused, or Stopped.

N DependentServices Services that cannot run unless the specifi ed service is

running.

N ServicesDependedOn The services this service relies on to operate.

N Type

The type of service and whether it is a shared process.

N MachineName The name of the computer the service is confi gured on.

This property is available only when you use the –ComputerName property.

 TIP When you are confi guring services, it is sometimes important to know whether a process runs in its own context or is shared. Shared processes are listed as

WIN32SHAREPROCESS. Processes that run in their own context are listed as

 WIN32OWNPROCESS.

By default, Get-Service looks at all services regardless of their status. With the

Status property, you can work with services in a specifi c state, such as Stopped or

Paused. Consider the following examples:

get-service | where-object {$_.status -eq "Running"}

get-service | where-object {$_.status -eq "Running"}

get-service | where-object {$_.status -eq "Stopped"}

get-service | where-object {$_.status -eq "Stopped"}

Monitoring and Optimizing Windows Systems CHAPTER 13

379

In the fi rst example, you list all services that are running. In the second example, you list all services that are stopped.

Starting, Stopping, and Pausing Services

As an administrator, you’ll often have to start, stop, or pause Windows services.

When you are working with an elevated, administrator PowerShell prompt, you can

do this using the service-related cmdlets or the methods of the Win32_Service class.

Examples using the service cmdlets follow:

START A SERVICE:

start-service

start-service ServiceName

 ServiceName

start-service –displayname

start-service –displayname DisplayName

 DisplayName

get-service

get-servi

 ServiceName |

ce ServiceName | start-service

start-service

PAUSE A SERVICE:

suspend-service

suspend-servi

 ServiceName

ce ServiceName

suspend-service –displayname

suspend-service –displayname DisplayName

 DisplayName

get-service

g

 ServiceName |

et-service ServiceName | suspend-service

suspend-service

RESUME A PAUSED SERVICE:

resume-service

resume-service ServiceName

 ServiceName

resume-service –displayname

resume-service –displayname DisplayName

 DisplayName

get-service

g

 ServiceName |

et-service ServiceName | resume-service

resume-service

STOP A SERVICE:

stop-service

stop-service ServiceName

 ServiceName

stop-service –displayname

stop-service –display

 DisplayName

name DisplayName

get-service

get-servi

 ServiceName |

ce ServiceName | stop-service

stop-service

In this example, ServiceName in each case is the abbreviated name of a service,

and DisplayName is the descriptive name of a service, such as

stop-service –displayname "DNS Client"

stop-service –displayname "DNS Client"

Although Start-Service, Suspend-Service, Resume-Service, and Stop-Service don’t

support the –ComputerName parameter, you can use the following technique to

manage the state of services on remote computers:

get-service dnscache -computername engpc18 | stop-service

get-service dnscache -computername engpc18 | stop-service

get-service dnscache -computername engpc18 | start-service

get-service dnscache -computername engpc18 | start-service

380

CHAPTER 13 Monitoring and Optimizing Windows Systems

invoke-command -computername engpc18 -scriptblock {get-service dnscache |

invoke-command -computername engpc18 -scriptblock {get-service dnscache |

stop-service }

stop-service }

invoke-command -computername engpc18 -scriptblock {get-service dnscache |

invoke-command -computername engpc18 -scriptblock {get-service dnscache |

start-service }

start-service }

Here, you use Get-Service to get a Service object on a remote computer, and

then you manage the service using Start-Service, Suspend-Service, Resume-Service,

or Stop-Service as appropriate. Note that these commands report only failure. They

won’t tell you that the service was already started, stopped, paused, or resumed.

Before you stop or pause a service, you should check to see if the service can

be stopped or paused. With Service objects, the properties you can check are

CanPause AndContinue and CanStop. An example and sample output follow:

$sname = read-host "Enter service name to stop"

$sname = read-host "Enter service name to stop"

$cname = read-host "Enter computer to work with"

$cname = read-host "Enter computer to work with"

$s = get-service $sname -computername $cname

$s = get-service $sname -computername $cname

if ($s.CanStop -eq $True) { $s | stop-service }

if ($s.CanStop -eq $True) { $s | stop-service }

Enter service name to stop : dnscache

Enter service name to stop : dnscache

Enter computer to work with : engpc85

Enter computer to work with : engpc85

Here, you get the name of the service and computer to work with by prompting

the user, and then you get the related Service object. If the service can be stopped,

you stop the service. As shown in the following example and sample output, you

can easily extend this basic functionality to perform other actions on services:

$cname = read-host "Enter computer to work with"

$cname = read-host "Enter computer to work with"

$sname = read-host "Enter service name to work with"

$sname = read-host "Enter service name to work with"

$s = get-service $sname -computername $cname

$s = get-service $sname -computername $cname

write-host "Service is:" $s.status -foregroundcolor green

write-host "Service is:" $s.status -foregroundcolor green

$action = read-host "Specify action [Start|Stop|Pause|Resume]"

$action = read-host "Specify action [Start|Stop|Pause|Resume]"

switch ($action) {

switch ($action) {

"start" { $s | start-service }

"start" { $s | start-service }

"stop" { if ($s.CanStop -eq $True) { $s | stop-service } }

"stop" { if ($s.CanStop -eq $True) { $s | stop-service } }

"pause" { if ($s.CanPauseAndContinue -eq $True) { $s | pause-service } }

"pause" { if ($s.CanPauseAndContinue -eq $True) { $s | pause-service } }

"resume" { $s | resume-service }

"resume" { $s | resume-service }

}

$su = get-service $sname -computername $cname

$su = get-service $sname -computername $cname

write-host "Service is:" $su.status -foregroundcolor green

write-host "Service is:" $su.status -foregroundcolor green

Monitoring and Optimizing Windows Systems CHAPTER 13

381

Enter computer to work with: techpc12

Enter computer to work with: techpc12

Enter service name to work with: dnscache

Enter service name to work with: dnscache

Service is: Running

Service is: Running

Specify action [Start|Stop|Pause|Resume]: stop

Specify action [Start|Stop|Pause|Resume]: stop

Service is: Stopped

Service is: Stopped

Here, you get the name of the service and computer to work with by prompt-

ing the user, and then you get the related Service object. Next, you display the

current status of the service and then get the action to perform on the service. After

performing CanStop and CanPauseAndContinue tests if appropriate and taking the

appropriate action on the service, you display the updated status of the service.

 REAL WORLD Want to manage services any time you are working with PowerShell?

Wrap this code in a function, and add it to your profi le. Then you can manage services

simply by calling the function. Here is an example:

function ms {

function ms {

#Insert code here

#Insert code here

}

Now any time your profi le is loaded and you type ms at the PowerShell prompt, you’ll

be able to manage services on any computer in the enterprise.

Confi guring Service Startup

You can set Windows services to start manually or automatically. You also can turn

services off permanently by disabling them. You confi gure service startup using

set-service

set-service ServiceName

 ServiceName -StartupType

-StartupType Type [-ComputerName

[-ComputerName ComputerNames

 ComputerNames]

or

set-service -displayname

set-service -displayname DisplayName

 DisplayName -StartupType Type [-ComputerName

[-ComputerName

 ComputerNames]

 ComputerNames

where ServiceName or DisplayName identifi es the service to modify, Type is the startup type to use, and ComputerNames are the names of the computers to work

with. The valid startup types are:

N Automatic Starts a service at system startup. If the service requires a de-

layed start, the subtype Automatic (Delayed Start) is assigned automatically.

N Manual Allows the service to be started manually by the service control

manager when a process invokes the service.

N Disable Disables the service to prevent it from being started the next time

the computer is started. If the service is running, it will continue to run until

the computer is shut down. You can stop the service if necessary.

382

CHAPTER 13 Monitoring and Optimizing Windows Systems

 Following this, you can confi gure a service to start automatically by using

set-service dnscache –startuptype automatic

set-service dnscache –startuptype automatic

or

set-service dnscache –startuptype automatic –computername techpc85

set-service dnscache –startuptype automatic –computername techpc85

Instead of typing a comma-separated list of computer names, you can enter

computer names on separate lines in a text fi le and then get the list of computer

names from the text fi le as shown in the following example:

set-service dnscache –startuptype automatic –computername (get-content

set-service dnscache –startuptype automatic –computername (get-content

c:\data\clist.txt)

c:\data\clist.txt)

Here, you get the list of remote computers to work with from a fi le called CList.txt

in the C:\Data directory.

Set-Service also lets you start, stop, and pause services. If you are enabling a ser-

vice on multiple computers, you also might want to start the service. You can enable

and start a service as shown in the following example:

set-service w3svc –startuptype automatic –status running

set-service w3svc –startuptype automatic –status running

If you are disabling a service on multiple computers, you also might want to stop

the service. You can disable and stop a service as shown in the following example:

set-service w3svc –startuptype disabled –status stopped

set-service w3svc –startuptype disabled –status stopped

 Managing Service Logon and Recovery Modes

Occasionally, you might need to manage service logon and recovery options. The

easiest way to do this is to use the Services Confi guration utility. This utility has

several subcommands that allow you to work with Windows services. The execut-

able for this utility is sc.exe. Although you normally can type sc at the prompt and

run this utility, sc is a default alias for Set-Content in Windows PowerShell. For this reason, you must type sc.exe whenever you work with this utility at the PowerShell

prompt.

Confi guring Service Logon

Using the SC confi g command, you can confi gure Windows services to log on as a

system account or as a specifi c user. To ensure a service logs on as the LocalSystem

account, use

sc.exe

sc.exe ComputerName

 ComputerName config

config ServiceName

 ServiceName obj= LocalSystem

obj= LocalSystem

Monitoring and Optimizing Windows Systems CHAPTER 13

383

where ComputerName is the Universal Naming Convention (UNC) name of the computer to work with, and ServiceName is the name of the service you are confi guring

to use the LocalSystem account. If the service provides a user interface that can be

manipulated, add the fl ags type= interact type= own, as shown in the following

example:

sc.exe config vss obj= LocalSystem type= interact type= own

sc.exe config vss obj= LocalSystem type= interact type= own

or

sc.exe \\techpc85 config vss obj= LocalSystem type= interact type= own

sc.exe \\techpc85 config vss obj= LocalSystem type= interact type= own

 NOTE You must include a space after the equal sign (=) as shown. If you don’t use

a space, the command will fail. Note also these commands report only SUCCESS or

 FAILURE. They won’t tell you that the service was already confi gured in a specifi ed way.

The type= interact fl ag specifi es that the service is allowed to interact with the

Windows desktop. The type= own fl ag specifi es that the service runs in its own

process. In the case of a service that shares its executable fi les with other services,

you use the type= share fl ag, as shown in this example:

sc.exe config dnscache obj= LocalSystem type= interact type= share

sc.exe config dnscache obj= LocalSystem type= interact type= share

 TIP If you don’t know whether a service runs as a shared process or in its own context, you should determine the service’s start type using Get-Service.

Services can also log on using named accounts. To do this, use

sc.exe config

sc.exe config ServiceName

 ServiceName obj= [

obj= [Domain

 Domain\] User

 User password=

password= Password

 Password

where Domain is the optional domain name in which the user account is located,

 User is the name of the user account whose permissions you want to use, and Pass-

 word is the password of that account. Consider the following example:

sc.exe config vss obj= adatum\backers password= TenMen55!

sc.exe config vss obj= adatum\backers password= TenMen55!

Here, you confi gure Microsoft Visual SourceSafe (VSS) to use the Backers ac-

count in the Adatum domain. The output of the command should state SUCCESS or

FAILED. The change will fail if the account name is invalid or doesn’t exist, or if the

password for the account is invalid.

 NOTE If a service has been previously confi gured to interact with the desktop under the LocalSystem account, you cannot change the service to run under a domain account without using the type= own fl ag. The syntax therefore becomes sc config

 ServiceName obj= [Domain\]User password= Password type= own.

384

CHAPTER 13 Monitoring and Optimizing Windows Systems

 Although SC is designed to work with individual computers, you can use the

built-in features of Windows PowerShell to modify the way SC works, as shown in

the following example:

$c = "\\techpc85"

$c = "\\techpc85"

sc.exe $c query dnscache

sc.exe $c query dnscache

Here, rather than specifying the computer name explicitly, you pass in the com-

puter name as a variable.

You can extend this basic technique to get a list of remote computers to work

with from a fi le. Here is an example:

$computers = (get-content c:\data\unclist.txt)

$computers = (get-content c:\data\unclist.txt)

foreach ($c in $computers) { sc.exe $c query dnscache }

foreach ($c in $computers) { sc.exe $c query dnscache }

Here, you get the list of computers to work with from a fi le called UncList.txt in

the C:\Data directory and then execute an SC query for each computer name.

 TIP Don’t forget that SC requires computer names to be specifi ed using Universal

Naming Convention. This means you must type \\techpc85 rather than techpc85 in

the text fi le from which computer names are obtained.

Confi guring Service Recovery

Using the SC Qfailure and Failure commands, you can view and confi gure actions taken

when a service fails. For example, you can confi gure a service so that the service control

manager attempts to restart it or to run an application that can resolve the problem.

You can confi gure recovery options for the fi rst, second, and subsequent recov-

ery attempts. The current failure count is incremented each time a failure occurs.

You can also set a parameter that specifi es the time that must elapse before the

failure counter is reset. For example, you can specify that if 24 hours have passed

since the last failure, the failure counter should be reset.

Before you try to confi gure service recovery, check the current recovery settings

using SC Qfailure. The syntax is

sc.exe

sc.exe ComputerName

 ComputerName qfailure

qfailure ServiceName

 ServiceName

where ComputerName is the UNC name of the computer to work with, and Service-

 Name is the name of the service you want to work with, such as

sc.exe qfailure vss

sc.exe qfailure vss

or

sc.exe \\techpc85 qfailure vss

sc.exe \\techpc85 qfailure vss

Monitoring and Optimizing Windows Systems CHAPTER 13

385

In the output, the failure actions are listed in the order they are performed. In the following example output, VSS is confi gured to attempt to restart the service the

fi rst and second times the service fails and to restart the computer if the service fails

a third time:

[SC] QueryServiceConfig2 SUCCESS

[SC] QueryServiceConfig2 SUCCESS

SERVICE_NAME: vss

SERVICE_NAME: vss

RESET_PERIOD (in seconds) : 86400

RESET_PERIOD (in seconds) : 86400

REBOOT_MESSAGE :

REBOOT_MESSAGE :

COMMAND_LINE :

COMMAND_LINE :

FAILURE_ACTIONS : RESTART -- Delay = 1 milliseconds.

FAILURE_ACTIONS : RESTART -- Delay = 1 milliseconds.

RESTART -- Delay = 1 milliseconds.

RESTART -- Delay = 1 milliseconds.

REBOOT -- Delay = 1000 milliseconds.

REBOOT -- Delay = 1000 milliseconds.

 NOTE Windows automatically confi gures recovery for some critical system services

during installation. Typically, these services are confi gured so that they attempt to

restart the service. Services can be confi gured so that they run programs or scripts as

well upon failure.

The command you use to confi gure service recovery is SC Failure, and its basic

syntax is

sc.exe failure

sc.exe failure ServiceName

 ServiceName reset=

reset= FailureResetPeriod actions=

 d

 RecoveryActions

 RecoveryActions

where ServiceName is the name of the service you are confi guring; FailureReset-

 Period specifi es the time, in seconds, that must elapse without failure in order to

reset the failure counter; and RecoveryActions are the actions to take when failure

occurs plus the delay time (in milliseconds) before that action is initiated. The

available recovery actions are:

N Take No Action (indicated by an empty string “”) The operating system

won’t attempt recovery for this failure but might still attempt recovery of

previous or subsequent failures.

N Restart The Service Stops and then starts the service after a brief pause.

N Run A Program Allows you to run a program or a script in case of failure.

The script can be a batch program or a Windows script. If you select this

option, set the full fi le path to the program you want to run, and then set

any necessary command-line parameters to pass in to the program when it

starts.

N Reboot The Computer Shuts down and then restarts the computer after

the specifi ed delay time has elapsed.

386

CHAPTER 13 Monitoring and Optimizing Windows Systems

 NOTE When you confi gure recovery options for critical services, you might want to try to restart the service on the fi rst and second attempts and then reboot the server

on the third attempt.

When you work with SC Failure, keep the following in mind:

N The reset period is set in seconds.

Reset periods are commonly set in multiples of hours or days. An hour is

3,600 seconds, and a day is 86,400 seconds. For a two-hour reset period, for

example, you’d use the value 7,200.

N Each recovery action must be followed by the time to wait (in milliseconds)

before performing the action.

For a service restart, you’ll probably want to use a short delay, such as

1 millisecond (no delay), 1 second (1,000 milliseconds), or 5 seconds

(5,000 milliseconds). For a restart of the computer, you’ll probably want to

use a longer delay, such as 15 seconds (15,000 milliseconds) or 30 seconds

(30,000 milliseconds).

N Enter the actions and their delay times as a single text entry, with each value

separated by a forward slash (/).

For example, you could use the following value: restart/1000/restart/1000/

reboot/15000. Here, on the fi rst and second attempts the service is restarted

after a 1-second delay, and on the third attempt the computer is rebooted

after a 15-second delay.

Consider the following examples:

sc.exe failure w3svc reset= 86400 actions=

sc.exe failure w3svc reset= 86400 actions=

restart/1/restart/1/reboot/30000

Here, on the fi rst and second attempts the service is restarted almost immedi-

ately, and on the third attempt the computer is rebooted after a 30-second delay.

In addition, the failure counter is reset if no failures occur in a 24-hour period

(86,400 seconds). You can also specify a remote computer by inserting the UNC

name or IP address as shown in previous examples.

If you use the Run action, you specify the command or program to run using

the Command= parameter. Follow the Command= parameter with the full fi le path

to the command to run and any arguments to pass to the command. Be sure to

enclose the command path and text in double quotation marks, as in the following

example:

sc.exe failure w3svc reset= 86400 actions= restart/1/restart/1/run/30000

sc.exe failure w3svc reset= 86400 actions= restart/1/restart/1/run/30000

command= "c:\restart_w3svc.exe 15"

command= "c:\restart_w3svc.exe 15"

Monitoring and Optimizing Windows Systems CHAPTER 13

387

Digging Deeper into Service Management

Although the Get-Service cmdlet provides sufficient details to help you perform

many administrative tasks, it doesn’t provide the detailed information you might

need to know to manage the configuration of services. At a minimum, to manage

service configuration, you need to know a service’s current start mode and start

name. The start mode specifies the startup mode of the service, and the start name

specifies the account name under which the service will run. A service’s start mode

can be set to any of the following:

N Automatic Indicates the service is started automatically by the service

control manager during startup of the operating system.

N Manual Indicates the service is started manually by the service control

manager when a process calls the StartService method.

N Disabled Indicates the service is disabled and cannot be started.

Most services run under one of the following accounts:

N NT

Authority\LocalSystem LocalSystem is a pseudo account for running

system processes and handling system-level tasks. This account is part of the

Administrators group on a computer and has all user rights on the computer.

If services use this account, the related processes have full access to the

computer. Many services run under the LocalSystem account. In some cases,

these services have the privilege to interact with the desktop as well. Services

that need alternative privileges or logon rights run under the LocalService or

NetworkService accounts.

N NT

Authority\LocalService LocalService is a pseudo account with limited

privileges. This account grants access to the local system only. The account

is part of the Users group on the computer and has the same rights as the

NetworkService account, except that it is limited to the local computer. If

services use this account, the related processes don’t have access to other

computers.

N NT

Authority\NetworkService NetworkService is a pseudo account for

running services that need additional privileges and logon rights on a local

system and the network. This account is part of the Users group on the com-

puter and provides fewer permissions and privileges than the LocalSystem

account (but more than the LocalService account). Specifically, processes

running under this account can interact throughout a network using the

credentials of the computer account.

You can obtain the start mode, start name, and other configuration information

for services using Windows Management Instrumentation (WMI) and the Win32_

Service class. You use the Win32_Service class to create instances of service objects

as they are represented in WMI.

You can list all services configured on a computer by typing get-wmiobject

-class win32_service as shown in the following example and sample output:

388

 CHAPTER 13 Monitoring and Optimizing Windows Systems

get-wmiobject -class win32_service |

get-wmiobject -class win32_service |

format-table name, startmode, state, status

format-table name, startmode, state, status

name startmode state status

name startmode state status

---- --------- ----- ------

AppMgmt Manual Stopped OK

AppMgmt Manual Stopped OK

AudioEndpointBuilder Auto Running OK

AudioEndpointBuilder Auto Running OK

Audiosrv Auto Running OK

Audiosrv Auto Running OK

BFE Auto Running OK

BFE Auto Running OK

BITS Auto Running OK

BITS Auto Running OK

Bonjour Service Auto Running OK

Bonjour Service Auto Running OK

Browser Auto Running OK

Browser Auto Running OK

CertPropSvc Manual Stopped OK

CertPropSvc Manual Stopped OK

If you want to work with a specifi c service or examine services with a specifi c

property value, you can add the –Filter parameter. In the following example and

sample output, you check the confi guration details of the Browser service:

get-wmiobject -class win32_service -filter "name='browser'"

get-wmiobject -class win32_service -filter "name='browser'"

ExitCode : 0

ExitCode : 0

Name : Browser

Name : Browser

ProcessId : 1136

ProcessId : 1136

StartMode : Auto

StartMode : Auto

State : Running

State : Running

Status : OK

Status : OK

If you format the output as a list, you’ll see additional confi guration information

including PathName, which specifi es the executable that starts the service and any

parameters passed to this executable, and StartName, which specifi es the account

under which the service runs. In the following example and partial output, you

examine the properties of the DNS Client service:

$s = get-wmiobject -class win32_service -filter "name='dnscache'"

$s = get-wmiobject -class win32_service -filter "name='dnscache'"

$s | format-list *

$s | format-list *

Name : Dnscache

Name : Dnscache

Status : OK

Status : OK

ExitCode : 0

ExitCode : 0

DesktopInteract : False

DesktopInteract : False

ErrorControl : Normal

ErrorControl : Normal

PathName : C:\Windows\system32\svchost.exe -k NetworkService

PathName : C:\Windows\system32\svchost.exe -k NetworkService

ServiceType : Share Process

ServiceType : Share Process

StartMode : Manual

StartMode : Manual

AcceptPause : False

AcceptPause : False

Monitoring and Optimizing Windows Systems CHAPTER 13

389

AcceptStop : True

AcceptStop : True

Caption : DNS Client

Caption : DNS Client

CheckPoint : 0

CheckPoint : 0

CreationClassName : Win32_Service

CreationClassName : Win32_Service

Description : Caches Domain Name System (DNS) names.

Description : Caches Domain Name System (DNS) names.

DisplayName : DNS Client

DisplayName : DNS Client

InstallDate :

InstallDate :

ProcessId : 1536

ProcessId : 1536

ServiceSpecificExitCode : 0

ServiceSpecificExitCode : 0

Started : True

Started : True

StartName : NT AUTHORITY\NetworkService

StartName : NT AUTHORITY\NetworkService

State : Running

State : Running

SystemCreationClassName : Win32_ComputerSystem

SystemCreationClassName : Win32_ComputerSystem

SystemName : TechPC85

SystemName : TechPC85

Get-WmiObject supports a –ComputerName parameter that lets you specify the

remote computer or computers to work with, as shown in these examples:

get-wmiobject -class win32_service –computername fileserver86,

get-wmiobject -class win32_service –computername fileserver86,

dcserver22, printserver31

dcserver22, printserver31

get-wmiobject -class win32_service -computername (get-content

get-wmiobject -class win32_service -computername (get-content

c:\data\clist.txt)

c:\data\clist.txt)

 NOTE When you are working with multiple computers, you can use the SystemName

property to help you determine the name of the computer the service is confi gured on.

You can work with the properties of Win32_Service objects in much the same

way as you work with properties of Service objects. To see a list of all services

confi gured to start automatically, you can type the following command:

get-wmiobject -class win32_service -filter "startmode='auto'" |

get-wmiobject -class win32_service -filter "startmode='auto'" |

format-table name, startmode, state, status

format-table name, startmode, state, status

To view all running services, you can type

get-wmiobject -class win32_service -filter "state='running'" |

get-wmiobject -class win32_service -filter "state='running'" |

format-table name, startmode, state, status

format-table name, startmode, state, status

The Win32_Service class provides a number of methods for managing system

services. These methods include:

N Change() Changes the confi guration of a user-confi gurable service. This

method accepts the following parameters in the following order: DisplayName,

PathName, ServiceTypeByte, ErrorControlByte, StartMode, DesktopInteract-

Boolean, StartName, StartPassword, LoadOrderGroup, LoadOrderGroup-

DependenciesArray, and ServiceDependenciesArray.

390

CHAPTER 13 Monitoring and Optimizing Windows Systems

 CAUTION Not all services can be reconfigured. Modifying services at the PowerShell prompt is not something you should do without careful forethought.

PowerShell will let you make changes that could put your computer in an unstable

state. Before you make any changes to services, you should create a system restore

point as discussed in Chapter 14, “Fine-Tuning System Performance.”

N ChangeStartMode() Changes the start mode of a user-configurable ser-

vice. This method accepts a single parameter, which is the start mode to use.

Valid values are Manual, Automatic, or Disabled.

 NOTE Some services are configured by default to use delayed-start automatic

mode. When you are working with Win32_Service, any time you set these services

to Automatic, they use delayed-start automatic mode. Additionally, note that

disabling a service doesn’t stop a running service. It only prevents the service from

being started the next time the computer is booted. To ensure that the service is

disabled and stopped, disable and then stop the service.

 CAUTION Before you change the start mode of a service, you should check

dependencies and ensure any changes you make won’t affect other services.

N Delete() Deletes a user-configurable service (if the service is in a state

that allows this). Rather than delete a service, you should consider disabling

it. Disabled services no longer run and can easily be enabled if needed in

the future. Deleted services, however, must be reinstalled to be used in the

future.

 CAUTION Exercise extreme caution if you plan to delete services using

 PowerShell. PowerShell will not warn you if you are making harmful changes to

your computer.

N InterrogateService() Connects to the service using the service control

manager. If the return value is zero, the service control manager was able

to connect to and interrogate the service using its configured parameters.

If the return value wasn’t zero, the service control manager encountered a

problem while trying to communicate with the service using the configured

parameters. If the service is stopped or paused, this method will always

return an error status.

N PauseService() Pauses the service, which might be necessary during

troubleshooting or when performing diagnostics. Services that can be

paused indicate this by setting the AcceptPause property to True for their

services. Further, you can pause only a service that is in a state where

pausing is permitted.

N ResumeService() Resumes the service after it has been paused.

Monitoring and Optimizing Windows Systems CHAPTER 13

391

N StopService() Stops the service, which might be necessary during troubleshooting or when performing diagnostics. Services that can be stopped

indicate this by setting the AcceptStop property to True for their services.

Further, you can stop only a service that is in a state where stopping is

permitted.

N StartService() Starts a stopped service, including services that are confi g-

ured for manual startup.

When you are working with an elevated, administrator PowerShell prompt,

you can use these methods to manage system services. For example, you can set

Windows services to start manually or automatically. You can also turn them off per-

manently by disabling them. You confi gure service startup using the ChangeStart-

Mode() method to specify the desired start mode. The basic syntax is

 $serviceObject.ChangeStartMode(StartMode)

where $serviceObject is a reference to a Win32_Service object, and StartMode is the desired start mode entered as a string value, as shown in this example and sample

output:

$s = get-wmiobject -class win32_service –filter "name='dnscache'"

$s = get-wmiobject -class win32_service –filter "name='dnscache'"

$s.changestartmode("automatic")

$s.changestartmode("automatic")

__GENUS : 2

__GENUS : 2

__CLASS : __PARAMETERS

__CLASS : __PARAMETERS

__SUPERCLASS :

__SUPERCLASS :

__DYNASTY : __PARAMETERS

__DYNASTY : __PARAMETERS

__RELPATH :

__RELPATH :

__PROPERTY_COUNT : 1

__PROPERTY_COUNT : 1

__DERIVATION : {}

__DERIVATION : {}

__SERVER :

__SERVER :

__NAMESPACE :

__NAMESPACE :

__PATH :

__PATH :

ReturnValue : 0

Here, you set the start mode to Automatic. The return value in the output is

what you want to focus on. A return value of 0 indicates success. Any other return

value indicates an error. Typically, errors occur because you aren’t using an elevated,

administrator PowerShell prompt, you haven’t accessed the correct service, or the

service isn’t in a state in which it can be confi gured. Keep in mind that if you alter

the confi guration of required services, the computer might not work as expected.

Because of this, don’t make any changes to services without careful planning and

forethought.

 NOTE These commands report only SUCCESS or FAILURE. They won’t tell you that

the service was already started, stopped, or confi gured in the startup mode you’ve

specifi ed.

392

CHAPTER 13 Monitoring and Optimizing Windows Systems

 A technique for invoking methods of WMI objects we haven’t discussed previ-

ously is using a direct invocation using the Invoke-WMIMethod cmdlet. This cmdlet

provides a one-line alternative to the two-line technique that requires you to get a

WMI object and then invoke its method. For example, instead of using

$s = get-wmiobject -class win32_service –filter "name='dnscache'"

$s = get-wmiobject -class win32_service –filter "name='dnscache'"

$s.stopservice()

$s.stopservice()

you can use

invoke-wmimethod -path "win32_service.name='dnscache'" -name stopservice

invoke-wmimethod -path "win32_service.name='dnscache'" -name stopservice

Syntax options for Invoke-WmiMethod include the following:

Invoke-WmiMethod [-ComputerName [

Invoke-WmiMethod [-ComputerName ComputerNames

[ComputerNames]] [-Credential

]] [-Credential

[CredentialObject

 CredentialObjec]] [-Name] [

 t]] [-Name] [MethodName

 MethodName] [-ThrottleLimit [LimitValue

 LimitValue]]

]]

[-AsJob]

Invoke-WmiMethod [-InputObject [WMIObject]] [-Name] [

Invoke-WmiMethod [-InputObject [WMIObject]] [-Name] MethodName

[MethodNam]

 e

[-ThrottleLimit [

[-ThrottleLimit LimitValue

[LimitValue]] [-AsJob]

]] [-AsJob]

Invoke-WmiMethod [-Namespace [WMINamespace]] -Path [WMIPath]

Invoke-WmiMethod [-Namespace [WMINamespace]] -Path [WMIPath]

[-ArgumentList [

[-ArgumentList Objects

[Objects] [-Name] [

] [-Name] [MethodName

 MethodName] [-ThrottleLimit

] [-ThrottleLimit

[LimitValue

 LimitValu]] [-AsJob]

 e]] [-AsJob]

Invoke-WmiMethod [-EnableAllPrivileges] [-Authority [

Invoke-WmiMethod [-EnableAllPrivileges] [-Authority Authority

[Authorit]] [-Name]

 y]] [-Name]

[MethodName

 MethodNam] [-ThrottleLimit [

 e

 LimitValue

 LimitValue]] [-AsJob]

]] [-AsJob]

Invoke-WmiMethod [-Locale [

Invoke-WmiMethod [-Locale Locale

[Locale]] [-Name] [

]] [-Name] [MethodName

 MethodName] [-ThrottleLimit

] [-ThrottleLimit

[LimitValue

 LimitValu]] [-AsJob]

 e]] [-AsJob]

You can use the methods of the Win32_Service class and Invoke-WmiMethod to

manage services as shown in the following examples:

START A SERVICE:

invoke-wmimethod -path "win32_service.name='

invoke-wmimethod -path "win32_service.name= ServiceName

' ServiceName'"

-name startservice

-name startservice

invoke-wmimethod -path "win32_service.displayname='

invoke-wmimethod -path "win32_service.displayname= DisplayName

' DisplayNam '"

 e

-name startservice

-name startservice

get-wmiobject -class win32_service -filter "name='

get-wmiobject -class win32_service -filter "name= ServiceName

' S

'" |

 erviceName'" |

invoke-wmimethod -name startservice

invoke-wmimethod -name startservice

Monitoring and Optimizing Windows Systems CHAPTER 13

393

PAUSE A SERVICE:

invoke-wmimethod -path "win32_service.name='

invoke-wmimethod -path "win32_service.name= ServiceName

' ServiceName'"

-name pauseservice

-name pauseservice

invoke-wmimethod -path "win32_service.displayname='

invoke-wmimethod -path "win32_service.displayname= DisplayName

' Display

'"

 Name'"

-name pauseservice

-name pauseservice

get-wmiobject -class win32_service -filter "name='

get-wmiobject -class win32_service -filter "name= ServiceName

' ServiceNam '" |

 e'" |

invoke-wmimethod -name pauseservice

invoke-wmimethod -name pauseservice

RESUME A PAUSED SERVICE:

invoke-wmimethod -path "win32_service.name='

invoke-wmimethod -path "win32_service.name= ServiceName

' ServiceName'"

-name resumeservice

-name resumeservice

invoke-wmimethod -path "win32_service.displayname='

invoke-wmimethod -path "win32_service.displayname= DisplayName

' Display

'"

 Name'"

-name resumeservice

-name resumeservice

get-wmiobject -class win32_service -filter "name='

get-wmiobject -class win32_service -filter "name= ServiceName

' ServiceNam '" |

 e'" |

invoke-wmimethod -name resumeservice

invoke-wmimethod -name resumeservice

STOP A SERVICE:

invoke-wmimethod -path "win32_service.name='

invoke-wmimethod -path "win32_service.name= ServiceName

' ServiceName'"

-name stopservice

-name stopservice

invoke-wmimethod -path "win32_service.displayname='

invoke-wmimethod -path "win32_service.displayname= DisplayName

' Display

'"

 Name'"

-name stopservice

-name stopservice

get-wmiobject -class win32_service -filter "name='

get-wmiobject -class win32_service -filter "name= ServiceName

' ServiceNam '" |

 e'" |

invoke-wmimethod -name stopservice

invoke-wmimethod -name stopservice

Before you stop or pause a service, you should check to see if the service can be

stopped or paused. With Win32_Service objects, the properties you can check are

AcceptPause and AcceptStop.

You can use the techniques discussed previously to work with services when

Get-WmiObject returns a single matching Win32_Service object. However, these

techniques won’t work as expected when Get-WmiObject returns multiple Win32_

Service objects. The reason for this is that the objects are stored in an array, and you

must specify the instance within the array to work with. One technique for doing so

is shown in the following example and partial output:

$servs = get-wmiobject -class win32_service |

$servs = get-wmiobject -class win32_service |

where-object {$_.name -match "client"}

where-object {$_.name -match "client"}

foreach ($s in $servs) { $s.changestartmode("automatic") }

foreach ($s in $servs) { $s.changestartmode("automatic") }

394

CHAPTER 13 Monitoring and Optimizing Windows Systems

ReturnValue : 0

ReturnValue : 0

ReturnValue : 0

ReturnValue : 0

ReturnValue : 0

ReturnValue : 0

Here, three Win32_Service objects were returned, and each was set to start auto-

matically. This technique will work when there is only one matching service as well.

Managing Computers

Computers have attributes that you can manage, including names and group

memberships. You can add computer accounts to any container or organizational

unit (OU) in Active Directory. However, the best containers to use are Computers,

Domain Controllers, and any OUs that you’ve created. The standard Windows tool

for working with computer accounts is Active Directory Users And Computers. In

Windows PowerShell, you have many commands, each with a specifi c use. Whether

you are logged on to a Windows Vista, Windows Server 2008, or later version

of Windows, you can use the techniques discussed in this section to manage

computers.

 Commands for Managing Computers

Commands you’ll use to manage computers in Windows PowerShell include:

N Add-Computer Adds computers to a domain or workgroup. You can

specify computers by their NetBIOS name, IP address, or fully qualifi ed

domain name. To join a domain, you must specify the name of the domain

to join. In domains, if a computer doesn’t have a domain account, this com-

mand also creates the domain account for the computer. A restart is required

to complete the join operation. To get the results of the command, use the

–Verbose and –PassThru parameters.

Add-Computer [-OUPath

Add-Computer [-OUPath ADPath

 ADPath] [-Server

] [-Server Domain

 Domain\ ComputerName

 ComputerName]

[[-ComputerName]

[[-ComputerName] ComputerNames] [-DomainName]

] [-DomainName] DomainName

 DomainName

[-Unsecure] [-PassThru] [-Reboot] [[-Credential]

[-Unsecure] [-PassThru] [-Reboot] [[-Credential] CredentialObject

 CredentialObjec]

 t

Add-Computer [[-ComputerName]

Add-Computer [[-ComputerName] ComputerNames

 ComputerNames] [-WorkGroupName]

] [-WorkGroupName] Name

 Name

[-PassThru] [-Reboot] [[-Credential]

[-PassThru] [-Reboot] [[-Credential] CredentialObject

 CredentialObject]

N Remove-Computer Removes local and remote computers from their cur-

rent workgroup or domain. When you remove a computer from a domain,

Remove-Computer also disables the computer’s domain account. A restart is

Monitoring and Optimizing Windows Systems CHAPTER 13

395

required to complete the unjoin operation. For domain computers, you must

provide authentication credentials.

Remove-Computer [[-ComputerName]

Remove-Computer [[-ComputerName] ComputerNames

 ComputerNames]

]

[-PassThru] [-Reboot] [[-Credential]

[-PassThru] [-Reboot] [[-Credential] CredentialObject

 CredentialObject]

N Rename-Computer Renames computers in workgroups and domains.

When you rename a computer in a domain, Rename-Computer also changes

the name in the computer’s domain account. You cannot use Rename-

Computer to rename domain controllers. For remote computers, you must

provide authentication credentials.

Rename-Computer [[-ComputerName]

Rename-Computer [[-ComputerName] ComputerName

 ComputerName] [-NewComputerName]

] [-NewComputerName]

 NewComputerName [-Credential

 NewComputerName [-Credential CredentialObject

 CredentialObject] [-Reboot]

N Restart-Computer Restarts the operating system on local and remote

computers. Use the –Force parameter to force an immediate restart of the

computers.

Restart-Computer [[-ComputerName]

Restart-Computer [[-ComputerName] ComputerNames

 ComputerNames] [-AsJob]

] [-AsJob]

[-Authentication

[-Authenticati

 AuthType

on AuthType] [[-Credential]

] [[-Credential] CredentialObject

 CredentialObject]

[-Force] [-Impersonation

[-Force] [-Impersonation ImpType

 ImpType] [-ThrottleLimit

] [-ThrottleLimit Limit

 Limit]

]

N Stop-Computer Shuts down local or remote computers. The –AsJob

parameter runs the command as a background job, providing the computers

are confi gured for remoting.

Stop-Computer [[-ComputerName]

Stop-Computer [[-ComputerName] ComputerNames

 ComputerNames] [-AsJob]

] [-AsJob]

[-Authentication AuthType

[-Authentication AuthType] [[-Credential]

] [[-Credential] CredentialObject

 CredentialObject]

[-Force] [-Impersonation

[-Force] [-Impersonation ImpType

 ImpType] [-ThrottleLimit

] [-ThrottleLimit Limit

 Limit]

N Test-Connection Sends Internet Control Message Protocol (ICMP) echo

request packets (pings) to one or more remote computers, and returns the

responses. As long as ICMP is not blocked by a fi rewall, this can help you

determine whether a computer can be contacted across an IP network. You

can specify both the sending and receiving computers. You also can set a

time-out and the number of pings.

Test-Connection [-Count

Test-Connection [-Count NumPings

 NumPings] [-Delay

] [-Delay DelayBetweenPings

 DelayBetweenPings]

[-TimeToLive

[-TimeToLive MaxTime

 MaxTime] [[-Source]

] [[-Source] SourceComputers

 SourceComputers] [-Destination]

] [-Destination]

 DestinationComputers

 DestinationComputers

[-AsJob] [-Authentication

[-AsJob] [-Authenticati

 AuthType

on AuthType] [-BufferSize

] [-BufferSize Size

 Size] [-Credential

] [-Credential

 CredentialObject

 CredentialObjec] [-Impersonation

 t] [-Impersonation ImpType

 ImpType] [-ThrottleLimit

] [-ThrottleLimit Limit

 Limit]

396

CHAPTER 13 Monitoring and Optimizing Windows Systems

 You’ll usually want to run these commands at an elevated, administrator

PowerShell prompt. Regardless, you also might need to provide the appropriate

credentials, and you can do this as shown in the following example:

$cred = get-credential

$cred = get-credential

add-computer –domainname cpandl–credential $cred

add-computer –domainname cpandl–credential $cred

When you use Get-Credential, PowerShell prompts you for a user name and

password and then stores the credentials provided in the $cred variable. These

credentials are then used for authentication.

When you test a connection to a computer, restart a computer, or stop a com-

puter, note the following:

N The –Authentication parameter sets the authentication level for the WMI

connection to the computer. The default value is Packet. Valid values are

Unchanged (the authentication level is the same as the previous command),

Default (Windows Authentication), None (no COM authentication), Connect

(Connect-level COM authentication), Call (Call-level COM authentication),

Packet (Packet-level COM authentication), PacketIntegrity (Packet Integrity–

level COM authentication), and PacketPrivacy (Packet Privacy–level COM

authentication).

N The –Impersonation parameter sets the impersonation level to use when

establishing the WMI connection. The default value is Impersonate. Valid

values are Default (default impersonation), Anonymous (hides the identity of

the caller), Identify (allows objects to query the credentials of the caller), and

Impersonate (allows objects to use the credentials of the caller).

As you can see, the default authentication technique is to use Packet-level COM

authentication, and the default impersonation technique is to use the credentials

of the caller. Most of the time, these are what you’ll want to use. Occasionally, you

might want to use Windows Authentication rather than COM authentication. To do

this, set the –Authentication parameter to Default.

Test-Connection is the same as Ping. With Test-Connection, you can determine

whether you can connect to a computer by its name or IP address. To test the IPv4

address 192.168.10.55, you use the following command:

test-connection 192.168.10.55

test-connection 192.168.10.55

To test the IPv6 address FEC0::02BC:FF:BECB:FE4F:961D, you use the following

command:

test-connection FEC0::02BC:FF:BECB:FE4F:961D

test-connection FEC0::02BC:FF:BECB:FE4F:961D

Monitoring and Optimizing Windows Systems CHAPTER 13

397

If you receive a successful reply from Test-Connection, Test-Connection was

able to connect to the computer. If you receive a time-out or “Unable to Connect”

error, Test-Connection was unable to connect to the computer either because the

computer was disconnected from the network, the computer was shut down, or the

connection was blocked by a fi rewall.

Renaming Computer Accounts

Using Rename-Computer, you can easily rename workstations and member servers.

If the workstation or member server is joined to a domain, the computer’s account

is renamed as well. You should not, however, use Rename-Computer to rename do-

main controllers, servers running Certifi cate Services, or servers running any other

services that require a specifi c, fi xed server name.

You can rename a workstation or member server using the following command

syntax:

rename-computer –ComputerName ComputerName –NewComputerName NewName

-reboot

where ComputerName is the current name of the computer, and NewName is the

new name for the computer. If you are renaming the local computer, you omit the

–ComputerName parameter as shown in the following example:

rename-computer –NewComputerName TechPC12 -reboot

rename-computer –NewComputerName TechPC12 -reboot

Here, you rename the local computer TechPC12. Because a reboot is required

to complete the renaming, you specify that you want to reboot the computer after

renaming it. If you need to specify credentials to rename a computer, you can do so

as shown in the following example:

$cred = get-credential

$cred = get-credential

rename-computer –NewComputerName TechPC12 –credential $cred –reboot

rename-computer –NewComputerName TechPC12 –credential $cred –reboot

Joining Computers to a Domain

Any authenticated user can join a computer to a domain using Add-Computer. If the

related computer account hasn’t been created, running Add-Computer also creates

the computer account. When a computer joins a domain, the computer establishes

a trust relationship with the domain. The computer’s security identifi er is changed to

match that of the related computer account in Active Directory, and the computer is

made a member of the appropriate groups in Active Directory. Typically, this means

the computer is made a member of the Domain Computers group. If the computer

is later made a domain controller, the computer will be made a member of the

Domain Controllers group instead.

398

CHAPTER 13 Monitoring and Optimizing Windows Systems

 REAL WORLD Before trying to join a computer to a domain, you should verify the computer’s network confi guration. If the network confi guration is not correct, you will

need to modify the settings before attempting to join the computer to the domain.

Additionally, if the computer account was created previously, only a user specifi cally

delegated permission or an administrator can join the computer to a domain. Users

must also have local administrator permissions on the local computer.

When logged on to the computer you want to join to a domain, you can use

Add-Computer to simultaneously join a computer to a domain and create a com-

puter account in the domain with the following command syntax:

add-computer –DomainName DomainName –reboot

where DomainName is the name of the Active Directory domain to join. Because

you must reboot the computer to complete the join operation, you typically will

want to include the –Reboot parameter. This isn’t required, however. If you don’t

specify the organizational unit to use, the default organizational unit is used.

Consider the following example:

$cred = get-credential

add-computer –domainname cpandl –credential $cred –reboot

add-computer –domainname cpandl –credential $cred –reboot

Here, you join the local computer to the cpandl.com domain and create the re-

lated computer account in the default Computers container. If the computer’s name

is TechPC85, the full path to this computer object is CN=TechPC85,CN=Computers,

DC=cpandl,DC=com.

 TIP Add the –PassThru and –Verbose parameters to get detailed results. Addition-

ally, when you join a computer to a domain, you can specify the domain controller to

use with the –Server parameter. Specify the server name in Domain\ ComputerName

format, such as CPANDL\DcServer14. If you don’t specify the domain controller to use,

any available domain controller is used.

Additionally, you can use the –OUPath parameter to specify the distinguished

name of the OU into which the computer account should be placed. Consider the

following example:

$cred = get-credential

$cred = get-credential

add-computer –domainname cpandl –outpath ou=engineering,dc=cpandl,dc=com

add-computer –domainname cpandl –outpath ou=engineering,dc=cpandl,dc=com

–credential $cred -reboot

–credential $cred -reboot

Here, you join the local computer to the cpandl.com domain and create the re-

lated computer account in the Engineering OU. If the computer’s name is TechPC85,

the full path to this computer object is CN=TechPC85,OU=Engineering,DC=cpandl,

DC=com.

Monitoring and Optimizing Windows Systems CHAPTER 13

399

When running Add-Computer from another computer and connecting to the

computer you want to join to a domain, you use the following command syntax:

add-computer –DomainName DomainName –computername ComputerNames -reboot

where DomainName is the name of the Active Directory domain to join and

 ComputerNames is a comma-separated list of computers joining the domain. As

before, this command creates the related computer account if necessary and you

optionally can use the –OUPath parameter to specify the distinguished name of the

OU into which the computer account should be placed.

Consider the following example:

$cred = get-credential

$cred = get-credential

add-computer –domainname cpandl –computername EngPC14, EngPC17 –outpath

add-computer –domainname cpandl –computername EngPC14, EngPC17 –outpath

ou=engineering,dc=cpandl,dc=com –credential $cred -reboot

ou=engineering,dc=cpandl,dc=com –credential $cred -reboot

Here, you join EngPC14 and EngPC15 to the cpandl.com domain and create the

related computer account in the Engineering OU.

You can read the list of computers to join to a domain from a fi le as well. Here is

an example:

add-computer –domainname cpandl –computername (get-content

add-computer –domainname cpandl –computername (get-content

c:\data\clist.txt)

c:\data\clist.txt)

Here, you add the computers listed in the C:\Data\CList.txt fi le to the cpandl.com

domain. If you are renaming the local computer as well as other computers, you can

type “.” or “localhost” as the computer name.

Adding Computers to a Workgroup

In addition to using Add-Computer to add computers to domains, you can use

Add-Computer to add computers to workgroups. To add the local computer to a

specifi ed workgroup, use the following syntax:

add-computer –WorkgroupName WorkgroupName –reboot

where WorkgroupName is the name of the workgroup to join. Because you must re-

boot the computer to complete the join operation, you typically will want to include

the –Reboot parameter. This isn’t required, however.

Consider the following example:

$cred = get-credential

$cred = get-credential

add-computer –workgroupname testing –credential $cred –reboot

add-computer –workgroupname testing –credential $cred –reboot

Here, you join the local computer to the Testing workgroup. Add the –PassThru

and –Verbose parameters to get detailed results.

400

CHAPTER 13 Monitoring and Optimizing Windows Systems

 When running Add-Computer from another computer and connecting to the

computer you want to join to a workgroup, you use the following command syntax:

add-computer –WorkgroupName WorkgroupName –computername ComputerNames

-reboot

where WorkgroupName is the name of the workgroup to join, and ComputerNames

is a comma-separated list of computers joining the domain.

Consider the following example:

$cred = get-credential

add-computer –workgroupname testing –computername TestPC11, TestPC12

add-computer –workgroupname testing –computername TestPC11, TestPC12

–credential $cred -reboot

–credential $cred -reboot

Here, you join TestPC11 and TestPC12 to the Testing workgroup.

You can read the list of computers to join to a workgroup from a fi le as well.

Here is an example:

add-computer –workgroupname testing –computername (get-content

add-computer –workgroupname testing –computername (get-content

c:\data\clist.txt)

c:\data\clist.txt)

Here, you add the computers listed in the C:\Data\CList.txt fi le to the Testing

workgroup. If you are renaming the local computer as well as other computers, you

can type “.” or “localhost” as the computer name.

 Removing Computers from Domains and Workgroups

Only authorized users can remove a computer from a domain or workgroup. Re-

moving a computer from a domain disables the computer account in the domain

and breaks the trust relationship between the computer and the domain. The com-

puter’s security identifi er is changed to match that of a computer in a workgroup.

The computer then joins the default workgroup, called Workgroup.

You remove computers from a domain or workgroup using Remove-Computer.

Consider the following example:

$cred = get-credential

$cred = get-credential

remove-computer –credential $cred –reboot

remove-computer –credential $cred –reboot

Here, you remove the local computer from its current domain or workgroup and

make it a member of the default workgroup, Workgroup.

When running Add-Computer from another computer and connecting to the

computer you want to manage, you use the following command syntax:

remove-computer –computername ComputerNames -reboot

where ComputerNames is a comma-separated list of computers to remove from

domains or workgroups.

Monitoring and Optimizing Windows Systems CHAPTER 13

401

Consider the following example:

$cred = get-credential

$cred = get-credential

remove-computer –computername TestPC11, TestPC12 –credential $cred

remove-computer –computername TestPC11, TestPC12 –credential $cred

-reboot

-reboot

Here, you remove TestPC11 and TestPC12 from their current domain or work-

group and make them members of the default workgroup, Workgroup.

Managing the Restart and Shutdown of Computers

You’ll often fi nd that you need to shut down or restart systems. One way to do this

is to run Shutdown-Computer or Restart-Computer at the PowerShell prompt, which

you can use to work with both local and remote systems. Another way to manage

system shutdown or restart is to schedule a shutdown. Here, you can use the

Schtasks utility to specify when shutdown should be run, or you can create a script

with a list of shutdown commands for individual systems.

Although Windows systems usually start up and shut down without problems,

they can occasionally stop responding during these processes. If this happens, try to

determine the cause. Some of the reasons systems might stop responding include

the following:

N The system is attempting to execute or is running a startup or shutdown

script that has not completed or is itself not responding (and in this case, the

system might be waiting for the script to time out).

N A startup initialization fi le or service might be the cause of the problem

and, if so, you might need to troubleshoot startup items using the System

Confi guration (Msconfi g) utility. Disabling a service, startup item, or entry in

a startup initialization fi le might also solve the problem.

N The system might have an antivirus program that is causing the problem.

In some cases, the antivirus program might try to scan the fl oppy disk drive

when you try to shut down the system. To resolve this, confi gure the antivirus

software so that it doesn’t scan the fl oppy drive or other drives with remov-

able media on shutdown. You can also try temporarily disabling or turning

off the antivirus program.

N Improperly confi gured sound devices can cause startup and shutdown

problems. To determine what the possible source is, examine each of these

devices in turn. Turn off sound devices and then restart the computer. If the

problem clears up, you have to install new drivers for the sound devices you

are using, or you might have a corrupted Start Windows or Exit Windows

sound fi le.

N Improperly confi gured network cards can cause startup and shutdown prob-

lems. Try turning off the network adapter and restarting. If that works, you

might need to remove and then reinstall the adapter’s driver or obtain a new

driver from the manufacturer.

402

CHAPTER 13 Monitoring and Optimizing Windows Systems

N Improperly confi gured video adapter drivers can cause startup and shut-

down problems. From another computer, remotely log on and try to roll

back the current video drivers to a previous version. If that’s not possible, try

uninstalling and then reinstalling the video drivers.

When logged on to the computer you want to restart or shut down, you can

type restart-computer or stop-computer to restart or shut down the computer,

respectively. To force an immediate restart or shutdown, add the –Force parameter.

When running Restart-Computer or Stop-Computer from another computer

and connecting to the computer you want to restart or stop, you use the following

command syntax:

restart-computer –computername ComputerNames

or

stop-computer –computername ComputerNames

where ComputerNames is a comma-separated list of computers to restart or stop.

As before, you can use the –Force parameter to force a restart or shutdown. You

also might need to specify credentials. You can do that as shown in this example:

$cred = get-credential

stop-computer –computername TestPC11, TestPC12 –credential $cred

stop-computer –computername TestPC11, TestPC12 –credential $cred

Here, you shut down TestPC11 and TestPC12 using specifi c credentials.

You can read the list of computers to restart or shut down from a fi le as well.

Here is an example:

$cred = get-credential

$cred = get-credential

restart-computer –computername (get-content c:\data\clist.txt)

restart-computer –computername (get-content c:\data\clist.txt)

–credential $cred -force

–credential $cred -force

Here, you restart the computers listed in the C:\Data\CList.txt fi le using specifi c

credentials.

Creating and Using System Restore Checkpoints

With System Restore enabled, a computer makes periodic snapshots of the sys-

tem confi guration. These snapshots are called restore points. These restore points

include Windows settings, lists of programs that have been installed, and so on. If

the computer has problems starting or isn’t working properly because of a system

confi guration change, you can use a restore point to restore the system confi gu-

ration to the point at which the snapshot was made. For example, suppose your

system is working fi ne and then you install a new service pack release for Microsoft

Offi ce. Afterward, the computer generates errors, and Offi ce applications won’t run.

You try to uninstall the update, but that doesn’t work, so you decide to run System

Monitoring and Optimizing Windows Systems CHAPTER 13

403

Restore. Using System Restore, you can restore the system using a snapshot taken before the update.

System Restore automatically creates several types of restore points. These

include the following:

N Scheduled Checkpoints scheduled by the operating system and occurring

at regular intervals

N Windows

Update Checkpoints created before applying Windows updates

N Application

Install Checkpoints created before installing applications

N Application

Uninstall Checkpoints created before uninstalling

applications

N Device

Install Checkpoints created before installing devices

N Device

Uninstall Checkpoints created before uninstalling devices

You should create restore points manually before performing an operation that

might cause problems on the system.

System Restore manages restore points on a per-drive basis. Each drive with

critical applications and system files should be monitored for configuration changes.

By default, System Restore is enabled only for the System drive. You can modify the

System Restore configuration by turning on monitoring of other drives as needed.

If a drive isn’t configured for System Restore monitoring, configuration changes are

not tracked, and the disk cannot be recovered if problems occur.

In Windows Vista and later desktop versions of Windows, previous versions of

files and folders are created automatically as part of a restore point. Any file or

folder that was modified since the last restore point is saved and made available

as a previous version. The only exceptions are for system files and folders. Previous

versions are not available for system folders, such as C:\Windows.

You can use previous versions of files to restore files that were inadvertently

modified, deleted, or damaged. When System Restore is enabled on a drive, compli-

ant versions of Windows automatically make daily copies of files and folders that

have changed on that drive. You can also create copies of files and folders that have

changed by setting a restore point.

 NOTE Protection points are created daily for all drives being monitored by System

Restore. However, only versions of files that are actually different from the current

version are stored as previous versions. You can enable or disable previous versions

on a per-drive basis by enabling or disabling System Restore on that drive. Previous

versions are saved as part of a volume’s automatically or manually created protection

points.

Commands for Configuring System Restore

At an elevated, administrator PowerShell prompt, you can view and work with

System Restore using the following commands:

404

 CHAPTER 13 Monitoring and Optimizing Windows Systems

N Enable-ComputerRestore Turns on the System Restore feature on one or more fi xed, internal drives. You cannot enable System Restore on external or

network drives.

Enable-ComputerRestore [-Drive]

Enable-ComputerRestore [-Drive] DriveStrings

 DriveStrings

N Disable-ComputerRestore Turns off the System Restore feature on one or

more fi le system drives. As a result, attempts to restore the computer do not

affect the specifi ed drive.

Disable-ComputerRestore [-Drive]

D

 DriveStrings

isable-ComputerRestore [-Drive] DriveStrings

N Get-ComputerRestorePoint Gets one or more restore points on the local

computer, or displays the status of the most recent attempt to restore the

computer.

Get-ComputerRestorePoint [-RestorePoint]

Get-ComputerRestorePoint [-RestorePoint] SequenceNumber

 SequenceNumber

Get-ComputerRestorePoint -LastStatus

Get-ComputerRestorePoint -LastStatus

N Checkpoint-Computer Creates a system restore point on the local

computer. The –RestorePointType parameter optionally specifi es the type of

restore point.

Checkpoint-Computer [[-RestorePointType]

Checkpoint-Computer [[-RestorePointType] Type

 Type] [-Description]

] [-Description]

 Description

 Description

N Restore-Computer Restores the local computer to the specifi ed system

restore point. A restart of the computer is performed to complete the

restore. The –RestorePoint parameter specifi es the sequence number of the

restore point.

Restore-Computer [-RestorePoint]

Restore-Computer [-RestorePoint] SequenceNumber

 SequenceNumber

The system process responsible for monitoring confi guration and application

changes is the System Restore service. This service is confi gured for automatic start-

up and runs under the Local System account. System Restore won’t work properly if

this service isn’t running or confi gured appropriately.

System Restore saves system checkpoint information for all monitored drives

and requires at least 300 MB of disk space on the System volume to save restore

points. System Restore reserves additional space for restore points as necessary, up

to 10 percent of the total disk capacity, but this additional space is always available

for user and application storage. System Restore frees up additional space for you

as necessary. If System Restore runs out of available space, the operating system

overwrites previously created restore points.

Monitoring and Optimizing Windows Systems CHAPTER 13

405

Enabling and Disabling System Restore

You can enable System Restore for a volume using Enable-ComputerRestore. The

basic syntax is

Enable-ComputerRestore [-Drive] DriveStrings

With the –Drive parameter, specify one or more drive letters, each followed by a

colon and a backslash and enclosed in quotation marks, as shown in the following

example:

enable-computerrestore –drive "C:\", "D:\"

enable-computerrestore –drive "C:\", "D:\"

To enable System Restore on any drive, it must be enabled on the system drive,

either fi rst or concurrently. When you enable System Restore, restore points are

created automatically as discussed previously.

You can disable System Restore for a volume using Disable-ComputerRestore.

The basic syntax is

Disable-ComputerRestore [-Drive] DriveStrings

With the –Drive parameter, specify one or more fi le system drive letters, each

followed by a colon and a backslash and enclosed in quotation marks, as shown in

the following example:

disable-computerrestore –drive "C:\", "D:\"

disable-computerrestore –drive "C:\", "D:\"

You cannot disable System Restore on the System volume without disabling

System Restore on all other volumes.

Although these commands don’t support the –ComputerName parameter,

you can use the remoting techniques discussed in Chapter 6, “Mastering Aliases,

Functions, and Objects,” to invoke System Restore–related commands on remote

computers. Here is an example:

invoke-command -computername techpc24 -scriptblock

invoke-command -computername techpc24 -scriptblock

{ enable-computerrestore -drive "C:\", "D:\" }

{ enable-computerrestore -drive "C:\", "D:\" }

Here, you enable System Restore on the C and D drives of TechPC25.

Creating and Using Checkpoints

You can manually create a restore point by typing checkpoint-computer followed

by a description of the checkpoint. Consider the following example:

checkpoint-computer "Modify PowerShell"

checkpoint-computer "Modify PowerShell"

Here, you create a “Modify PowerShell” checkpoint. Windows PowerShell displays

a progress bar while the restore point is being created. Optionally, you can specify

406

CHAPTER 13 Monitoring and Optimizing Windows Systems

the type of restore point using the –RestorePointType parameter. The default is APPLICATION_INSTALL. Valid values are as follows:

N APPLICATION_INSTALL, for when you are planning to install an application

N APPLICATION_UNINSTALL, for when you are planning to uninstall an

application

N DEVICE_DRIVER_INSTALL, for when you are planning to modify device drivers

N MODIFY_SETTINGS, for when you are planning to modify confi guration

settings

You can use Get-ComputerRestorePoint to list all available restore points or a

specifi c restore point by its sequence number. The sequence number is simply an

incremented value that makes it possible to track a specifi c instance of a restore point.

To list all available restore points, type get-computerrestorepoint, as shown in

the following example and sample output:

get-computerrestorepoint

get-computerrestorepoint

CreationTime Description SequenceNumber EventType RestorePointType

CreationTime Description SequenceNumber EventType RestorePointType

------------ ----------- -------------- --------- ----------------

------------ ----------- -------------- --------- ----------------

1/22/2009 9:56:36 AM Windows Update 287 BEGIN_SYSTEM_C...

1/22/2009 9:56:36 AM Windows Update 287 BEGIN_SYSTEM_C...

APPLICATION_INSTALL

APPLICATION_INSTALL

1/23/2009 11:30:46 AM Windows Update 288 BEGIN_SYSTEM_C...

1/23/2009 11:30:46 AM Windows Update 288 BEGIN_SYSTEM_C...

APPLICATION_INSTALL

APPLICATION_INSTALL

1/23/2009 11:38:24 AM Windows Update 289 BEGIN_SYSTEM_C...

1/23/2009 11:38:24 AM Windows Update 289 BEGIN_SYSTEM_C...

APPLICATION_INSTALL

APPLICATION_INSTALL

From the output, you can see restore points are listed by creation time, descrip-

tion, sequence number, event type, and restore point type. Once you identify a

restore point that you want to work with, note its sequence number. Using the

–RestorePoint parameter, you can get that specifi c restore point. In this example,

you get restore point 289:

get-computerrestorepoint 289

get-computerrestorepoint 289

As each value returned for a restore point is set in a like-named property, you

can fi lter the output of Get-ComputerRestorePoint using Where-Object. In the

following example, you get all restore points created in the last three days:

$date = (get-date).adddays(-3)

$date = (get-date).adddays(-3)

get-computerrestorepoint | where-object {$_.creationtime –gt $date}

get-computerrestorepoint | where-object {$_.creationtime –gt $date}

In the following example, you get restore points with a specifi c description:

get-computerrestorepoint | where-object {$_.description –eq

get-computerrestorepoint | where-object {$_.description –eq

"Modify PowerShell"}

"Modify PowerShell"}

Monitoring and Optimizing Windows Systems CHAPTER 13

407

To get restore points by description, you need to know the numeric value that

denotes a specifi c type. These values include the following:

N 0 for application install checkpoints, which include Windows Update check

points

N 1 for application uninstall checkpoints

N 7 for scheduled checkpoints

N 10 for device driver install checkpoints

N 12 for modify settings checkpoints

In the following example, you get all restore points for application installs:

get-computerrestorepoint | where-object {$_.restorepointtype –eq 0}

get-computerrestorepoint | where-object {$_.restorepointtype –eq 0}

Recovering from Restore Points

To recover a computer from a restore point, type restore-computer followed by the

sequence number of the restore point to restore. Use Get-Computer RestorePoint to

display a list of available restore points by their sequence number if necessary. In the

following example, you initiate a restore of the computer using restore point 353:

restore-computer 353

restore-computer 353

Here, you initiate a restore of EngPC85 to restore point 276:

invoke-command -computername engpc85 -scriptblock

invoke-command -computername engpc85 -scriptblock

{ restore-computer 276 }

{ restore-computer 276 }

During the restoration, System Restore shuts down the computer. After the

restore is complete, the computer is restarted using the settings from the date and

time of the snapshot. After the computer restarts, you can type get-computer-

restorepoint -laststatus to check the status of the restore operation. Read

the message provided to confi rm the restore was successful. If the restore was

unsuccessful, this is stated explicitly, such as

The last restore was interrupted.

The last restore was interrupted.

If Windows isn’t working properly after a restore, you can apply a different

restore point or reverse the restore operation by repeating this procedure and

selecting the restore point that was created automatically before applying the

current system state.

408

CHAPTER 13 Monitoring and Optimizing Windows Systems

C H A P T E R 1 4

Fine-Tuning System

 Performance

N

Managing Applications, Processes, and Performance 409

N

Performance Monitoring 430

N

Detecting and Resolving Performance Issues Through Monitoring 436

In the previous chapter, I discussed techniques for monitoring and optimizing

Windows systems. Monitoring is the process by which systems are regularly

checked for problems. Optimization is the process of fine-tuning system

performance to maintain or achieve its optimal capacity. Now that you know the

essentials for monitoring and optimization, let’s dig deeper and look at techniques

that you can use to:

N Manage applications, processes, and performance.

N Monitor and maintain a computer’s performance.

N Detect and resolve performance issues.

Managing Applications, Processes, and Performance

An important part of every administrator’s job is to monitor network systems and

ensure that everything is running smoothly—or as smoothly as can be expected,

anyway. As you learned in the previous chapter, watching the event logs closely

can help you detect and track problems with applications, security, and essential

services. Often when you detect or suspect a problem, you’ll need to dig deeper to

search out the cause of the problem and correct it. If you’re fortunate, by pinpoint-

ing the cause of a problem, you can prevent it from happening again.

Whenever the operating system or a user starts a service, runs an application, or

executes a command, Windows starts one or more processes to handle the related

409

program. Several commands are available to help you manage and monitor programs.

These commands include the following:

N Debug-Process Debugs one or more processes running on the local

computer.

Debug-Process [-Id]

Debug-Process [-Id] ProcessIDs | -InputObject

 ProcessIDs | -InputObject Objects

 Object | -Name

 s | -Name Names

 Names

N Get-Process Lists all running processes by name and process ID. The list

includes information on memory usage.

Get-Process -Id

Get-Process -Id ProcessIDs

 ProcessID | -InputObject

 s | -InputObject Objects

 Object | [[-Name]

 s |

 Names

[[-Name] Nam

]

 es

[-ComputerName

[-ComputerName ComputerNames

 C

] [-FileVersionInfo] [-Module]

 omputerNames] [-FileVersionInfo] [-Module]

N Start-Process Starts one or more processes on the local computer. To

specify the program that runs in the process, enter the path to an executable

fi le or script fi le. Alternatively, you can specify a fi le that can be opened in a

program, such as a Microsoft Offi ce Word document or Offi ce Excel work-

sheet. If you specify a nonexecutable fi le, Start-Process starts the program

that is associated with the fi le by using the default action. Typically, the default

action is Open. You can set the action to take using the –Verb parameter.

Start-Process [-Verb {Edit|Open|Print|...}] [-WorkingDirectory

Start-Process [-Verb {Edit|Open|Print|...}] [-WorkingDirectory

 DirectoryPath

 DirectoryPat] [[-ArgumentList]

 h] [[-ArgumentList] Args

 Ar

] [-FilePath]

 gs] [-FilePath] PathToExeOrDoc

 PathToExeOrDoc

[-Credential

[-Credential CredentialObject

 CredentialObjec] [-LoadUserProfile {$True|$False}]

 t] [-LoadUserProfile {$True|$False}]

[-NoNewWindow] [-PassThru] [-RedirectStandardError

[-NoNewWindow] [-PassThru] [-RedirectStandardError FilePath

 FilePat]

 h

[-RedirectStandardInput

[-RedirectStandardInput FilePath

 FilePat] [-RedirectStandardOutput

 h] [-RedirectStandardOutput

 FilePath

 FilePat] [-UseNewEnvironment] [-Wait] [-WindowStyle

 h] [-UseNewEnvironment] [-Wait] [-WindowStyle

{Normal|Hidden|Minimized|Maximized}]

{Normal|Hidden|Minimized|Maximized}]

N Stop-Process Stops running processes by name or process ID. Using fi lters,

you can also halt processes by process status, session number, CPU time,

memory usage, and more.

Stop-Process [-Id]

Stop-Process [-Id] ProcessIDs

 ProcessID | -InputObject

 s | -InputObj

 Objects

ect Object | -Name

 s |

 Names

-Name

[-Force] [-PassThru]

[-Force] [-PassThru]

N Wait-Process Waits for a specifi ed process to be stopped before accepting

more input.

Wait-Process -Id

Wait-Process -Id ProcessIDs

 ProcessID | -InputObject

 s | -InputObject Objects

 Obj

| [-Name]

 ects |

 Names

[-Name] Names

[[-TimeOut]

[[-TimeOut] WaitTime

 WaitTim]

 e

In the sections that follow, you’ll fi nd detailed discussions on how these commands

are used. First, however, let’s look at the ways processes are run and the common

problems you might encounter when working with them.

410

CHAPTER 14 Fine-Tuning System Performance

Understanding System and User Processes

When you want to examine processes that are running on a local or remote system,

you can use Get-Process and other commands. With Get-Process, you can obtain the

process ID, status, and other important information about processes running on a sys-

tem. You also can use filters to include or exclude processes from Get-Process queries.

To dig deeper, you can use the Win32_Process and Win32_Service classes.

Generally, processes that the operating system starts are referred to as system

processes; processes that users start are referred to as user processes. Most user pro-

cesses are run in interactive mode. That is, a user starts a process interactively with the

keyboard or mouse. If the application or program is active and selected, the related

interactive process has control over the keyboard and mouse until you switch control

by terminating the program or selecting a different one. When a process has control,

it’s said to be running “in the foreground.”

Processes can also run in the background, independently of user logon sessions.

Background processes do not have control over the keyboard, mouse, or other input

devices and are usually run by the operating system. Using the Task Scheduler, users

can run processes in the background as well, however, and these processes can oper-

ate regardless of whether the user is logged on. For example, if Task Scheduler starts

a scheduled task while the user is logged on, the process can continue even when the

user logs off.

Windows tracks every process running on a system by image name, process ID,

priority, and other parameters that record resource usage. The image name is the

name of the executable that started the process, such as Msdtc.exe or Svchost.exe.

The process ID is a numeric identifier for the process, such as 1160. The base priority

is an indicator of how much of the system’s resources the process should get relative

to other running processes. With priority processing, a process with a higher-priority

gets preference over processes with lower priority, and the higher-priority process

might not have to wait to get processing time, access memory, or work with the

file system. A process with lower priority, on the other hand, usually must wait for a

higher-priority process to complete its current task before gaining access to the CPU,

memory, or the file system.

In a perfect world, processes would run perfectly and would never have problems.

The reality is, however, that problems occur and they often appear when you least

want them to. Common problems include the following:

N Processes become nonresponsive, such as when an application stops pro-

cessing requests. When this happens, users might tell you that they can’t

access a particular application, that their requests aren’t being handled, or

that they were kicked out of the application.

N Processes fail to release the CPU, such as when you have a runaway process

that is using up CPU time. When this happens, the system might appear to

be slow or nonresponsive because the runaway process is hogging processor

time and is not allowing other processes to complete their tasks.

Fine-Tuning System Performance CHAPTER 14

411

N Processes use more memory than they should, such as when an application

has a memory leak. When this happens, processes aren’t properly releasing

memory that they’re using. As a result, the system’s available memory might

gradually decrease over time and, as the available memory gets low, the

system might be slow to respond to requests or it might become nonre-

sponsive. Memory leaks can also make other programs running on the same

system behave erratically.

In most cases, when you detect these or other problems with system processes,

you’ll want to stop the process and start it again. You’ll also want to examine the

event logs to see whether you can determine the cause of the problem. In the case

of memory leaks, you'll want to report the memory leak to the developers and see

whether an update that resolves the problem is available.

A periodic restart of an application with a known memory leak is often useful.

Restarting the application should allow the operating system to recover any lost

memory.

Examining Running Processes

To get a list of all processes running on a system, type get-process at the command

prompt as shown in the following example and sample output:

get-process –computername fileserver86

get-process –computername fileserver86

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

------- ------ ----- ----- ----- ------ -- -----------

----- -----

-- -----------

 127 4 13288 16708 59 1240 audiodg

 127 4 13288 16708 59 1240 audiodg

 696 6 1872 5248 94 588 csrss

 696 6 1872 5248 94 588 csrss

 495 7 21912 19672 155 644 csrss

 495 7 21912 19672 155 644 csrss

 95 4 3160 6572 75 0.08 2752 CtHelper

 95 4 3160 6572 75 0.08 2752 CtHelper

 134 5 3808 7900 77 0.08 2708 Ctxfihlp

 134 5 3808 7900 77 0.08 2708 Ctxfihlp

 189 5 9160 8764 72 0.22 3044 CTxfispi

 189 5 9160 8764 72 0.22 3044 CTxfispi

 58 2 1236 4244 45 0.31 3260 ehmsas

 58 2 1236 4244 45 0.31 3260 ehmsas

Because the –ComputerName parameter accepts multiple name values, you can

check the status of processes on multiple computers simply by typing the names of

the computers to check in a comma-separate list as shown in the following example:

get-process –computername fileserver86, dcserver22, printserver31

get-process –computername fileserver86, dcserver22, printserver31

Rather than type computer names each time, you can type computer names on

separate lines in a text fi le and then get the list of computer names from the text fi le

as shown in the following example:

get-process -computername (get-content c:\data\clist.txt)

get-process -computername (get-content c:\data\clist.txt)

412

CHAPTER 14 Fine-Tuning System Performance

 Here, you get the list of remote computers to check from a fi le called Clist.txt in the C:\Data directory.

When you are looking for a specifi c process, you can reference the process by its

process name or process ID. To match partial names, you can use wildcard characters

as shown in the following example and sample output:

get-process win* –computername fileserver86

get-process win* –computername fileserver86

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

------- ------ ----- ----- ----- ------ -- -----------

----- -----

-- -----------

 106 4 1560 4192 46 636 wininit

 106 4 1560 4192 46 636 wininit

 143 4 2516 6692 56 804 winlogon

 143 4 2516 6692 56 804 winlogon

 485 26 45992 69220 441 83.34 5200 WINWORD

 485 26 45992 69220 441 83.34 5200 WINWORD

Here, you look for all processes where the process name begins with win.

Get-Process returns objects representing each process matching the criteria you

specify. As you can see from previous examples and sample output, the standard

output includes:

N CPU An alias for TotalProcessorTime.TotalSeconds. This item shows the

number of seconds of CPU time the process has used.

N Handles An alias for the HandleCount property. This item shows the num-

ber of fi le handles maintained by the process.

N NPM An alias for the NonpagedSystemMemorySize property. This item

shows the amount of virtual memory for a process that cannot be written to

disk.

N PM An alias for the PagedMemorySize property. This item shows the

amount of committed virtual memory for a process that can be written to

disk.

N VM An alias for the VirtualMemorySize property. This item shows the

amount of virtual memory allocated to and reserved for a process.

N WS An alias for the WorkingSet property. This item shows the amount of

memory the process is currently using, including both the private working

set and the nonprivate working set.

N ProcessName The name of the process or executable running the process.

As you examine processes, keep in mind that a single application might start mul-

tiple processes. Generally, these processes are dependent on the central application

process, and from this main process a process tree containing dependent processes

is formed. When you terminate processes, you’ll usually want to target the main

application process or the application itself rather than dependent processes. This

approach ensures that the application is stopped cleanly.

Fine-Tuning System Performance CHAPTER 14

413

To view all of the available properties, you need to format the output as a list, as shown in the following example and partial output:

get-process winword -computername server12 | format-list *

get-process winword -computername server12 | format-list *

Name : WINWORD

Name : WINWORD

Path : C:\Program Files\Microsoft Office\OFFICE11\WINWORD.EXE

Path : C:\Program Files\Microsoft Office\OFFICE11\WINWORD.EXE

Company : Microsoft Corporation

Company : Microsoft Corporation

CPU : 121.046875

CPU : 121.046875

FileVersion : 11.0.8237

FileVersion : 11.0.8237

ProductVersion : 11.0.8237

ProductVersion : 11.0.8237

Description : Microsoft Office Word

Description : Microsoft Office Word

Product : Microsoft Office 2003

Product : Microsoft Office 2003

Id : 5200

Id : 5200

PriorityClass : Normal

PriorityClass : Normal

HandleCount : 491

HandleCount : 491

WorkingSet : 73142272

WorkingSet : 73142272

PagedMemorySize : 47992832

PagedMemorySize : 47992832

PrivateMemorySize : 47992832

PrivateMemorySize : 47992832

VirtualMemorySize : 463138816

VirtualMemorySize : 463138816

TotalProcessorTime : 00:02:01.0468750

TotalProcessorTime : 00:02:01.0468750

BasePriority : 8

BasePriority : 8

Handle : 2752

Handle : 2752

MachineName : server12

MachineName : server12

MainWindowHandle : 1573996

MainWindowHandle : 1573996

MainWindowTitle : process.doc - Microsoft Word

MainWindowTitle : process.doc - Microsoft Word

MainModule : System.Diagnostics.ProcessModule (WINWORD.EXE)

MainModule : System.Diagnostics.ProcessModule (WINWORD.EXE)

MaxWorkingSet : 1413120

MaxWorkingSet : 1413120

MinWorkingSet : 204800

MinWorkingSet : 204800

Modules : {System.Diagnostics.ProcessModule (WINWORD.

Modules : {System.Diagnostics.ProcessModule (WINWORD.

EXE), System.Diagnostics.ProcessModule (ntdll.dll),...}

EXE), System.Diagnostics.ProcessModule (ntdll.dll),...}

NonpagedSystemMemorySize : 27312

NonpagedSystemMemorySize : 27312

NonpagedSystemMemorySize64 : 27312

NonpagedSystemMemorySize64 : 27312

PagedMemorySize64 : 47992832

PagedMemorySize64 : 47992832

PagedSystemMemorySize : 754224

PagedSystemMemorySize : 754224

PagedSystemMemorySize64 : 754224

PagedSystemMemorySize64 : 754224

PeakPagedMemorySize : 48001024

PeakPagedMemorySize : 48001024

PeakPagedMemorySize64 : 48001024

PeakPagedMemorySize64 : 48001024

PeakWorkingSet : 73150464

PeakWorkingSet : 73150464

PeakWorkingSet64 : 73150464

PeakWorkingSet64 : 73150464

PeakVirtualMemorySize : 464146432

PeakVirtualMemorySize : 464146432

PeakVirtualMemorySize64 : 464146432

PeakVirtualMemorySize64 : 464146432

PriorityBoostEnabled : True

PriorityBoostEnabled : True

PrivateMemorySize64 : 47992832

PrivateMemorySize64 : 47992832

PrivilegedProcessorTime : 00:00:36.2343750

PrivilegedProcessorTime : 00:00:36.2343750

ProcessName : WINWORD

ProcessName : WINWORD

ProcessorAffinity : 15

ProcessorAffinity : 15

Responding : True

Responding : True

SessionId : 1

SessionId : 1

414

CHAPTER 14 Fine-Tuning System Performance

StartInfo : System.Diagnostics.ProcessStartInfo

StartInfo : System.Diagnostics.ProcessStartInfo

StartTime : 2/28/2009 10:22:34 AM

StartTime : 2/28/2009 10:22:34 AM

Threads : {5204, 5244, 5300, 5540...}

Threads : {5204, 5244, 5300, 5540...}

UserProcessorTime : 00:01:24.8125000

UserProcessorTime : 00:01:24.8125000

VirtualMemorySize64 : 463138816

VirtualMemorySize64 : 463138816

EnableRaisingEvents : False

EnableRaisingEvents : False

WorkingSet64 : 73142272

WorkingSet64 : 73142272

The output shows the exact confi guration of the process. The properties you will

work with the most are summarized in Table 14-1.

 NOTE By default, many properties that measure memory usage are defi ned as 32-bit values. When working with Get-Process on 64-bit systems, you’ll fi nd that these properties have both a 32-bit and a 64-bit version. On 64-bit systems with more than 4 GB of

RAM, you’ll need to use the 64-bit versions to ensure you get accurate values.

 TABLE 14-1 Properties of Get-Process and How They Are Used

 PROPERTY NAME

PROPERTY DESCRIPTION

BasePriority

Shows the priority of the process. Priority deter-

mines how much of the system resources are allo-

cated to a process. The standard priorities are Low

(4), Below Normal (6), Normal (8), Above Normal

(10), High (13), and Real-Time (24). Most processes

have a Normal priority by default, and the highest

priority is given to real-time processes.

CPU

Shows TotalProcessorTime in seconds.

Description

Shows a description of the process.

FileVersion

Shows the fi le version of the process’s executable.

HandleCount

Shows the number of fi le handles maintained by

the process. The number of handles used is an

indicator of how dependent the process is on the

fi le system. Some processes have thousands of

open fi le handles. Each fi le handle requires system

memory to maintain.

Id

Shows the run-time identifi cation number of the

process.

MinWorkingSet

Shows the minimum amount of working set

memory used by the process.

Fine-Tuning System Performance CHAPTER 14

415

TABLE 14-1 Properties of Get-Process and How They Are Used

PROPERTY NAME

PROPERTY DESCRIPTION

Modules

Shows the executables and dynamically linked

libraries used by the process.

NonpagedSystemMemory-

Shows the amount of virtual memory for a pro-

Size/NonpagedSystem-

cess that cannot be written to disk. The nonpaged

MemorySize64

pool is an area of RAM for objects that can’t

be written to disk. You should note processes

that require a high amount of nonpaged pool

memory. If the server doesn’t have enough free

memory, these processes might be the reason for

a high level of page faults.

PagedSystemMemorySize/

Shows the amount of committed virtual memory

PagedSystemMemorySize64

for a process that can be written to disk. The

paged pool is an area of RAM for objects that

can be written to disk when they aren’t used. As

process activity increases, so does the amount of

pool memory the process uses. Most processes

have more paged pool than nonpaged pool

requirements.

Path

Shows the full path to the executable for the

process.

PeakPagedMemorySize/

Shows the peak amount of paged memory used

PeakPagedMemorySize64

by the process.

PeakVirtualMemorySize/

Shows the peak amount of virtual memory used

PeakVirtualMemorySize64

by the process.

PeakWorkingSet/

Shows the maximum amount of memory the

PeakWorkingSet64

process used, including both the private work-

ing set and the nonprivate working set. If peak

memory is exceptionally large, this can be an

indicator of a memory leak.

PriorityBoostEnabled

Shows a Boolean value that indicates whether the

process has the PriorityBoost feature enabled.

PriorityClass

Shows the priority class of the process.

PrivilegedProcessorTime

Shows the amount of kernel-mode usage time for

the process.

ProcessName

Shows the name of the process.

416

 CHAPTER 14 Fine-Tuning System Performance

TABLE 14-1 Properties of Get-Process and How They Are Used

PROPERTY NAME

PROPERTY DESCRIPTION

ProcessorAffinity

Shows the processor affinity setting for the

process.

Responding

Shows a Boolean value that indicates whether the

process responded when tested.

SessionId

Shows the identification number user (session)

within which the process is running. This corre-

sponds to the ID value listed on the Users tab in

Task Manager.

StartTime

Shows the date and time the process was started.

Threads

Shows the number of threads that the process is

using. Most server applications are multithreaded,

which allows concurrent execution of process

requests. Some applications can dynamically

control the number of concurrently executing

threads to improve application performance.

Too many threads, however, can actually reduce

performance, because the operating system has

to switch thread contexts too frequently.

TotalProcessorTime

Shows the total amount of CPU time used by the

process since it was started. If a process is using

a lot of CPU time, the related application might

have a configuration problem. This can also indi-

cate a runaway or nonresponsive process that is

unnecessarily tying up the CPU.

UserProcessorTime

Shows the amount of user-mode usage time for

the process.

VirtualMemorySize/

Shows the amount of virtual memory allocated

VirtualMemorySize64

to and reserved for a process. Virtual memory

is memory on disk and is slower to access than

pooled memory. By configuring an application

to use more physical RAM, you might be able to

increase performance. To do this, however, the

system must have available RAM. If it doesn’t,

other processes running on the system might

slow down.

Fine-Tuning System Performance CHAPTER 14

417

TABLE 14-1 Properties of Get-Process and How They Are Used

PROPERTY NAME

PROPERTY DESCRIPTION

WorkingSet/WorkingSet64

Shows the amount of memory the process is cur-

rently using, including both the private working

set and the nonprivate working set. The private

working set is memory the process is using that

cannot be shared with other processes. The

nonprivate working set is memory the process is

using that can be shared with other processes. If

memory usage for a process slowly grows over

time and doesn’t go back to the baseline value,

this can be an indicator of a memory leak.

Filtering Process Output

By redirecting the output to Where-Object, you can filter Get-Process using any of the

properties available. This means you can specify that you want to see only processes

that aren’t responding or only processes that use a large amount of CPU time.

You designate how a filter should be applied using filter operators. The available

filter operators include:

N –Eq Equals. If the property contains the specified value, the process is

included in the output.

N –Ne Not equals. If the property contains the specified value, the process is

excluded from the output.

N –Gt Greater than. If the property contains a numeric value and that value is

greater than the value specified, the process is included in the output.

N –Lt Less than. If the property contains a numeric value and that value is less

than the value specified, the process is included in the output.

N –Ge Greater than or equal to. If the property contains a numeric value

and that value is greater than or equal to the value specified, the process is

included in the output.

N –Le Less than or equal to. If the property contains a numeric value and that

value is less than or equal to the value specified, the process is included in

the output.

N –Match Pattern match. If the property contains a match for this string, the

process is included in the output.

As Table 14-2 shows, the values that you can use with filter operators depend on

the Get-Process property you use. Remember that all properties are available even if

they aren’t normally displayed with the parameters you’ve specified.

418

 CHAPTER 14 Fine-Tuning System Performance

 TABLE 14-2 Filter Operators and Valid Values for Get-Process

 PROPERTY NAME

OPERATORS TO USE

VALID VALUES

BasePriority

–eq, –ne, –gt, –lt,

Any value from 0 to 24

–ge, –le

HandleCount

–eq, –ne, –gt, –lt,

Any valid positive integer

–ge, –le

MachineName

–eq, –ne

Any valid string of characters

Modules

–eq, –ne, –match

Dynamic-link library (DLL) name

PrivilegedProcessor-

–eq, –ne, –gt, –lt,

Any valid time in the format

Time

–ge, –le

hh:mm:ss

ProcessID

–eq, –ne, –gt, –lt,

Any valid positive integer

–ge, –le

ProcessName

–eq, –ne

Any valid string of characters

Responding

–eq, –ne

$True, $False

SessionID

–eq, –ne, –gt, –lt,

Any valid session number

–ge, –le

Username

–eq, –ne

Any valid user name, with user

name only or in domain\user

format

UserProcessorTime

–eq, –ne, –gt, –lt,

Any valid time in the format

–ge, –le

hh:mm:ss

WorkingSet

–eq, –ne, –gt, –lt,

Any valid integer, expressed in

–ge, –le

kilobytes (KB)

By default, Get-Process looks at all processes regardless of their status. With the

Responding property, you can fi nd processes that either are or aren’t responding. This

property is set to a Boolean value. Consider the following examples:

get-process | where-object {$_.responding -eq $False}

get-process | where-object {$_.responding -eq $False}

get-process | where-object {$_.responding -eq $True}

get-process | where-object {$_.responding -eq $True}

In the fi rst example, you list all processes that aren’t responding. In the second

example, you list all processes that are responding.

Because high-priority processes use more processor time than other processes,

you might want to review the high-priority processes running on a computer when

you are evaluating performance. Most processes have a normal priority and a priority

Fine-Tuning System Performance CHAPTER 14

419

value of 8. You can fi nd processes with a priority higher than 8 as shown in the following example and sample output:

get-process | where-object {$_.basepriority -gt 8}

get-process | where-object {$_.basepriority -gt 8}

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

------- ------ ----- ----- ----- ------ -- -----------

----- -----

-- -----------

 655 5 1872 5232 94 588 csrss

 655 5 1872 5232 94 588 csrss

 493 7 22108 19876 155 644 csrss

 493 7 22108 19876 155 644 csrss

 791 12 4820 2420 69 692 lsass

 791 12 4820 2420 69 692 lsass

 280 8 3216 7732 51 680 services

 280 8 3216 7732 51 680 services

 28 1 364 812 4 516 smss

 28 1 364 812 4 516 smss

 106 4 1560 4192 46 636 wininit

 106 4 1560 4192 46 636 wininit

 143 4 2528 6700 56 804 winlogon

 143 4 2528 6700 56 804 winlogon

You also might want to fi nd processes that are using a lot of CPU time. In the fol-

lowing example and sample output, you check for processes that are using more than

30 minutes of privileged processor time:

get-process | where-object {$_.privilegedprocessortime -gt "00:30:00"}

get-process | where-object {$_.privilegedprocessortime -gt "00:30:00"}

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

------- ------ ----- ----- ----- ------ -- -----------

------- ------ ----- ----- ----- ------ -- -----------

 553 32 52924 80096 487 3026.42 5200 W3SVC

 553 32 52924 80096 487 3026.42 5200 W3SVC

Viewing the Relationship Between Running Processes

and Services

When you use Win32_Service with Get-Process, you can examine the relationship

between services confi gured on a computer and running processes. The ID of the

process under which a service is running is shown as part of the standard output

when you work with Win32_Service. Here is an example and sample output for the

Windows Search service:

get-wmiobject -class win32_service -filter "name='wsearch'"

get-wmiobject -class win32_service -filter "name='wsearch'"

ExitCode : 0

ExitCode : 0

Name : WSearch

Name : WSearch

ProcessId : 2532

ProcessId : 2532

StartMode : Auto

StartMode : Auto

State : Running

State : Running

Status : OK

Status : OK

420

CHAPTER 14 Fine-Tuning System Performance

 Using the ProcessId property of the Win32_Service object, you can view detailed information about the process under which a service is running, as shown in the following example:

$s = get-wmiobject -class win32_service -filter "name='wsearch'"

$s = get-wmiobject -class win32_service -filter "name='wsearch'"

get-process -id $s.processid

get-process -id $s.processid

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

------- ------ ----- ----- ----- ------ -- -----------

----- -----

-- -----------

 1294 15 43768 40164 162 2532 SearchIndexer

 1294 15 43768 40164 162 2532 SearchIndexer

Alternatively, you can get the same result using the following code:

get-wmiobject -class win32_service -filter "name='wsearch'" |

get-wmiobject -class win32_service -filter "name='wsearch'"

|

foreach ($a) {get-process -id $_.processid}

foreach ($a) {get-process -id $_.processid}

By default, the output of Get-Process is formatted as a table, but you can also for-

mat the output as a list. Beyond formatting, the important thing to note here is that

Get-Process lists services by the base name of the executable that starts the service.

Here, SearchIndexer.exe is the name of the executable that starts the Windows Search

service.

You can use the correlation between processes and services to help you manage

systems. For example, if you think you are having problems with the World Wide

Web Publishing Service (W3svc), one step in your troubleshooting process is to begin

monitoring the service’s related process or processes. You would want to track the

following:

N Process status, such as whether the process is responding or not responding

N Memory usage, including the working set, paged system memory, and vir-

tual memory

N CPU time, including privileged processor time and user processor time

By tracking these statistics over time, you can watch for changes that can indicate

the process has stopped responding, the process is a runaway process hogging CPU

time, or there is a memory leak.

 Viewing Lists of DLLs Being Used by Processes

When you use Get-Process, you can examine the relationship between running

processes and DLLs confi gured on the system. In the output, the names of DLLs that

the process uses are stored in the Modules property. However, the standard output

might not show you the complete list. Consider the following example and sample

output:

get-process dwm | format-list modules

get-process dwm | format-list modules

Fine-Tuning System Performance CHAPTER 14

421

Modules : {System.Diagnostics.ProcessModule (Dwm.exe),

Modules : {System.Diagnostics.ProcessModule (Dwm.exe),

System.Diagnostics.ProcessModule (ntdll.dll),

System.Diagnostics.ProcessModule (ntdll.dll),

System.Diagnostics.ProcessModule (kernel32.dll),

System.Diagnostics.ProcessModule (kernel32.dll),

System.Diagnostics.ProcessModule (ADVAPI32.dll)...}

System.Diagnostics.ProcessModule (ADVAPI32.dll)...}

 TIP The preference variable $FormatEnumerationLimit controls how many enumer-

ated items are included in a grouped display. The default value is 4, and this is why only

four DLLs are shown here. If you increment this variable, you’ll be able to see more

values by default. In this example, you would have needed to set this variable to 30 or

more to see all the DLLs.

Here, per the default confi guration of Windows PowerShell, you see only four

values for the Modules property, and the rest of the values are truncated. To see all

the DLLs, store the Process object in a variable and then list the value of the Modules

property as shown in the following example and sample output:

$p = get-process dwm

$p = get-process dwm

$p.modules

$p.modules

 Size(K) ModuleName FileName

 Size(K) ModuleName FileName

 ------- ---------- --------

------- ----------

 96 Dwm.exe C:\Windows\system32\Dwm.exe

 96 Dwm.exe C:\Windows\system32\Dwm.exe

 1180 ntdll.dll C:\Windows\system32\ntdll.dll

 1180 ntdll.dll C:\Windows\system32\ntdll.dll

 876 kernel32.dll C:\Windows\system32\kernel32.dll

 876 kernel32.dll C:\Windows\system32\kernel32.dll

 792 ADVAPI32.dll C:\Windows\system32\ADVAPI32.dll

 792 ADVAPI32.dll C:\Windows\system32\ADVAPI32.dll

 776 RPCRT4.dll C:\Windows\system32\RPCRT4.dll

 776 RPCRT4.dll C:\Windows\system32\RPCRT4.dll

 300 GDI32.dll C:\Windows\system32\GDI32.dll

 300 GDI32.dll C:\Windows\system32\GDI32.dll

 628 USER32.dll C:\Windows\system32\USER32.dll

 628 USER32.dll C:\Windows\system32\USER32.dll

 680 msvcrt.dll C:\Windows\system32\msvcrt.dll

 680 msvcrt.dll C:\Windows\system32\msvcrt.dll

 1296 ole32.dll C:\Windows\system32\ole32.dll

 1296 ole32.dll C:\Windows\system32\ole32.dll

 564 OLEAUT32.dll C:\Windows\system32\OLEAUT32.dll

 564 OLEAUT32.dll C:\Windows\system32\OLEAUT32.dll

 252 UxTheme.dll C:\Windows\system32\UxTheme.dll

 252 UxTheme.dll C:\Windows\system32\UxTheme.dll

 120 IMM32.dll C:\Windows\system32\IMM32.dll

 120 IMM32.dll C:\Windows\system32\IMM32.dll

 800 MSCTF.dll C:\Windows\system32\MSCTF.dll

 800 MSCTF.dll C:\Windows\system32\MSCTF.dll

 96 dwmredir.dll C:\Windows\system32\dwmredir.dll

 96 dwmredir.dll C:\Windows\system32\dwmredir.dll

 28 SLWGA.dll C:\Windows\system32\SLWGA.dll

 28 SLWGA.dll C:\Windows\system32\SLWGA.dll

 1188 urlmon.dll C:\Windows\system32\urlmon.dll

 1188 urlmon.dll C:\Windows\system32\urlmon.dll

 352 SHLWAPI.dll C:\Windows\system32\SHLWAPI.dll

 352 SHLWAPI.dll C:\Windows\system32\SHLWAPI.dll

 276 iertutil.dll C:\Windows\system32\iertutil.dll

 276 iertutil.dll C:\Windows\system32\iertutil.dll

 40 WTSAPI32.dll C:\Windows\system32\WTSAPI32.dll

 40 WTSAPI32.dll C:\Windows\system32\WTSAPI32.dll

 232 slc.dll C:\Windows\system32\slc.dll

 232 slc.dll C:\Windows\system32\slc.dll

 36 LPK.DLL C:\Windows\system32\LPK.DLL

 36 LPK.DLL C:\Windows\system32\LPK.DLL

 500 USP10.dll C:\Windows\system32\USP10.dll

 500 USP10.dll C:\Windows\system32\USP10.dll

 1656 comctl32.dll C:\Windows\WinSxS\x86_microsoft....

 1656 comctl32.dll C:\Windows\WinSxS\x86_microsoft....

 1984 milcore.dll C:\Windows\system32\milcore.dll

 1984 milcore.dll C:\Windows\system32\milcore.dll

 28 PSAPI.DLL C:\Windows\system32\PSAPI.DLL

 28 PSAPI.DLL C:\Windows\system32\PSAPI.DLL

422

CHAPTER 14 Fine-Tuning System Performance

 132 NTMARTA.DLL C:\Windows\system32\NTMARTA.DLL

 132 NTMARTA.DLL C:\Windows\system32\NTMARTA.DLL

 296 WLDAP32.dll C:\Windows\system32\WLDAP32.dll

 296 WLDAP32.dll C:\Windows\system32\WLDAP32.dll

 180 WS2_32.dll C:\Windows\system32\WS2_32.dll

 180 WS2_32.dll C:\Windows\system32\WS2_32.dll

 24 NSI.dll C:\Windows\system32\NSI.dll

 24 NSI.dll C:\Windows\system32\NSI.dll

 68 SAMLIB.dll C:\Windows\system32\SAMLIB.dll

 68 SAMLIB.dll C:\Windows\system32\SAMLIB.dll

Alternatively, you can get the same result using the following code:

get-process dwm | foreach ($a) {$_.modules}

get-process dwm | foreach ($a) {$_.modules}

Knowing which DLL modules a process has loaded can further help you pinpoint

what might be causing a process to become nonresponsive, to fail to release the CPU,

or to use more memory than it should. In some cases, you might want to check DLL

versions to ensure that they are the correct DLLs that the system should be running.

To do this, you need to consult the Microsoft Knowledge Base or manufacturer docu-

mentation to verify DLL versions and other information.

If you are looking for processes using a specifi ed DLL, you can also specify the

name of the DLL you are looking for. For example, if you suspect that the printer

spooler driver Winspool.drv is causing processes to hang up, you can search for

processes that use Winspool.drv instead of Winspool32.drv and check their status and

resource usage.

The syntax that you use to specify the DLL to fi nd is

get-process | where-object {$_.modules -match "

get-process | where-object {$_.modules -match DLLName

" DLLNam "}

 e

where DLLName is the name of the DLL to search for. Get-Process matches the DLL

name without regard to the letter case, and you can enter the DLL name in any letter

case. In the following example, you are looking for processes using Winspool.drv,

and the output shows the processes using the DLL, along with their basic process

information:

get-process | where-object {$_.modules -match "winspool.drv"}

get-process | where-object {$_.modules -match "winspool.drv"}

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

------- ------ ----- ----- ----- ------ -- -----------

----- -----

-- -----------

 147 5 2696 8108 77 0.11 2956 DrgToDsc

 147 5 2696 8108 77 0.11 2956 DrgToDsc

 787 23 38444 49148 218 11.97 2132 explorer

 787 23 38444 49148 218 11.97 2132 explorer

 114 5 4708 7164 69 0.17 580 IAAnotif

 114 5 4708 7164 69 0.17 580 IAAnotif

 288 10 11516 18312 118 1.39 672 IntelHCTAgent

 288 10 11516 18312 118 1.39 672 IntelHCTAgent

 71 4 2316 7068 69 2.13 5448 notepad

 71 4 2316 7068 69 2.13 5448 notepad

 68 3 2844 4544 57 0.03 2804 rundll32

 68 3 2844 4544 57 0.03 2804 rundll32

 543 32 52304 79096 480 283.83 5200 WINWORD

 543 32 52304 79096 480 283.83 5200 WINWORD

Fine-Tuning System Performance CHAPTER 14

423

Stopping Processes

When you want to stop processes that are running on a local or remote system, you

can use Stop-Process. With Stop-Process, you can stop processes by process ID using

the –Id parameter or by name using the –Name parameter. Although you cannot use

wildcards with the –Id parameter, you can use wildcards with the –Name parameter.

By default, Stop-Process prompts for confi rmation before stopping any process

that is not owned by the current user. If you have appropriate permissions to stop

a process and don’t want to be prompted, use the –Force parameter to disable

prompting.

If you want to stop multiple processes by process ID or name, you can enter

multiple IDs or names as well. With process names, however, watch out, because Stop-

Process stops all processes that have that process name. Thus, if three instances of

Svchost are running, all three processes are stopped if you use Stop-Process with that

image name.

 REAL WORLD As you examine processes, keep in mind that a single application might

start multiple processes. Generally, you will want to stop the parent process, which

should stop the entire process tree, starting with the parent application process and

including any dependent processes.

Consider the following examples to see how you can use Stop-Process:

STOP PROCESS ID 1106:

stop-process 1106

STOP ALL PROCESSES WITH THE NAME W3SVC:

stop-process –name w3svc

stop-process –name w3svc

STOP PROCESSES 1106, 1241, AND 1546:

stop-process 1106, 1241, 1546

stop-process 1106, 1241, 1546

FORCE PROCESS 891 TO STOP:

stop-process -force –id 891

stop-process -force –id 891

To ensure that only processes matching specifi c criteria are stopped, you can use

Get-Process and Stop-Process together. For example, you might want to use Get-

Process to get only instances of Winword that are not responding and should be

stopped, rather than all instances of Winword (which is the default when you use the

–Name parameter). Or you might want to get and stop all processes using a specifi c DLL.

424

CHAPTER 14 Fine-Tuning System Performance

 When you are stopping processes, you want to be careful not to accidentally stop critical system processes, such as Lsass, Wininit, or Winlogon. Typically, system processes have a process ID with a value less than 1000. One safeguard you can use when

stopping processes is to ensure the process ID is greater than 999.

Consider the following examples to see how you can use Get-Process with

Stop-Process:

STOP INSTANCES OF WINWORD THAT ARE NOT RESPONDING:

get-process –name winword | where-object {$_.responding -eq $False}

get-process –name winword | where-object {$_.responding -eq $False}

| stop-process

| stop-process

STOP ALL PROCESSES WITH A PROCESS ID GREATER THAN 999 IF THEY AREN’T

RESPONDING:

get-process | where-object {$_.id -gt 999} | where-object

get-process | where-object {$_.id -gt 999} | where-object

{$_.responding -eq $False} | stop-process

{$_.responding -eq $False} | stop-process

STOP ALL PROCESSES USING THE WINSPOOL.DRV DLL:

get-process | where-object {$_.modules -match "winspool.drv"} |

get-process | where-object {$_.modules -match "winspool.drv"} |

stop-process

stop-process

Although Stop-Process doesn’t support the –ComputerName parameter, you can

use the following technique to manage the processes on remote computers:

get-process w3svc -computername engpc18 | stop-process

get-process w3svc -computername engpc18 | stop-process

invoke-command -computername engpc18 -scriptblock { get-process w3svc |

invoke-command -computername engpc18 -scriptblock { get-process w3svc |

stop-process }

stop-process }

Here, you use Get-Process to get a Process object on a remote computer, and then

you stop the process by using Stop-Process. Note that this command reports only

failure. It won’t confi rm that a process was stopped, but it will tell you that the process

was not found or could not be stopped.

 Digging Deeper into Processes

In addition to using Get-Process to get information about running processes, you can

use Get-WmiObject and the Win32_Process class. If you type get-wmiobject -class

win32_process, you’ll see detailed information on every process running on the

computer. To examine a specifi c process, you can fi lter by image name. As shown in the

following example and sample output, the image name is the name of the executable

for the process:

get-wmiobject -class win32_process -filter "name='searchindexer.exe'"

get-wmiobject -class win32_process -filter "name='searchindexer.exe'"

Fine-Tuning System Performance CHAPTER 14

425

Caption : SearchIndexer.exe

Caption : SearchIndexer.exe

CommandLine :

CommandLine :

CreationClassName : Win32_Process

CreationClassName : Win32_Process

CreationDate : 20090228102000.542640-480

CreationDate : 20090228102000.542640-480

CSCreationClassName : Win32_ComputerSystem

CSCreationClassName : Win32_ComputerSystem

CSName : TECHPC22

CSName : TECHPC22

Description : SearchIndexer.exe

Description : SearchIndexer.exe

ExecutablePath :

ExecutablePath :

ExecutionState :

ExecutionState :

Handle : 2532

Handle : 2532

HandleCount : 1323

HandleCount : 1323

InstallDate :

InstallDate :

KernelModeTime : 15156250

KernelModeTime : 15156250

MaximumWorkingSetSize :

MaximumWorkingSetSize :

MinimumWorkingSetSize :

MinimumWorkingSetSize :

Name : SearchIndexer.exe

Name : SearchIndexer.exe

OSCreationClassName : Win32_OperatingSystem

OSCreationClassName : Win32_OperatingSystem

OtherOperationCount : 34235

OtherOperationCount : 34235

OtherTransferCount : 2763510

OtherTransferCount : 2763510

PageFaults : 34156

PageFaults : 34156

PageFileUsage : 43696

PageFileUsage : 43696

ParentProcessId : 680

ParentProcessId : 680

PeakPageFileUsage : 44760

PeakPageFileUsage : 44760

PeakVirtualSize : 174481408

PeakVirtualSize : 174481408

PeakWorkingSetSize : 41128

PeakWorkingSetSize : 41128

Priority : 8

Priority : 8

PrivatePageCount : 44744704

PrivatePageCount : 44744704

ProcessId : 2532

ProcessId : 2532

QuotaNonPagedPoolUsage : 16

QuotaNonPagedPoolUsage : 16

QuotaPagedPoolUsage : 177

QuotaPagedPoolUsage : 177

QuotaPeakNonPagedPoolUsage : 29

QuotaPeakNonPagedPoolUsage : 29

QuotaPeakPagedPoolUsage : 183

QuotaPeakPagedPoolUsage : 183

ReadOperationCount : 9223

ReadOperationCount : 9223

ReadTransferCount : 45734098

ReadTransferCount : 45734098

SessionId : 0

SessionId : 0

Status :

Status :

ThreadCount : 16

ThreadCount : 16

UserModeTime : 55156250

UserModeTime : 55156250

VirtualSize : 169123840

VirtualSize : 169123840

WindowsVersion : 6.0.6001

WindowsVersion : 6.0.6001

WorkingSetSize : 41414656

WorkingSetSize : 41414656

WriteOperationCount : 3845

WriteOperationCount : 3845

WriteTransferCount : 27617602

WriteTransferCount : 27617602

ProcessName : SearchIndexer.exe

ProcessName : SearchIndexer.exe

Win32_Process objects provide some information that Process objects don’t,

including details on read and write operations. The rest of the information is the same

as that provided by Get-Process, albeit in some cases the information is presented in a

different way.

426

CHAPTER 14 Fine-Tuning System Performance

 Process objects have a StartTime property, and Win32_Process objects have a

CreationDate property. Whereas the StartTime property is presented in datetime

format, the CreationDate property is presented as a datetime string. Using the

StartTime property, you can search for all processes that have been running for

longer than a specifi ed period of time. In the following example, you look for

processes that have been running longer than one day:

$yesterday = (get-date).adddays(-1)

$yesterday = (get-date).adddays(-1)

get-process | where-object {$_.starttime -gt $yesterday}

get-process | where-object {$_.starttime -gt $yesterday}

Alternatively, you can get the same result using the following code:

get-process | where-object {$_.starttime -gt (get-date).adddays(-1)}

get-process | where-object {$_.starttime -gt (get-date).adddays(-1)}

With the CreationDate property, you can perform the same search. Here is an

example:

$yesterday = (get-date).adddays(-1)

$yesterday = (get-date).adddays(-1)

get-wmiobject -class win32_process | where-object {$_.creationdate –gt

get-wmiobject -class win32_process | where-object {$_.creationdate –gt

$yesterday}

$yesterday}

Win32_Process objects have a property called threadcount, which is a count of

threads associated with a process. You can list the thread count as shown in the fol-

lowing example:

get-wmiobject -class win32_process -filter "name='searchindexer.exe'" |

get-wmiobject -class win32_process -filter "name='searchindexer.exe'" |

format-list name, threadcount

format-list name, threadcount

name : SearchIndexer.exe

name : SearchIndexer.exe

threadcount : 17

threadcount : 17

Process objects have a Threads property that contains all the threads associated

with a process. You can count the threads as shown in the following example:

$p = get-process –name searchindexer

$p = get-process –name searchindexer

write-host "Number of threads: " ($p.threads).count

write-host "Number of threads: " ($p.threads).count

Number of threads: 17

Number of threads: 17

You can view and work with each individual Thread object as well. As shown in the

following example and sample output, you can list the information associated with

each Thread object:

$p = get-process –name searchindexer

$p = get-process –name searchindexer

$p.threads

$p.threads

Fine-Tuning System Performance CHAPTER 14

427

BasePriority : 8

BasePriority : 8

CurrentPriority : 10

CurrentPriority : 10

Id : 2536

Id : 2536

IdealProcessor :

IdealProcessor :

PriorityBoostEnabled :

PriorityBoostEnabled :

PriorityLevel :

PriorityLevel :

PrivilegedProcessorTime :

PrivilegedProcessorTime :

StartAddress : 0

StartAddress : 0

StartTime :

StartTime :

ThreadState : Wait

ThreadState : Wait

TotalProcessorTime :

TotalProcessorTime :

UserProcessorTime :

UserProcessorTime :

WaitReason : Executive

WaitReason : Executive

ProcessorAffinity :

ProcessorAffinity :

BasePriority : 8

BasePriority : 8

CurrentPriority : 9

CurrentPriority : 9

. . .

. . .

Or you can view details for a specifi c thread by referencing its index position in the

Threads object array. For example, if you want to view the fi rst Thread object, you can

reference $p.threads[0].

Each thread has a base priority, a current priority, an ID, a start address, and a

thread state. If the thread is waiting for another process or thread, the wait reason is

also listed. Wait reasons include Executive (when the thread is waiting on the oper-

ating system kernel components) and UserRequest (when the thread is waiting on

user-mode components).

When you are working with Win32_Process objects, you can use several methods

to work with processes. These methods include the following:

N GetOwner() Gets the user account under which the process is running

N GetOwnerSid() Gets the security identifi er of the user account under

which the process is running

N Terminate() Stops a process that is running on a local or remote system

The basic syntaxes for getting the process owner and the owner’s security identi-

fi er are

 $processObject.GetOwner()

and

 $processObject.GetOwnerSid()

where $processObject is a reference to a Win32_Process object. Here is an example

and partial output:

$p = get-wmiobject -class win32_process -filter "name='notepad.exe'"

$p = get-wmiobject -class win32_process -filter "name='notepad.exe'"

$p.getowner()

$p.getowner()

428

CHAPTER 14 Fine-Tuning System Performance

Domain : CPANDL

Domain : CPANDL

ReturnValue : 0

ReturnValue : 0

User : WILLIAMS

User : WILLIAMS

Here, you examine a running instance of Notepad and get the owner of the

Notepad process. In the return value, note the Domain and User properties, which

show the domain and user account of the process owner, respectively. As shown in

the following example and partial output, you can display the security identifi er of the

process owner by typing

$p.getownersid()

$p.getownersid()

Sid : S-1-5-21-4857584848-3848484848-8484884848-1111

Sid : S-1-5-21-4857584848-3848484848-8484884848-1111

In the return value, the Sid property contains the owner’s security identifi er.

As shown in the following example and partial output, you can stop the process by

typing the following:

$p.terminate()

$p.terminate()

Re

R turnValue : 0

eturnValue : 0

The return value in the output is what you want to focus on. A return value of 0

indicates success. Any other return value indicates an error. Typically, errors occur

because you aren’t the process owner and don’t have appropriate permissions to ter-

minate the process. You can resolve this problem by providing credentials or by using

an elevated administrator PowerShell prompt.

You can use the techniques discussed previously to work with processes when

Get-WmiObject returns a single matching Win32_Process object. However, these

techniques won’t work as expected when Get-WmiObject returns multiple Win32_

Process objects. The reason for this is that the objects are stored in an array and you

must specify the instance within the array to work with. One technique for doing so is

shown in the following example and partial output:

$procs = get-wmiobject -class win32_process -filter "name='notepad.exe'"

$procs = get-wmiobject -class win32_process -filter "name='notepad.exe'"

foreach ($p in $procs) { $p.getowner() }

foreach ($p in $procs) { $p.getowner() }

Domain : CPANDL

Domain : CPANDL

ReturnValue : 0

ReturnValue : 0

User : WILLIAMS

User : WILLIAMS

Domain : CPANDL

ReturnValue : 0

ReturnValue : 0

User : WILLIAMS

User : WILLIAMS

Fine-Tuning System Performance CHAPTER 14

429

Here, two instances of Notepad are running, and you list the owner of each

process. This technique works when there is only one instance of Notepad running

as well.

Performance Monitoring

Performance monitoring helps you watch for adverse conditions and take appropriate

action to resolve them. Windows PowerShell has several commands for this purpose,

and in this section, we’ll look at the ones you’ll use the most.

 Understanding Performance Monitoring Commands

Commands you can use to monitor performance include:

N Get-Counter Gets objects representing real-time performance counter

data directly from the performance monitoring instrumentation in Windows.

You can list the performance counter sets and the counters that they contain,

set the sample size and interval, and specify the credentials of users with

permission to collect performance data.

Get-Counter [-MaxSamples

Get-Counter [-MaxSamples NumSamples

 NumSample] [-Counter]

 s] [-Counter] CounterPaths

 CounterPath

 s

[-SampleInterval

[-SampleInterval Interval

 Interva] {AddtlParams}

 l] {AddtlParams}

Get-Counter -ListSet

Get-Counter -ListSet SetNames

 SetName {AddtlParams}

 s {AddtlParams}

{AddtlParams}

{AddtlParams}

[-Credential

[-Credential CredentialObject

 CredentialObjec] [-ComputerName

 t] [-ComputerName ComputerNames

 ComputerName]

 s

N Export-Counter Exports performance counter data to log fi les in BLG

(binary performance log, the default), CSV (comma-separated), or TSV (tab-

separated) format. This cmdlet is designed to export data that is returned

by the Get-Counter and Import-Counter cmdlets. Only Windows 7, Windows

Server 2008 R2, and later versions of Windows support this command.

Export-Counter [-FileFormat

Export-Counter [-FileFormat Format

 Forma] [-Path]

 t] [-Path] SavePath

 SavePat

 h

-InputObject

-InputObj

 PerformanceCounterSampleSets

ect PerformanceCounterSampleSets {AddtlParams}

{AddtlParams}

{AddtlParams}

{AddtlParams}

[-Force {$True | $False}] [-Circular {$True | $False}]

[-Force {$True | $False}] [-Circular {$True | $False}]

[-MaxSize

[-MaxSize MaxSizeInBytes

 MaxSizeInByte]

 s

N Import-Counter Imports performance counter data from performance

counter log fi les and creates objects for each counter sample in the fi le. The

objects created are identical to those that Get-Counter returns when it col-

lects performance counter data. You can import data from BLG, CSV, and TSV

formatted log fi les. When you are using BLG, you can import up to 32 fi les

430

CHAPTER 14 Fine-Tuning System Performance

in each command. To get a subset of data from a fi le, use the parameters of

Import-Counter to fi lter the data that you import.

Import-Counter [-Path]

Import-Counter [-Path] FilePaths

 FilePath {AddlParams}

 s {AddlParams}

Import-Counter -ListSet

Imp

 SetNames

ort-Counter -ListSet S

[-Path]

 etNames [-Path] FilePaths

 FilePaths

Import-Counter [-Summary {$True | $False}]

Import-Counter [-Summary {$True | $False}]

{AddtlParams}

{AddtlParams}

[-Counter CountersToInclude

[-Counter CountersToInclud] [-MaxSamples

 e]

 NumSamples

[-MaxSamples

]

 NumSamples

[-StartTime

[-StartTime DateTime

 DateTim] [-EndTime

 e] [-EndTime DateTime

 DateTim]

 e

Get-Counter is designed to track and display performance information in real

time. It gathers information on any performance parameters you’ve confi gured for

monitoring and presents it as output. Each performance item you want to monitor is

defi ned by the following three components:

N Performance object Represents any system component that has a set of

measurable properties. A performance object can be a physical part of the

operating system, such as the memory, the processor, or the paging fi le; a

logical component, such as a logical disk or print queue; or a software ele-

ment, such as a process or a thread.

N Performance object instance

Represents single occurrences of perfor-

mance objects. If a particular object has multiple instances, such as when

a computer has multiple processors or multiple disk drives, you can use an

object instance to track a specifi c occurrence of that object. You can also

elect to track all instances of an object, such as whether you want to monitor

all processors on a system.

N Performance counter Represents measurable properties of performance

objects. For example, with a paging fi le, you can measure the percentage

utilization using the %Usage counter.

In a standard installation of Windows, many performance objects are available for

monitoring. As you add services, applications, and components, additional perfor-

mance objects can become available. For example, when you install the Domain

Name System (DNS) on a server, the DNS object becomes available for monitoring on

that computer.

 Tracking Performance Data

Using Get-Counter, you can write performance data to the output or to a log fi le. The

key to using Get-Counter is to identify the path names of the performance counters

you want to track. The performance counter path has the following syntax:

\\ ComputerName\ObjectName\ObjectCounter

where ComputerName is the computer name or IP address of the local or remote

computer you want to work with, ObjectName is the name of a counter object, and

 ObjectCounter is the name of the object counter to use. For example, if you want to

Fine-Tuning System Performance CHAPTER 14

431

track the available memory on Dbserver79, you type the following, and the output would be similar to that shown:

get-counter "\\dbserver79\memory\available mbytes"

get-counter "\\dbserver79\memory\available mbytes"

Timestamp CounterSamples

Timestamp CounterSamples

--------- --------------

--------- --------------

2/27/2010 4:26:54 PM \\dbserver79\memory\available mbytes : 1675

2/27/2010 4:26:54 PM \\dbserver79\memory\available mbytes : 1675

2/27/2010 4:26:55 PM \\dbserver79\memory\available mbytes : 1672

2/27/2010 4:26:55 PM \\dbserver79\memory\available mbytes : 1672

 NOTE Enclosing the counter path in double quotation marks is required in this

example because the counter path includes spaces. Although double quotation marks

aren’t always required, it is good form to always use them.

Specifying the computer name as part of the counter path is optional. If you

don’t specify the computer name in the counter path, Get-Counter uses the values

you specify in the –ComputerName parameter to set the full path for you. If you don‘t

specify computer names, the local computer name is used. Although this allows you

to easily work with multiple computers, you should familiarize yourself with the full

path format because this is what is recorded in performance traces and performance

logs. Without the computer name in the path, the abbreviated path becomes

\ObjectName\ObjectCounter

In the following example, you check the available memory on multiple computers

by using the –ComputerName parameter:

get-counter –computername fileserver12, dbserver18, dcserver21

get-counter –computername fileserver12, dbserver18, dcserver21

"\memory\available mbytes"

"\memory\available mbytes"

When you are working with a remote computer, you might need to provide alter-

native credentials. You can do this as shown in the following example:

$cred = get-credential

$cred = get-credential

get-counter –computername fileserver12, dbserver18, dcserver21

get-counter –computername fileserver12, dbserver18, dcserver21

"\memory\available mbytes" –credential $cred

"\memory\available mbytes" –credential $cred

When you use Get-Credential, Windows PowerShell prompts you for a user name

and password and then stores the credentials provided in the $cred variable. These

credentials are then passed to the remote computers for authentication.

You can easily track all counters for an object by using an asterisk (*) as the counter

name, such as in the following example:

get-counter "\\dbserver79\Memory*"

get-counter "\\dbserver79\Memory*"

Here, you track all counters for the Memory object.

432

CHAPTER 14 Fine-Tuning System Performance

 When objects have multiple instances, such as with the Processor or LogicalDisk object, you must specify the object instance you want to work with. The full syntax for

this is as follows:

\\ComputerName\ObjectName(ObjectInstance)\ObjectCounter

Here, you follow the object name with the object instance in parentheses. When

an object has multiple instances, you can work with all instances of that object using

_Total as the instance name. You can work with a specifi c instance of an object by

using its instance identifi er. For example, if you want to examine the Processor\%

Processor Time counter, you can use this command to work with all processor

instances:

get-counter "\\dbserver79\Processor(_Total)\% Processor Time"

get-counter "\\dbserver79\Processor(_Total)\% Processor Time"

Or you use this command to work with a specifi c processor instance:

get-counter "\\dbserver79\Processor(0)\% Processor Time"

get-counter "\\dbserver79\Processor(0)\% Processor Time"

Here, Processor(0) identifi es the fi rst processor on the system.

Get-Counter has several parameters. –MaxSamples sets the number of samples to

collect. –SampleInterval sets the time between samples where the default is 1 second.

–ListSet lists installed counters for the specifi ed objects.

Get-Counter writes its output to the prompt by default. You can redirect the

output to a performance log by sending the output to Export-Counter. By default,

Export-Counter exports performance counter data to log fi les in binary performance

log format. Using the –FileFormat parameter, you can set the format as CSV for a

comma-delimited text fi le, TSV for a tab-delimited text fi le, or BLG for a binary fi le.

Consider the following example:

get-counter "\\dbserver79\Memory*" | export-counter -fileformat tsv

get-counter "\\dbserver79\Memory*" | export-counter -fileformat tsv

–path .\dbserver79.txt

–path .\dbserver79.txt

Here, you track all counters for the Memory object and write the output to a

tab-delimited text fi le called Dbserver79.txt in the current working directory. When

you want to work with this data later, you use Import-Counter. Type import-counter

-path followed by the path to the performance log to view the performance data.

Type import-counter -summary -path followed by the path to the performance

log to get a summary view of the data. Type import-counter -listset * -path fol-

lowed by the path to the performance log to see what counters were tracked. Option-

ally, use –StartTime and –EndTime to specify a datetime range to review. Consider the

following example:

$startdate = (get-date).adddays(-1)

$startdate = (get-date).adddays(-1)

$enddate = (get-date)

$enddate = (get-date)

import-counter –path .\data.txt -starttime $startdate –endtime $enddate

import-counter –path .\data.txt -starttime $startdate –endtime $enddate

Fine-Tuning System Performance CHAPTER 14

433

Here, you examine the performance data in a fi le in the current directory, called Data.txt. You review the performance details from yesterday at the current time to

today at the current time.

If you need help determining how an object can be used and what its counters are,

type get-counter -listset followed by the object name for which you want to view

counters. The following example and sample output show how this can be used to get

all the Memory-related counters:

get-counter -listset Memory

get-counter -listset Memory

Counter: {\Memory\Page Faults/sec, \Memory\Available Bytes,

Counter: {\Memory\Page Faults/sec, \Memory\Available Bytes,

\Memory\Committed Bytes, \Memory\Commit Limit...}

\Memory\Committed Bytes, \Memory\Commit Limit...}

CounterSetName : Memory

CounterSetName : Memory

MachineName : EngPC85

MachineName : EngPC85

CounterSetType : SingleInstance

CounterSetType : SingleInstance

Description : The Memory performance object consists of counters

Description : The Memory performance object consists of counters

that describe the behavior of physical and virtual memory on the

that describe the behavior of physical and virtual memory on the

computer. Physical memory is the amount of random access memory on the

computer. Physical memory is the amount of random access memory on the

computer. Virtual memory consists of the space in physical memory and on

computer. Virtual memory consists of the space in physical memory and on

disk. Many of the memory counters monitor paging, which is the movement

disk. Many of the memory counters monitor paging, which is the movement

of pages of code and data between disk and physical memory. Excessive

of pages of code and data between disk and physical memory. Excessive

paging, a symptom of a memory shortage, can cause delays which interfere

paging, a symptom of a memory shortage, can cause delays which interfere

with all system processes.

with all system processes.

Paths: {\Memory\Page Faults/sec, \Memory\Available Bytes,

Paths: {\Memory\Page Faults/sec, \Memory\Available Bytes,

\Memory\Committed Bytes, \Memory\Commit Limit...}

\Memory\Committed Bytes, \Memory\Commit Limit...}

PathsWithInstances : {}

PathsWithInstances : {}

As with all results returned in PowerShell, the output is returned as an object that

you can manipulate. To get a complete list of counter paths, you can reference the

Paths property as shown in the following example and partial output:

$c = get-counter -listset Memory

$c = get-counter -listset Memory

$c.paths

$c.paths

\Memory\Page Faults/sec

\Memory\Page Faults/sec

\Memory\Available Bytes

\Memory\Available Bytes

\Memory\Committed Bytes

\Memory\Committed Bytes

\Memory\Commit Limit

\Memory\Commit Limit

Alternatively, you can get the same result using the following code:

get-counter -listset memory | foreach ($a) {$_.paths}

get-counter -listset memory | foreach ($a) {$_.paths}

434

CHAPTER 14 Fine-Tuning System Performance

 If an object has multiple instances, you can list the installed counters with instances by using the PathsWithInstances property. An example and partial output follow:

$d = get-counter -listset PhysicalDisk

$d = get-counter -listset PhysicalDisk

$d.pathswithinstances

$d.pathswithinstances

\PhysicalDisk(0 E: C:)\Current Disk Queue Length

\PhysicalDisk(0 E: C:)\Current Disk Queue Length

\PhysicalDisk(1 W:)\Current Disk Queue Length

\PhysicalDisk(1 W:)\Current Disk Queue Length

\PhysicalDisk(2 D:)\Current Disk Queue Length

\PhysicalDisk(2 D:)\Current Disk Queue Length

\PhysicalDisk(3 I:)\Current Disk Queue Length

\PhysicalDisk(3 I:)\Current Disk Queue Length

\PhysicalDisk(4 J:)\Current Disk Queue Length

\PhysicalDisk(4 J:)\Current Disk Queue Length

\PhysicalDisk(5 K:)\Current Disk Queue Length

\PhysicalDisk(5 K:)\Current Disk Queue Length

\PhysicalDisk(6 L:)\Current Disk Queue Length

\PhysicalDisk(6 L:)\Current Disk Queue Length

\PhysicalDisk(7 N:)\Current Disk Queue Length

\PhysicalDisk(7 N:)\Current Disk Queue Length

\PhysicalDisk(8 O:)\Current Disk Queue Length

\PhysicalDisk(8 O:)\Current Disk Queue Length

\PhysicalDisk(9 P:)\Current Disk Queue Length

\PhysicalDisk(9 P:)\Current Disk Queue Length

\PhysicalDisk(10 Q:)\Current Disk Queue Length

\PhysicalDisk(10 Q:)\Current Disk Queue Length

\PhysicalDisk(_Total)\Current Disk Queue Length

\PhysicalDisk(_Total)\Current Disk Queue Length

Alternatively, you can get the same result using the following code:

get-counter -listset PhysicalDisk | foreach ($a) {$_.pathswithinstances}

get-counter -listset PhysicalDisk | foreach ($a) {$_.pathswithinstances}

Either way, the output is a long list of available counters arranged according to

their object instances. You can write the output to a text fi le, such as in the following

example:

get-counter -listset PhysicalDisk > disk-counters.txt

get-counter -listset PhysicalDisk > disk-counters.txt

Then edit the text fi le so that only the counters you want to track are included. You

can then use the fi le to determine which performance counters are tracked, as shown

in the following example:

get-counter (get-content .\disk-counters.txt) | export-counter –path

get-counter (get-content .\disk-counters.txt) | export-counter –path

c:\perflogs\disk-check.blg

c:\perflogs\disk-check.blg

Here, Get-Counter reads the list of counters to track from Disk-Counters.txt, and

then it writes the performance data in binary format to the Disk-Check.blg fi le in the

C:\Perfl ogs directory.

By default, Get-Counter samples data once every second until you tell it to stop

by pressing Ctrl+C. This might be okay when you are working at the PowerShell

prompt and actively monitoring the output. However, it doesn’t work so well when

you have other things to do and can’t actively monitor the output—which is probably

most of the time. Therefore, you’ll usually want to control the sampling interval and

duration.

Fine-Tuning System Performance CHAPTER 14

435

To control the sampling interval and set how long to sample, you can use the

–SampleInterval and –MaxSamples parameters, respectively. For example, if you want

Get-Counter to sample every 120 seconds and stop logging after 100 samples, you

can enter the following command:

get-counter (get-content .\disk-counters.txt) –sampleinterval 120

get-counter (get-content .\disk-counters.txt) –sampleinterval 120

–maxsamples 100 | export-counter –path c:\perflogs\disk-check.blg

–maxsamples 100 | export-counter –path c:\perflogs\disk-check.blg

Detecting and Resolving Performance Issues

Through Monitoring

Get-Process and Get-Counter provide everything you need for detecting and resolv-

ing most performance issues. However, you’ll often need to dig deep to determine

whether a problem exists and, if so, what is causing the problem.

Monitoring System Resource Usage and Processes

When you are working with processes, you’ll often want to get a snapshot of

system resource usage, which will show you exactly how memory is being used.

One way to get a snapshot is to use the Get-Counter command to display current

values for key counters of the memory object. As discussed previously, the

Memory object is one of many performance objects available, and you can list its

related performance counters by typing the following command at the PowerShell

prompt:

get-counter -listset memory | foreach ($a) {$_.paths}

get-counter -listset memory | foreach ($a) {$_.paths}

The Memory object has many counters you can work with. Most counters of the

Memory object display the last observed value or the current percentage value rather

than an average.

Sample 14-1 provides an example of how you can use Get-Counter to get a

snapshot of memory usage. In this example, you use a counter fi le called Perf.txt to

specify the counters you want to track. You collect fi ve samples with an interval of

30 seconds between samples and save the output in a fi le called SaveMemData.txt.

If you import the data into a spreadsheet or convert it to a table in a Word docu-

ment, you can make better sense of the output and gain a better understanding of

how the computer is using the page fi le and paging to disk.

I chose to track these counters because they give you a good overall snap-

shot of memory usage. If you save the command line as a script, you can run the

script as a scheduled task to get a snapshot of memory usage at various times of

the day.

436

CHAPTER 14 Fine-Tuning System Performance

SAMPLE 14-1 Getting a Snapshot of Memory Usage

 Commands

Commands

get-counter (get-content .\perf.txt) -maxsamples 5 -sampleinterval 30 >

get-counter (get-content .\perf.txt) -maxsamples 5 -sampleinterval 30 >

SaveMemData.txt

SaveMemData.txt

 Source for Perf.txt

Source for Perf.txt

\memory\% Committed Bytes In Use

\memory\% Committed Bytes In Use

\memory\Available MBytes

\memory\Available MBytes

\memory\Cache Bytes

\memory\Cache Bytes

\memory\Cache Bytes Peak

\memory\Cache Bytes Peak

\memory\Committed Bytes

\memory\Committed Bytes

\memory\Commit Limit

\memory\Commit Limit

\memory\Page Faults/sec

\memory\Page Faults/sec

\memory\Pool Nonpaged Bytes

\memory\Pool Nonpaged Bytes

\memory\Pool Paged Bytes

\memory\Pool Paged Bytes

 Sample output

Sample output

Timestamp CounterSamples

Timestamp CounterSamples

--------- --------------

--------- --------------

2/28/2009 5:04:37 PM \\techpc22\memory\% committed bytes in use :

2/28/2009 5:04:37 PM \\techpc22\memory\% committed bytes in use :

22.9519764760423

22.9519764760423

\\techpc22\memory\available mbytes :

\\techpc22\memory\available mbytes :

1734

1734

\\techpc22\memory\cache bytes :

\\techpc22\memory\cache bytes :

390168576

390168576

\\techpc22\memory\cache bytes peak :

\\techpc22\memory\cache bytes peak :

390688768

390688768

\\techpc22\memory\committed bytes :

\\techpc22\memory\committed bytes :

1650675712

1650675712

\\techpc22\memory\commit limit :

\\techpc22\memory\commit limit :

7191867392

7191867392

\\techpc22\memory\page faults/sec :

\\techpc22\memory\page faults/sec :

3932.45999649944

3932.45999649944

\\techpc22\memory\pool nonpaged bytes :

\\techpc22\memory\pool nonpaged bytes :

70017024

70017024

\\techpc22\memory\pool paged bytes :

\\techpc22\memory\pool paged bytes :

154710016

154710016

2/28/2009 5:05:07 PM \\techpc22\memory\% committed bytes in use :

2/28/2009 5:05:07 PM \\techpc22\memory\% committed bytes in use :

23.2283134955779

23.2283134955779

\\techpc22\memory\available mbytes :

\\techpc22\memory\available mbytes :

1714

1714

\\techpc22\memory\cache bytes :

\\techpc22\memory\cache bytes :

389664768

389664768

\\techpc22\memory\cache bytes peak :

\\techpc22\memory\cache bytes peak :

390701056

390701056

Fine-Tuning System Performance CHAPTER 14

437

 \\techpc22\memory\committed bytes :

\\techpc22\memory\committed bytes :

1670549504

1670549504

\\techpc22\memory\commit limit :

\\techpc22\memory\commit limit :

7191867392

7191867392

\\techpc22\memory\page faults/sec :

\\techpc22\memory\page faults/sec :

617.601067565369

617.601067565369

\\techpc22\memory\pool nonpaged bytes :

\\techpc22\memory\pool nonpaged bytes :

70008832

70008832

\\techpc22\memory\pool paged bytes :

\\techpc22\memory\pool paged bytes :

154791936

154791936

If you suspect there is a problem with memory usage, you can obtain detailed

information about running processes by using Get-Process. At a PowerShell

prompt, you can view important statistics for all processes by typing the following

command:

get-process | format-table –property ProcessName,

get-process | format-table –property ProcessName,

BasePriority, HandleCount, Id, NonpagedSystemMemorySize,

BasePriority, HandleCount, Id, NonpagedSystemMemorySize,

PagedSystemMemorySize, PeakPagedMemorySize, PeakVirtualMemorySize,

PagedSystemMemorySize, PeakPagedMemorySize, PeakVirtualMemorySize,

PeakWorkingSet, SessionId, Threads, TotalProcessorTime,

PeakWorkingSet, SessionId, Threads, TotalProcessorTime,

VirtualMemorySize, WorkingSet, CPU, Path

VirtualMemorySize, WorkingSet, CPU, Path

The order of the properties in the comma-separated list determines the display

order. If you want to change the display order, simply move a property to a different

position in the list. If desired, you can redirect the output to a fi le as shown in the fol-

lowing example:

get-process | format-table –property ProcessName,

get-process | format-table –property ProcessName,

BasePriority, HandleCount, Id, NonpagedSystemMemorySize,

BasePriority, HandleCount, Id, NonpagedSystemMemorySize,

PagedSystemMemorySize, PeakPagedMemorySize, PeakVirtualMemorySize,

PagedSystemMemorySize, PeakPagedMemorySize, PeakVirtualMemorySize,

PeakWorkingSet, SessionId, Threads, TotalProcessorTime,

PeakWorkingSet, SessionId, Threads, TotalProcessorTime,

VirtualMemorySize, WorkingSet, CPU, Path > savedata.txt

VirtualMemorySize, WorkingSet, CPU, Path > savedata.txt

Whether you write output to the prompt or to a fi le, modify the properties of the

PowerShell prompt and set the width to at least 180 characters. This ensures you can

read the output.

Monitoring Memory Paging and Paging to Disk

Often, you’ll want to get detailed information on hard and soft page faults that are

occurring. A page fault occurs when a process requests a page in memory and the

system can’t fi nd it at the requested location. If the requested page is elsewhere in

memory, the fault is called a soft page fault. If the requested page must be retrieved

from disk, the fault is called a hard page fault.

To see page faults that are occurring in real time, type the following at the

command line:

438

CHAPTER 14 Fine-Tuning System Performance

get-counter "\memory\Page Faults/sec" –sampleinterval 5

get-counter "\memory\Page Faults/sec" –sampleinterval 5

Timestamp CounterSamples

Timestamp CounterSamples

--------- --------------

--------- --------------

2/28/2009 6:00:01 PM \\techpc22\memory\page faults/sec :

2/28/2009 6:00:01 PM \\techpc22\memory\page faults/sec :

 172.023153991804

 172.023153991804

2/28/2009 6:00:06 PM \\techpc22\memory\page faults/sec :

2/28/2009 6:00:06 PM \\techpc22\memory\page faults/sec :

 708.944308818821

 708.944308818821

2/28/2009 6:00:11 PM \\techpc22\memory\page faults/sec :

2/28/2009 6:00:11 PM \\techpc22\memory\page faults/sec :

 14.5375722784541

 14.5375722784541

Here, you check memory page faults every 5 seconds. To stop Get-Counter,

press Ctrl+C. Page faults are shown according to the number of hard and soft faults

occurring per second. Other counters of the Memory object that you can use for

tracking page faults include the following:

N Cache Faults/sec

N Demand Zero Faults/sec

N Page Reads/sec

N Page Writes/sec

N Write Copies/sec

N Transition Faults/sec

N Transition Pages RePurposed/sec

Pay particular attention to the Page Reads/sec and Page Writes/sec, which provide

information on hard faults. Although developers will be interested in the source of

page faults, administrators are more interested in how many page faults are occur-

ring. Most processors can handle large numbers of soft faults. A soft fault simply

means the system had to look elsewhere in memory for the requested memory page.

With a hard fault, on the other hand, the requested memory page must be retrieved

from disk, which can cause signifi cant delays. If you are seeing a lot of hard faults, you

might need to increase the amount of memory or reduce the amount of memory be-

ing cached by the system and applications.

In addition to counters of the Memory object discussed previously, you can use

other objects and counters to check for disk paging issues. If a particular object has

multiple instances, such as when a computer has multiple physical disks or multiple

paging fi les, you can use an object instance to track a specifi c occurrence of that

object. You can also elect to track all instances of an object, such as whether you

want to monitor all physical disks on a system. Specify _Total to work with all counter

instances, or specify individual counter instances to monitor.

Sample 14-2 provides an example of how you can use Get-Counter to get a

snapshot of disk paging. In this example, you use a counter fi le called PagePerf.txt

to specify the counters you want to track. You collect fi ve samples with an interval of

Fine-Tuning System Performance CHAPTER 14

439

30 seconds between samples and save the output in a fi le called SavePageData.txt. If you import the data into a spreadsheet or convert it to a table in a Word document,

you can make better sense of the output and gain a better understanding of how the

computer is using the page fi le and paging to disk.

SAMPLE 14-2 Checking Disk Paging

Commands

Commands

get-counter (get-content .\pageperf.txt) -maxsamples 5 `

get-counter (get-content .\pageperf.txt) -maxsamples 5 `

-sampleinterval 30 > SavePageData.txt

-sampleinterval 30 > SavePageData.txt

Source for PagePerf.txt

Source for PagePerf.txt

\memory\Pages/Sec

\memory\Pages/Sec

\Paging File(_Total)\% Usage

\Paging File(_Total)\% Usage

\Paging File(_Total)\% Usage Peak

\Paging File(_Total)\% Usage Peak

\PhysicalDisk(_Total)\% Disk Time

\PhysicalDisk(_Total)\% Disk Time

\PhysicalDisk(_Total)\Avg. Disk Queue Length

\PhysicalDisk(_Total)\Avg. Disk Queue Length

Monitoring Memory Usage and the Working Memory

Set for Individual Processes

You can use Get-Process to get basic memory usage for a process. The syntax you can

use is

get-process –id

get-process –id ProcessID

 ProcessID

where ProcessID is the ID number of the process you want to work with. The output

from Get-Process shows you how much memory the process is currently using.

For example, if you were tracking process ID 1072, your output might look like the

following:

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

------- ------ ----- ----- ----- ------ -- -----------

----- -----

-- -----------

 493 13 15520 13452 77 1072 svchost

 493 13 15520 13452 77 1072 svchost

In this example, the process is using 13,452 KB of memory. By watching the

memory usage over time, you can determine whether the memory usage is increas-

ing. If memory usage is increasing compared to a typical baseline, the process might

have a memory-related problem.

Sample 14-3 provides the source for a PowerShell script that checks the memory

usage of a process over a timed interval. The script expects the process ID you want to

work with to be passed as the fi rst parameter. If you do not supply a process ID, error

text is written to the output.

440

CHAPTER 14 Fine-Tuning System Performance

SAMPLE 14-3 Viewing Memory Usage at the PowerShell Prompt

 MemUsage.ps1

MemUsage.ps

1

$p = read-host "Enter process id to track"

$p = read-host "Enter process id to track"

$n = read-host "Enter number of minutes to track"

$n = read-host "Enter number of minutes to track"

for ($c=1; $c -le $n; $c++) {get-process –id $p; start-sleep -seconds 60}

for ($c=1; $c -le $n; $c++) {get-process –id $p; start-sleep -seconds 60}

 Sample output

Sample output

Enter process id to track: 1072

Enter process id to track: 1072

Enter number of minutes to track: 1

Enter number of minutes to track: 1

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

------- ------ ----- ----- ----- ------ -- -----------

------- ------ ----- ----- ----- ------ -- -----------

 497 13 15548 13464 77 1072 svchost

 497 13 15548 13464 77 1072 svchost

 494 13 15520 13452 77 1072 svchost

 494 13 15520 13452 77 1072 svchost

 495 13 15520 13452 77 1072 svchost

 495 13 15520 13452 77 1072 svchost

 493 13 15520 13452 77 1072 svchost

 493 13 15520 13452 77 1072 svchost

 495 13 15548 13464 77 1072 svchost

 495 13 15548 13464 77 1072 svchost

 495 13 15520 13452 77 1072 svchost

 495 13 15520 13452 77 1072 svchost

In Sample 14-3, the process’s memory usage shows small variances over time, but

there isn’t a trend of increasing memory usage over time. Because of this, it is unlikely

the process has a memory leak, but to be sure you’d need to sample over a longer

period.

You can use Get-Process to track detailed memory usage for individual processes

as well. The syntax you can use is

get-process ProcessName | format-table –property `

get-process ProcessName | format-table –property `

NonpagedSystemMemorySize, PagedSystemMemorySize, VirtualMemorySize, `

NonpagedSystemMemorySize, PagedSystemMemorySize, VirtualMemorySize, `

PeakVirtualMemorySize, MinWorkingSet, WorkingSet, PeakWorkingSet

PeakVirtualMemorySize, MinWorkingSet, WorkingSet, PeakWorkingSet

where ProcessName is the name of the process without the .exe or .dll. In a Power-

Shell script, such as the one shown as Sample 14-4, you can combine Get- Process and

Start-Sleep to view the memory usage for a process at timed intervals.

SAMPLE 14-4 Viewing Detailed Memory Usage

 DetMemUsage.ps1

DetMemUsage.ps

1

$p = read-host "Enter process name to track"

$p = read-host "Enter process name to track"

$n = read-host "Enter number of minutes to track"

$n = read-host "Enter number of minutes to track"

for ($c=1; $c -le $n; $c++) { get-process $p | format-table –property `

for ($c=1; $c -le $n; $c++) { get-process $p | format-table –property `

NonpagedSystemMemorySize, PagedSystemMemorySize, VirtualMemorySize, `

NonpagedSystemMemorySize, PagedSystemMemorySize, VirtualMemorySize, `

PeakVirtualMemorySize, MinWorkingSet, WorkingSet, PeakWorkingSet

PeakVirtualMemorySize, MinWorkingSet, WorkingSet, PeakWorkingSet

start-sleep -seconds 60}

start-sleep -seconds 60}

Fine-Tuning System Performance CHAPTER 14

441

 Sample output

Sample output

 Nonpaged Paged Virtual Peak Min Working Peak

Nonpaged Paged Virtual Peak Min Working Peak

 System System MemorySize Virtual WorkingSet Set WorkingSet

 System System MemorySize Virtual WorkingSet Set WorkingSet

MemorySize MemorySize MemorySize

MemorySize MemorySize MemorySize

---------- ---------- --------- ---------- --------- --------- ---------

---------- ---------- --------- ---------- --------- --------- ---------

 4776 96368 52891648 161480704 6946816 7282688

 4776 96368 52891648 161480704 6946816 7282688

 8424 137056 61505536 161480704 8986624 9039872

 8424 137056 61505536 161480704 8986624 9039872

 13768 121136 137351168 161480704 38670336 73658368

 13768 121136 137351168 161480704 38670336 73658368

 13792 128904 82386944 161480704 13889536 73658368

 13792 128904 82386944 161480704 13889536 73658368

 14320 167912 187904000 258859008 74432512 138919936

 14320 167912 187904000 258859008 74432512 138919936

 44312 235704 221302784 429953024 65249280 278482944

 44312 235704 221302784 429953024 65249280 278482944

 25288 156520 91754496 429953024 15536128 278482944

 25288 156520 91754496 429953024 15536128 278482944

 30112 159376 123875328 429953024 23248896 278482944

 30112 159376 123875328 429953024 23248896 278482944

 25296 118424 86568960 429953024 20758528 278482944

 25296 118424 86568960 429953024 20758528 278482944

 2248 48088 24174592 429953024 2924544 278482944

 2248 48088 24174592 429953024 2924544 278482944

 7112 105160 55832576 429953024 6393856 278482944

 7112 105160 55832576 429953024 6393856 278482944

 5368 110960 63991808 429953024 7655424 278482944

 5368 110960 63991808 429953024 7655424 278482944

 1472 30400 15618048 429953024 2330624 278482944

 1472 30400 15618048 429953024 2330624 278482944

The Get-Counter properties examined in Sample 14-4 provide the following

information:

N NonPagedSystemMemorySize Shows the amount of allocated memory

that can’t be written to disk

N PagedSystemMemorySize Shows the amount of allocated memory that is

allowed to be paged to the hard disk

N VirtualMemorySize Shows the amount of virtual memory allocated to and

reserved for a process

N PeakVirtualMemorySize Shows the peak amount of paged memory used

by the process

N WorkingSet Shows the amount of memory allocated to the process by the

operating system

N PeakWorkingSet Shows the peak amount of memory used by the process

When you focus on these properties, you are zeroing in on the memory usage of

a specifi c process. The key aspect to monitor is the working memory set. The working

set of memory shows how much memory is allocated to the process by the operating

system. If the working set increases over time and doesn’t eventually go back to base-

line usage, the process might have a memory leak. With a memory leak, the process

isn’t properly releasing memory that it’s using, which can lead to reduced perfor-

mance of the entire system.

442

CHAPTER 14 Fine-Tuning System Performance

In Sample 14-4, the process’s memory usage changes substantially over the

sampled interval. Although it is most likely the process is simply actively being used

by users or the computer itself, the process should eventually return to a baseline

memory usage. If this doesn’t happen, the process might have a memory-related

problem.

Because memory is usually the primary performance bottleneck on both work-

stations and servers, I’ve discussed many techniques previously in this chapter that

you can use to help identify problems with memory. Memory is the resource you

should examine first to try to determine why a system isn’t performing as expected.

However, memory isn’t the only bottleneck. Processors, hard disks, and networking

components can also cause bottlenecks.

Fine-Tuning System Performance CHAPTER 14

443

Index

Symbols and

AD FS (Active Directory

Application log, 101, 104,

Federation Services), 240

202, 362

Numbers

AD LDS (Active Directory

applications

- (hyphen), 14–16, 118

Lightweight Directory

file extensions, 59

“” (quotation marks), 28–29,

Services), 240, 243

managing, 409–430

148–150

AD RMS (Active Directory

memory leaks, 412

(pound sign), 222

Rights Management

archiving event logs, 370–371

$ (dollar sign), 34, 54, 124, 149

Services), 240, 243

arithmetic expressions, 109

, (comma), 92, 126, 160

Add-Computer cmdlet, 11,

arithmetic operators

. (period), 76

107, 395, 398–401

defined, 109

.NET Framework

Add-Content cmdlet, 73,

precedence order,

available features, 242

287–288

112–113

classes/objects, 189,

addition operator, 110,

supported set, 110

202–206

113, 122

array data type alias, 126

/ (forward slash), 17

Add-Member cmdlet, 191–193

arrays. See also collections

; (semicolon), 29, 57, 213

Add-PSSnapin cmdlet, 60, 64

arithmetic operators, 110

\ (backward slash), 76

Add-WindowsFeature cmdlet,

assigning values, 163–164

^ (caret), 120

239, 247–248, 250

assigning values to

_ (underscore), 125

Administrators group, 88, 305

variables, 126

` (back apostrophe). See back

ADRMS module, 79

associative, 159

apostrophe

adsi data type alias, 126

cast array structure,

{} curly braces, 29, 125–126, 175

ADSI objects, 191

162–163

Alias provider, 63, 65

comparison operators,

aliases

115–117, 154

A

built-in, 168–169

concatenating, 155

access control lists, 354

creating, 172–174

defined, 112, 126, 159

access rules, 293–295,

creating profiles, 55

examining values, 225

350–351, 353

declaring variable

Length property, 161

Access.Application ProgID, 197

types, 129

logical operators, 121

Active Directory Certificate

defined, 187

multidimensional, 159,

Services (AD CS), 19,

execution order, 56

165–166

240, 243

exporting, 172, 174–175

multiplying, 156

Active Directory Domain

exporting from

one-dimensional,

Services (AD DS), 240, 243

sessions, 91

159–161

Active Directory Federation

for data types, 126–127

removing values, 163–164

Services (AD FS), 240

functionality, 168

SetValue method, 163

Active Directory Lightweight

importing, 173–175

strict types, 164

Directory Services (AD LDS),

importing into

Switch constructs, 229

240, 243

sessions, 91

three-dimensional, 159

Active Directory Rights

internal commands and,

assemblies, 204

Management Services (AD

169–172

assignment expressions, 109

RMS), 240, 243

profile support, 214

assignment operators

ActiveDirectory module, 79

remote commands, 88

defined, 109

AD CS (Active Directory

variable scope, 136

precedence order,

Certificate Services), 19, 243

AliasProperty extension, 191

113, 122

AD DS (Active Directory

All Users profile, 56

supported set, 110–111

Domain Services), 240, 243

AllSigned execution policy, 18

assoc command, 59, 170

445

associative arrays

associative arrays, 159

C

CliXML (Constraint Language

atomic permissions, 300

in XML), 97

auditing

C Shell (CSH), 2

cls command, 170

configuring, 304–307

CA (Certificate Authority),

CMAK (Connection Manager

registry, 357–360

19, 240

Administration Kit), 242

authentication

call command, 170

cmdlet parameters

enabling, 86

caret (^), 120

commonly used, 15–16,

managing computers, 397

case sensitivity

38–44

specifying credentials,

cmdlets, 9, 39, 44

dash symbol, 14

254, 257

comparison operators,

dynamic, 71

automatic variables

113

position sensitivity, 14

defined, 54, 138

regular expressions, 151

risk mitigation support,

PowerShell support, 123,

variable names, 125

15–16

138–143, 146, 153,

cast array structure, 162–163

cmdlets

178, 214

cat alias, 168

accessing security de-

cd alias, 169

scriptors, 289

cd command, 170

adding to data strings,

B

CEnroll.Cenroll ProgID, 197

153

Certificate Authority (CA),

back apostrophe

case sensitivity, 9, 39, 44

19, 240

as escape character,

common verbs used,

certificate enrollment, 240

149–150

9–10

Certificate provider, 20, 23,

for continuation lines,

commonly used, 11–13

65, 71

101, 105, 214

configuring System

Certificate.Format.ps1xml, 190

Background Intelligent

Restore, 404–405

certificates

Transfer Service (BITS), 242,

creating transcripts, 216

Cert provider, 20

244, 251

defined, 9

creating, 19

background jobs, 97–100.

execution order, 57

Other People’s, 19

 See also remote background

exporting from sessions,

personal, 19, 21

jobs

91

self-signed, 19

background processes, 411

formatting, 38–45

certificates store

backups, 245

getting information, 13

accessing, 20

backward apostrophe (`), 36

help documentation, 14

functionality, 19

backward slash (\), 76

importing into sessions,

viewing information,

base priority (process), 411

91

19–20

Begin code block, 177

listing in snap-ins, 62–63

char data type alias, 127

BestPractices module, 79

managing computers,

chdir alias, 169

binary AND operator, 121

395–398

chdir command, 170

binary NOT operator, 121

managing data stores,

Checkpoint-Computer cmdlet,

binary OR operator, 121

65–70

11, 405–406

binary XOR operator, 121

managing file content,

claims-aware agent, 240

BitLocker, 242, 244

286–287

classes

BITS (Background Intelligent

managing system

.NET Framework, 202–206

Transfer Service), 242, 244,

services, 375–377

object, 186

251

output, 46–47

clear (clr) alias, 168

bool data type alias, 126

PATH environment

Clear-Content cmdlet, 73,

Boolean values, 115

variable, 17

287–288

Bourne Shell (SH), 2

performance monitoring,

Clear-EventLog cmdlet, 11,

BranchCache, 241–242

409–411, 430–431

107, 365, 371

break command, 170

provider drive support,

Clear-History cmdlet, 31

break statement, 230

72–77

Clear-Host cmdlet, 12, 168,

built-in aliases, 168–169

remote background jobs,

170, 182, 223

built-in commands. See

97–100

Clear-Item cmdlet, 68, 218

cmdlets

remote commands,

Clear-ItemProperty cmdlet, 68

built-in functions, 181–185

88–91

Clear-Variable cmdlet, 12, 124

byte data type alias, 127

remote sessions, 88–91

446

Copy-Item cmdlet

running, 13

running cmdlets, 28

cmdlets for, 395–398

running from command

running scripts, 30

joining to domains,

shell, 28

starting Windows

398–400

security descriptors, 289

PowerShell from, 3

managing, 395–403

Server Manager support,

commands. See also external

managing restart/shut-

238–239

commands; remote

down, 402–403

snap-in support, 62

commands

removing from domains,

transaction support,

adding to transactions,

401–402

218–220

221

removing from work-

typical errors, 14

basic line editing, 31–33

groups, 401–402

variable support, 123–124

command history, 8–9

renaming accounts, 398

viewing complete list, 13

executing, 25–26

concatenating

Windows PowerShell

execution order, 56–57

arrays, 155

extensions, 60–61

functions and, 54

strings, 155

working with event logs,

grouping operators, 111

conditional statements

364–365

initializing the

comparison operators, 113

collections. See also arrays

environment, 28–29

else clause, 64, 81

comparison operators,

listing specific, 13

if not statement, 226

115–117

output from parsing, 37

if statement, 226–228

defined, 159

parsing values, 33–34

if...else statement,

grouping operators, 111

redirection support, 28

225–228

colon (:), 71, 189

script support, 213

if...elseIf...else statement,

color command, 170

Server Manager, 238–239

225–228

COM (Component Object

storing in scripts, 101, 105

Switch construct, 226,

Model), 191, 197–201,

syntax rules, 25

229–231

280, 318

Windows Command

configuration errors, handling,

comma (,), 92, 126, 160

Shell, 169–172

249–250, 346

command history

Windows PowerShell ISE

Connection Manager Adminis-

accessing stored

support, 5

tration Kit (CMAK), 242

commands, 9

comments in scripts, 222–225

consoles. See Windows

changing history size, 8

Compare-Object cmdlet,

PowerShell console

maximum buffer size, 8

11, 168

Constraint Language in XML

command mode, 34–35

comparison expressions, 109

(CliXML), 97

command path

comparison operators

contains operator, 114, 116

defined, 57

Boolean values, 115

continue clause, 230

managing, 57–58

comparison examples,

control loops, 231–235

managing file associa-

115–117

ConvertFrom-SecureString

tions, 59–60

defined, 109, 113

cmdlet, 11

managing file extensions,

precedence order, 122

ConvertFrom-StringData

59–60

regular expressions,

cmdlet, 153–154

search order, 58

117–120

converting

setting, 58

string support, 154

data types, 130–135

SETX command, 58

supported set, 113–114

strings, 157–159

command prompt

wildcard characters, 116

Convert-Path cmdlet, 75

powershell command,

Complete-Transaction cmdlet,

ConvertTo-SecureString

29–30

218, 221

cmdlet, 11, 63

starting Windows

Component Object Model. See

copy (cp) alias, 168

PowerShell ISE, 5

COM (Component Object

copy command, 170

command shells

Model)

Copy-Item cmdlet

calling ASSOC, 59

computer accounts, renaming,

alias support, 168

calling FTYPE, 59

398

description, 68, 170

full-featured, 2

computer name, 253–255

managing files/

internal commands,

computers

directories, 284

169–172

adding to workgroups,

registry keys/values, 343

objects in output, 37

400–401

transcript support, 218

447

Copy-ItemProperty cmdlet

Copy-ItemProperty cmdlet,

Direct Access Management

double-quoted strings,

69, 343

Console (DAMC), 243

148–150

Credential object, 257

directories

dpath command, 170

credentials, authentication,

command path, 59

Dynamic Host Configuration

254, 257

configuring auditing,

Protocol (DHCP), 240, 243,

CSH (C Shell), 2

304–307

319, 326

CSV file extension, 370

configuring permissions,

dynamic IP addressing,

curly braces { }, 29, 125–126,

296–304

326–328

175

copying, 284–306

current user

creating, 283–286

E

determining, 254–255

deleting, 286

logon domain, 254

managing, 283–286

E mathematical constant, 130

Current User profile, 55

moving, 285

echo alias, 169

custom consoles, 82–83

remote commands

echo command, 170

custom events, writing,

and, 88

Enable-ComputerRestore

371–373

renaming, 285–286

cmdlet, 405–406

slash separators, 17

Enable-PSRemoting cmdlet,

Directory Service log, 362

D

86

Disable-ComputerRestore

Enable-PSRemoting function,

DAMC (Direct Access Manage-

cmdlet, 405

182

ment Console), 243

Disable-PSRemoting function,

encryption, 88, 242

dash (-), 14–16, 118

182

End code block, 177

data stores, 62, 65–70

Distributed File System (DFS),

endlocal command, 170

data strings, 152–154

241, 247, 251–252

Enter-PSSession cmdlet, 90,

data types

Distributed Scan Management

96, 100

aliases supported,

Server, 241

environment initialization.

126–127

division operator, 110, 113, 122

 See execution environment

assigning, 126–130

DLL file extension

initialization

converting, 130–135

assembly support, 204

Environment provider, 63, 65

objects and, 37

module support, 77

environment variables. See

Switch constructs, 229

viewing process usage,

 also PATH environment

date command, 170

421–423

variable

datetime data type alias, 127

Windows PowerShell

$LogCommandHealth-

DateTime object, 257

extensions, 62

Event, 372

debugging message stream, 45

DNS (Domain Name Server),

$LogCommandLifecycle-

Debug-Process cmdlet, 11, 410

241, 244

Event, 372

decimal data type alias, 127

DNS Server log, 362

$LogEngineHealth Event,

del alias, 169

Do Until loops, 231, 235

372

del command, 170

Do While loops, 231, 235

$LogEngineLifecycle-

Deployment Server, 242

dollar sign ($), 34, 54, 124, 149

Event, 372

device drivers, managing,

domain controllers, 240

$LogProviderHealth-

275–279

Domain Name Server (DNS),

Event, 372

DFS (Distributed File System),

241, 244

$LogProviderLifecycle-

241, 247, 251–252

domains

Event, 372

DFS Replication log, 362

determining, 254–255

changing, 148

DHCP (Dynamic Host

joining computers,

defined, 54, 138

Configuration Protocol),

398–400

EventDescr, 373

240, 243, 319, 326

removing computers,

EventID, 373

Diagnostics.Format.ps1xml,

401–402

EventSource, 372

190

working with remote

EventType, 373

diff alias, 168

computers, 86

functionality, 147

digital certificates. See

dot notation, 196

listing, 147

 certificates

DotNetTypes.Format.ps1xml,

LogName, 372

dir alias, 168

190

PowerShell support, 123

dir command, 57, 170

double data type alias, 127

SystemRoot, 3

448

files

working environment

Exchange Server, 62, 82–84

in strings, 149

and, 254

execution environment

operators and, 109

writing custom events,

initialization

extended functions, 177–178

371–373

invoking Windows

external commands

epal alias, 168

PowerShell, 28

execution order, 57

epcsv alias, 168

nested consoles, 30

functionality, 16–17

equals operator, 114–115, 125,

passing startup

PATH environment vari-

418–419

parameters, 26–28

able, 16, 57

equals sign (=), 34

running commands,

erase alias, 169

28–29

F

erase command, 170

running scripts, 30

error handling

execution order

failover clustering, 243–244

configuration errors,

arithmetic operators,

FailoverClusters module, 79

249–250

112–113

Fax Server, 241, 244

nonterminating errors, 14

commands, 56–57

features

redirecting errors, 51–52

comparison operators,

adding, 247–248

removal errors, 252

112–113

checking installed,

terminating errors, 14

for all operators, 122

245–247

error stream, 45

grouping operators,

cmdlet support, 238–239

escape codes in strings,

112–113

component names,

150–152

precedence operators,

242–245

event logs

114

defined, 237

archiving, 370–371

execution policy

handling configuration

clearing, 370–371

AllSigned, 18

errors, 249–250

commands supporting,

functionality, 17–19

handling removal errors,

364–365

Get-ExecutionPolicy

252

filtering, 366–369

cmdlet, 11, 17

installing, 247–250

managing, 361–375

RemoteSigned, 18

removing, 250–251

setting options, 369–370

Restricted, 18

Server Manager, 242–245

types supported, 362–363

Set-ExecutionPolicy

uninstalling, 250–252

viewing, 366–369

cmdlet, 11, 18

file associations

writing custom events,

Unrestricted, 18

creating, 60

371–373

exit command, 170

defined, 59

Event Viewer, 364, 370–371,

Exit-PSSession cmdlet, 91,

file extensions, 59

374–375

96, 101

managing in command

Eventcreate utility, 372

Export-Alias cmdlet, 11, 168,

path, 59–60

EventDescr environment

172, 174–175

file extensions, 59–60. See also

variable, 373

Export-Console cmdlet, 60, 62

specific file extensions

EventID environment variable,

Export-Counter cmdlet, 12, 430

File Replication Service, 241

373

Export-Csv cmdlet, 168

File Replication Service log,

events

exporting

362

common properties, 364

aliases, 172, 174–175

File Server, 241

levels categorized, 363

performance counter

File Services, 241, 244

managing, 361–375

data, 430

file types, 59–60

monitoring, 366

session elements, 91

files

EventSource environment

snap-ins, 60

configuring auditing,

variable, 372

Export-PSSession cmdlet, 91

304–307

EventType environment

expression mode, 34–35

configuring permissions,

variable, 373

expressions. See also regular

296–304

EVTX file extension, 370

expressions

copying, 284–306

Excel.Application ProgID, 197

arithmetic, 109

copying command path,

Excel.Sheet ProgID, 197

assignment, 109

58

exceptions, parsing, 36–37

comparison, 109

creating, 283–286

Exchange Management Shell,

defined, 109

deleting, 286

62

grouping operators, 111

execution order, 57

449

FileSystem provider

managing, 283–287

execution order, 56

Get-Content cmdlet

moving, 285

exporting from sessions,

accessing file content, 288

reading content, 288

91

alias support, 168

remote commands

extended, 177–178

description, 73, 172, 286

and, 88

filter, 178

example, 104

renaming, 285–286

grouping operators, 111

Get-Counter cmdlet

writing content, 288

importing into sessions,

description, 11

FileSystem provider, 63, 65, 75

91

performance monitoring,

FileSystem.Format.ps1xml, 190

parameter support, 176

430–431

FileTransfer module, 80

profile support, 214

remote job execution, 107

filter functions, 178

remote commands, 88

resolving performance

filter operators, 418–420

setting parameter values,

issues, 436–443

filtering

179

tracking performance

event logs, 366–369

snap-in support, 62

data, 431–436

process output, 418–420

variable scope, 136

Get-Credential cmdlet, 11,

firewalls. See Windows

fw alias, 168

254, 257, 397, 432

Firewall

Get-Date cmdlet, 11, 254–256

firmware, checking, 267–268

Get-Event cmdlet, 365

G

fl alias, 168

GetEvent.Format.ps1xml, 190

float data type alias, 127

gal alias, 168

Get-EventLog cmdlet, 11, 107,

for command, 170

gcm alias, 168

365–367, 371

For loops, 231–233

Get-Acl cmdlet, 63, 289–291,

Get-EventSubscriber cmdlet,

foreach alias, 168

347, 349

365

ForEach loops, 231, 233–234,

Get-Alias cmdlet, 11, 151,

Get-ExecutionPolicy cmdlet,

294

168, 172

11, 17

ForEach-Object cmdlet, 168

Get-AuthenticodeSignature

Get-Help cmdlet, 13, 63, 100,

Format-Custom cmdlet, 39

cmdlet, 11, 63

108, 151

Format-List cmdlet, 38, 63,

Get-ChildItem cmdlet

Get-History cmdlet, 31, 63, 168

168, 179, 341

associated alias, 168

Get-Host cmdlet, 11

Format-Table cmdlet, 38, 41,

checking printer drivers,

Get-HotFix cmdlet, 11, 107,

92, 107, 168

318

257–260

formatting

-CodeSigningCert

Get-Item cmdlet

cmdlets, 38–45

parameter, 21, 71

checking printer drivers,

strings, 120, 155, 157–159

description, 66

318

Format-Wide cmdlet, 38, 40,

dir command support, 20,

description, 66

168

57, 170

dynamic parameters, 71

forward slash (/), 17

listing available functions,

examining function

Forwarded Events log, 362

54, 181

definitions, 181

FQDN (fully qualified domain

listing environment

examining path values, 147

name), 377

variables, 147

viewing provider drive

ft alias, 168

Mode property, 294

contents, 71

ftype command, 170

module support, 63

Get-ItemProperty cmdlet,

FTYPE command, 59

navigating registry, 338,

69, 339

fully qualified domain name

340

Get-Job cmdlet, 98, 102–103

(FQDN), 377

obtaining reference

Get-Location cmdlet, 12, 74,

function definitions, 181

objects, 291

76, 168

Function provider, 63, 65

viewing directories, 283

Get-Member cmdlet, 41, 63,

functions

viewing files, 283

186–188

built-in, 181–185

viewing provider drive

Get-Module cmdlet, 60,

code blocks, 177–178

contents, 71

78–79, 81

creating, 175–176

get-command, 13

Get-Process cmdlet

creating modules, 61

Get-Command cmdlet, 11,

associated alias, 168

creating profiles, 55

62–63, 168, 179

-Descending parameter,

data strings and, 153

Get-ComputerRestorePoint

44

defined, 54, 175

cmdlet, 405, 407–408

description, 12

450

Import-Module cmdlet

examining processes,

Get-WmiObject cmdlet

headers in scripts, 223

412–415, 438

checking computers, 264

Health Registration Authority,

examining relationships,

getting printer informa-

241

420–421

tion, 315–316

Help function, 183

filtering process output,

getting share information,

Help.Format.ps1xml, 190

419–420

310–311

here-string, 152–154

object types and, 186

managing processes,

hexadecimal numbers, 130

parsing assigned values,

425–426

history (h) alias, 168

35

queries to multiple

HKEY_CLASSES_ROOT root

processing remotely,

computers, 315, 317

key, 336

92, 94

service management,

HKEY_CURRENT_CONFIG root

properties supported,

388, 390

key, 336

415–418

working remotely, 107

HKEY_CURRENT_USER root

running jobs noninterac-

Get-WSManInstance cmdlet, 63

key, 336

tively, 107

gl alias, 168

HKEY_LOCAL_MACHINE root

system performance,

global scope, 135–136

key, 71, 336

410–411, 436–443

goto command, 170

HKEY_USERS root key, 336

viewing lists of DLLs,

GPMC (Group Policy Manage-

HKLM drive, 71, 75

421–423

ment Console), 243

HNetCfg.FwMgr COM object,

working with objects,

gps alias, 168

197, 329

186, 188

gr alias, 214

HNetCfg.FWOpenPort COM

Get-PSDrive cmdlet

greater than operator,

object, 333–334

description, 12, 65

114–115, 418–419

Host Credential Authorization

example, 178, 192

greater than or equal opera-

Protocol, 241

getting provider

tor, 114–115, 418–419

hotfixes, 11, 107, 257–260

information, 71

group alias, 169

HTTPS protocol, 86, 93

viewing available drives,

Group Policy, 18, 305

Hyper-V, 241, 244

282

Group Policy Management

hyphen (-), 14–16, 118

Get-PSProvider cmdlet, 61, 64,

Console (GPMC), 243

71, 283

grouping objects, 42–43

I

Get-PSSession cmdlet, 90

grouping operators, 111–112,

Get-PSSnapin cmdlet, 61–63

122

ICMP (Internet Control

GetS function, 214

Group-Object cmdlet, 11, 39,

Message Protocol), 396

Get-Service cmdlet

42, 169, 367

Identity Management for

associated alias, 168

GroupPolicy module, 80

UNIX, 240

creating aliases, 174

groups

if command, 170

default format, 39

audit rules, 305

if not statement, 226

description, 12, 375,

determining availability,

if statement, 226–229

378–379

265–267

if...else statement, 225–228

example, 14

listing, 258

if...elseIf...else statement,

-GroupBy parameter, 42

registry permissions, 352

225–228

module support, 63

gs alias, 214

image name (process), 411

-Property parameter, 41

gsv alias, 168

Import-Alias cmdlet, 11, 169,

running jobs noninterac-

gv alias, 168

173, 175

tively, 107

Import-Counter cmdlet, 12,

working with objects, 186

H

430, 433

Get-Transaction cmdlet, 218,

Import-Csv cmdlet, 169

221

hard disks

importing

Get-Variable cmdlet, 9, 12, 54,

checking, 271–275

aliases, 173–175

123, 125, 168

monitoring paging,

elements into sessions, 91

Get-WindowsFeature cmdlet,

438–439

modules, 61, 81

238–239, 246–247

hardware. See system

performance counter

Get-WinEvent cmdlet, 63, 107,

hardware

data, 430

364, 366

Hardware Events log, 362

Import-Module cmdlet, 61,

GetWinRm function, 175, 214

hashtable data type alias, 127

81, 249

451

Import-PSSession cmdlet

Import-PSSession cmdlet, 91

ipal alias, 169

match operator, 114, 116–117,

index position (arrays), 160, 165

ipcsv alias, 169

418–419

Indexing Service, 241

Is operator, 122

md command, 171

initialization scripts, 84

IsMatch method, 120

Measure-Command cmdlet, 11

initializing environment.

ISNS (Internet Storage Name

memory

 See execution environment

Server), 243

checking, 269–271

initialization

monitoring paging,

initializing statements in

438–439

scripts, 222–225

J

monitoring usage,

input, redirecting, 51–52

joining strings, 120, 155–156

440–443

InstallUtil tool, 61

Join-Path cmdlet, 74

process issues, 411–412

instance methods, 188

working memory set,

instance properties, 188

440–443

int data type alias, 127

K

Memory object, 436, 439

interactive sessions

kill alias, 169

Message Queuing (MSMQ),

ending, 101

KSH (Korn Shell), 2

243

starting jobs, 97, 100–104

Messenger.MessengerApp

Internet Control Message

ProgID, 198

Protocol (ICMP), 396

L

methods

Internet Explorer, 198, 200

language keywords, 57

defined, 185

Internet Properties dialog

less than operator, 114–115,

instance, 188

box, 20

418–419

object, 37, 186, 188–190

Internet Storage Name Server

less than or equal operator,

Microsoft Exchange Server,

(ISNS), 243

114–115, 418–419

62, 82–84

InternetExplorer.Application

like operator, 114, 116–117

Microsoft logs, 362

ProgID, 198

Limit-EventLog cmdlet, 12,

Microsoft Office Access, 197

inv alias, 214

107, 365, 369–370

Microsoft Office Excel, 197,

Invoke-Command cmdlet

ListType function, 279

201

-AsJob parameter, 96, 104

local print devices, 314

Microsoft Office Outlook, 198

creating registry keys,

local scope, 135, 137, 176

Microsoft Office Outlook

342

Local Security Settings

Express, 198

-Credential parameter, 92

(secpol.msc), 93

Microsoft Office PowerPoint,

description, 11, 88, 100

LocalService account, 388

198

-HideComputerName

LocalSystem account, 388

Microsoft Office Publisher, 198

parameter, 92

LogFile.text, 239

Microsoft Office Word, 198

navigating registry, 341

logical AND operator, 121

Microsoft SharePoint Services,

on remote computers, 284

logical NOT operator, 121

198

querying multiple

logical operators, 109, 121, 227

Microsoft Speech API, 198,

computers, 282

logical OR operator, 121

200

running jobs noninterac-

logical XOR operator, 121

Microsoft Update, 198, 238

tively, 104, 106

LogName environment

Microsoft Windows systems

running Start-Job, 99

variable, 372

command-line

serialized objects, 97

long data type alias, 127

environment, 2

-Session parameter, 94

loops, control, 231–235

evaluating hardware,

viewing remote files, 104

LPD Service, 241

267–280

Invoke-History cmdlet, 169

ls alias, 168

getting basic information,

Invoke-Item cmdlet, 68

253–257

Invoke-WmiMethod cmdlet,

managing processes,

100, 393

M

409–430

IP addresses

monitoring, 436–443

MakeCert.exe utility, 21–23

dynamic, 326–328

optimizing, 409

MAPI (Messaging Application

remote commands, 92

system configuration,

Programming Interface),

static, 319, 323–326

257–267

198

TCP/IP support, 319

working environment,

MAPI.Session ProgID, 198

testing, 397

257–267

452

not match operator

Microsoft.PowerShell.Core

removing from sessions,

Network Policy Server, 241

snap-in, 63

61, 81

network print devices, 314

Microsoft.PowerShell.

Modulus function, 111

network shares

Diagnostic snap-in, 63

modulus operator, 110

changing settings,

Microsoft.PowerShell.Host

monitoring Windows

311–313

snap-in, 63

systems. See performance

creating, 313

Microsoft.PowerShell.

monitoring

deleting, 314

Management snap-in, 63

More function, 183

getting information,

Microsoft.PowerShell.Security

mount alias, 169

310–311

snap-in, 63

move command, 171

managing, 309–314

Microsoft.PowerShell.Utility

Move-Item cmdlet

NetworkLoadBalancing-

snap-in, 63

description, 67, 171

Clusters module, 80

Microsoft.PowerShell.WSMan.

managing files/

NetworkService account, 388

Management snap-in, 63

directories, 285

New-Alias cmdlet, 11, 172–173

Microsoft.Update.AutoUpdate

registry keys/values, 344

New-EventLog cmdlet, 12,

ProgID, 198

transcript support, 218

107, 365

Microsoft.Update.Installer

Move-ItemProperty cmdlet,

New-Item cmdlet

ProgID, 198

69, 344

alias support, 169

Microsoft.Update.Searches

MSMQ (Message Queuing),

description, 66

ProgID, 198

243

registry keys/values, 342

Microsoft.Update.Session

MSU file extension, 238

transaction support, 218

ProgID, 198

multidimensional arrays, 159,

viewing files/directories,

Microsoft.Update.SystemInfo

165–166

283

ProgID, 198

multiline comments, 222

New-ItemProperty cmdlet,

Microsoft.Win32.Registry

multiline strings, 152–154

69, 342

class, 203

multiplication operator, 110,

New-Module cmdlet, 61, 78

Microsoft.Win32.RegistryKey

113, 122, 156

New-ModuleManifest cmdlet,

class, 203

61

minishells, 82

New-MshDrive cmdlet, 169

N

mkdir command, 171

New-Object cmdlet, 11, 196,

Mkdir function, 183

namespaces, 241

200, 202

mklink command, 171

navigating

New-PSDrive cmdlet, 12, 66,

module properties

arrays, 159–166

283

Author, 78

collections, 159–166

New-PSSession cmdlet

CLRVersion, 78

expressions, 109–122

establishing remote

CompanyName, 78

operators, 109–122

sessions, 341

Copyright, 78

provider drives, 71–77

functionality, 89, 91, 94

Description, 78

registry, 338–341

persistent connections, 96

FormatsToProcess, 78

strings, 148–159

New-Service cmdlet, 12, 377

GUID, 78

values, 122–148

New-Variable cmdlet, 12,

ModuleVersion, 78

variables, 122–148

123, 169

NestedModules, 78

Windows PowerShell

NFS (Network File System), 241

PowerShellVersion, 78

extensions, 72–77

ni alias, 169

RequiredAssemblies, 78

negation operator, 110

NIS (Network Information

TypesToProcess, 78

nested consoles, 30

Services), 240

modules

network adapters, 319–322

NLB (Network Load

common properties, 78

Network and Sharing Center,

Balancing), 243–244

creating, 61

310

nonterminating errors, 14

defined, 77

Network File System (NFS), 241

not contains operator,

functionality, 77

Network Information Services

114, 116

getting information, 60

(NIS), 240

not equals operator, 114–115,

importing into sessions,

Network Load Balancing

418–419

61, 81

(NLB), 243–244

not like operator, 114, 116–117

registering components,

Network Policy and Access

not match operator, 114,

81

Services (NPAS), 241, 244

116–117

453

NPAS (Network Policy and Access Services)

NPAS (Network Policy and

WindowPosition

P

Access Services), 241, 244

property, 196

NTFS file system, 208, 289, 296

WindowsTitle property,

page faults, 438–439

NTFS permissions, 309

195

parsing

numbers

WindwSize property,

code blocks, 29

accessing values, 122

196

commands, 33–34

arithmetic operators,

WMI, 206–211

exceptions, 36–37

110

one-dimensional arrays,

output from, 37

array example, 160

159–161

overview, 33–34

assigning values to

operators

script blocks, 36

variables, 126

arithmetic, 109–110,

values, 34–36

comparison operators,

112–113

via command mode, 34

114

assignment, 109–111,

via expression mode, 34

hexadecimal, 130

113, 122

partitions, checking, 271–275

nv alias, 169

comparison, 109,

password synchronization, 240

113–120, 122

path command, 171

data storage concepts,

PATH environment variable

O

113

cmdlets and, 17

external commands, 57

object behavior, 185

defined, 109

functionality, 16

object classes, 186

filter, 418–420

remote support, 87

object methods, 37, 186,

grouping, 111–112, 122

SETX command, 58

188–190

logical, 109, 121, 227

updating, 58

object properties, 37, 186,

pipeline, 39

pattern matching, 116–119,

188–190

precedence order, 112

151

object serialization, 96–97

string, 154–159

pause command, 171

object state, 185–186

type, 109, 121

Peer Name Resolution

object types, 185–186,

optimization, 409

Protocol (PNRP), 243

190–194

Other People’s certificates, 19

performance monitoring

objects

Out-File cmdlet, 49, 52

cmdlets for, 430–431

.NET Framework,

Out-GridView cmdlet, 50

defined, 409, 430

202–206

Out-Host cmdlet, 50

detecting issues, 436–443

Access property, 293

Outlook.Application ProgID,

for processes, 425–430

accessing values, 122

198

memory paging, 438–439

assigning values to

OutlookExpress.MessageList

memory usage, 440–443

variables, 126

ProgID, 198

resolving issues, 436–443

BackgroundColor

Out-Null cmdlet, 50

system events, 366

property, 195

Out-Printer cmdlet, 50

system resource usage,

BufferSize property, 196

output

436–438

COM, 197–201

explicitly writing, 46–47

tracking data, 431–436

CursorPosition property,

filtering for processes,

period (.), 76

196

418–420

permissions

defined, 37, 185

finalizing, 49–50

atomic, 300

ForegroundColor

formatting cmdlets,

audit rules, 305

property, 195

38–45

configuring, 296–304,

getting snap-ins, 61

from parsing, 37

351–356

grouping, 42–43

redirecting, 51–52

creating directories, 284

Height property, 196

rendering, 49–50

creating files, 284

logical operators, 121

writing to output streams,

NTFS, 309

MaxPhysicalWindowSize

45–49

remote commands

property, 196

output cmdlets, 46–47

and, 88

MaxWindowSize

output streams, 45–49

setting basic, 296–299

property, 196

Out-String cmdlet, 50

setting special, 300–303

overview, 185–188

ownership

share, 309

sorting, 43–44

permissions and, 304

taking ownership, 304

Width property, 196

registry keys, 356–357

454

queries

personal certificates, 19, 21

PowerShellCore.Format.

script support, 214–216

physical memory, 269–271

ps1xml, 190

storing elements, 53–54

Pi mathematical constant, 130

PowerShellTrace.Format.

variable support, 123

Ping-Computer cmdlet, 12

ps1xml, 190

Windows Firewall

pipeline operator, 39, 154, 186

precedence order. See

support, 328

piping

 execution order

prompt command, 171

defined, 25, 29

preference variables

Prompt function, 183–184, 214

example, 13, 37

defined, 54, 138

Properties dialog box, 7–8, 30

function support, 175

PowerShell support, 123,

provider drives

redirection techniques,

143–146

cmdlet support, 72–77

51–52

Print and Document Services,

current working location,

plus operator, 161, 164

241, 244

75–76

PNRP (Peer Name Resolution

print servers, 241, 314–315

defined, 71

Protocol), 243

printers

managing data, 71

popd command, 171

checking drivers,

navigating, 71–77

Pop-Location cmdlet, 12,

317–318

relative references, 71

74, 171

getting information,

removing, 72

pound sign (#), 222

315–317

special characters, 76

PowerPoint.Application

managing, 314–319

providers

ProgID, 198

private scope, 135, 138

built-in, 64–65

PowerShell. See Windows

Process code block, 177

cmdlets support, 65–70

PowerShell

process ID, 411, 420, 424–425,

dynamic parameters, 71

powershell command

440

functionality, 70

-Command parameter,

processes

getting information, 61

27–29

background, 411

listing available, 64–65

-EncodedCommand

base priority, 411

removing snap-ins, 71

parameter, 27

common problems,

snap-in support, 62

-ExecutionPolicy

411–412

ps alias, 168

parameter, 27

examining, 412–418

PS1 file extension, 17, 53, 213

-File parameter, 27, 30

filtering output, 418–420

PS1XML file extension, 77

-InputFormat parameter,

image name, 411

PSAdapted view, 191

27

managing, 409–430

PSBase view, 191

-NoExit parameter, 27–28

monitoring, 425–430

PSC1 file extension, 62

-NoLogo parameter,

process ID, 411

PSD1 file extension, 77

26–28

stopping, 424–425

PSDiagnostics module, 80–81

-Noninteractive

system, 411–412

PSExtended view, 191

parameter, 27

threads in, 427–428

PSM1 file extension, 77, 81

-NoProfile parameter,

user, 411–412

psobject data type alias, 127

27–28

viewing lists of DLLs,

PSObject view, 191–192

-OutputFormat

421–423

PSTypeNames view, 191

parameter, 27

viewing relationship

Publisher.Application ProgID,

passing startup

between services and,

198

parameters, 26–28

420–421

publishers, 19

-PSConsoleFile

working memory set,

pushd command, 171

parameter, 28

440–443

Push-Location cmdlet, 12,

script blocks, 29

processors, checking,

74, 171

-Sta parameter, 28

269–271

pwd alias, 168

-Version parameter, 28

profiles

-WindowStyle parameter,

command path, 57–60

Q

28

copying, 215

PowerShell drives

creating, 55–56

queries

adding, 282–283

defined, 17, 53

creating, 374–375

managing, 281–286

execution order, 56–57

to multiple computers,

removing, 282–283

remote commands

282, 315, 317

viewing availability, 282

and, 88

WMI, 206–211

455

quotation marks

quotation marks

functionality, 335

invoking, 92–93

command redirection, 28

managing security set-

object serialization,

in strings, 148–150

tings, 347–357

96–97

script blocks, 29

navigating, 338–341

remote execution, 87–88

qWave, 243

securing, 348–350

Remote Desktop Server, 241

viewing security settings,

Remote Desktop Services

347–357

(RDS), 241–242, 244

R

registry keys

Remote Differential Compres-

r alias, 169

accessing, 338

sion (RDC), 243

range operator, 121, 126, 161

comparing, 346–347

Remote Server Administration

rd alias, 169

configuring permissions,

Tools (RSAT), 243–244

rd command, 171

351

remote sessions

RD Connection Broker, 242

copying, 343

cmdlet support, 88–91

RD Gateway, 242

creating, 342–343

establishing, 94–97

RDC (Remote Differential

deleting, 345

invoking, 94–96

Compression), 243

list of supported, 336

object serialization,

RDS (Remote Desktop

managing, 341–345

96–97

Services), 241–242, 244

moving, 344

persistent connections,

Read-Host cmdlet, 12, 150,

renaming, 344–345

96

227

taking ownership,

remote execution, 96–97

reading file content, 288

356–357

working environment,

Receive-Job cmdlet

Registry provider, 63, 65, 71,

53, 94

example, 105

335, 338

RemoteDesktopServices

functionality, 98, 103

registry values

module, 80

-Keep parameter, 100

accessing, 338, 340

RemoteSigned execution

recovery modes, 383–387

comparing, 346

policy, 18

redirection

copying, 343

removal errors, handling, 252

function support, 175

creating, 342–343

Remove-Computer cmdlet, 11,

quotation marks for, 28

deleting, 345

107, 395, 401–402

techniques for, 51–52

managing, 341–345

Remove-Event cmdlet, 365

Reflection.Assembly class, 205

moving, 344

Remove-EventLog cmdlet,

regex data type alias, 127

renaming, 344–345

12, 107

Register-EngineEvent cmdlet,

summary listing, 336–337

Remove-Item cmdlet

365

Registry.Format.ps1xml, 190

alias support, 169, 173

registering

regular expressions

deleting directories/

module components, 81

case-sensitive matches,

files, 286

snap-ins, 61, 63

151

description, 67, 170–171

Register-ObjectEvent cmdlet,

comparison operators,

registry keys/values, 345

365

117–120

transaction support, 218

Register-WmiEvent cmdlet,

operator support, 109

Remove-ItemProperty cmdlet,

365

rem command, 171

70, 345

registry

Remote Access Service, 241

Remove-Job cmdlet, 98

access rules for, 350–351,

Remote Assistance, 243

Remove-Module cmdlet,

353

remote background jobs

61, 81

auditing, 357–360

cmdlet support, 97–100

Remove-PSDrive cmdlet, 12,

cautions when editing,

establishing, 97–106

66, 72, 283

336

running noninteractively,

Remove-PSSnapin cmdlet, 61,

comparing

104–106

64, 71

configurations, 346

starting in interactive

Remove-Variable cmdlet, 12,

configuring permissions,

sessions, 100–104

124, 169

351–356

working environment, 53

Remove-WindowsFeature

execution policy changes,

remote commands

cmdlet, 239, 250–252

18

cmdlets supported,

rename (ren) command, 171

file associations, 60

88–91

Rename-Computer cmdlet, 12,

file types, 60

enabling, 85–87

107, 396, 398

456

sessions

Rename-Item cmdlet, 67, 171,

Server Manager, 239–242

initializing the environ-

285, 344

uninstalling, 250–252

ment, 30

Rename-ItemProperty cmdlet,

root CAs, 19

passing arguments, 225

70, 345

routing, 241

profile support, 214–216

rendering output, 49–50

Routing and Remote Access

running, 214

replace operator, 114, 120

Services (RRAS), 241

saving, 214

replication, 241

RPC-over-HTTP-Proxy

setting execution policy,

Reset-ComputerMachinePass-

component, 244

215

word cmdlet, 12, 107

RRAS (Routing and Remote

signing, 19–21

Resolve-Path cmdlet, 75

Access Services), 241

snap-in support, 64

Restart-Computer cmdlet, 12,

RSAT (Remote Server Adminis-

storing commands, 101,

100, 107, 396, 402–403

tration Tools), 243–244

105

Restart-Service cmdlet, 13, 377

rv alias, 169

Switch construct, 229–231

restore points

variable scope, 136

creating, 403–404,

variable support, 123

S

406–408

SDDL (Security Descriptor

recovering from, 408

sal alias, 169

Definition Language),

Restore-Computer cmdlet, 11,

SAPI.SpVoice ProgID, 198

290, 348

405, 408

sasv alias, 169

security descriptors

Restricted execution policy, 18

SC config command, 383–385

access rules, 293–295,

Resume-Service cmdlet, 13,

SC Failure command, 385, 387

350–351, 353

376, 380

SC Qfailure command, 385

accessing, 289–295

rm alias, 169

scientific notation, 130

cmdlets for, 289

rmdir alias, 169

scope, 135–138, 176

getting, 289–292

rmdir command, 171

script blocks

getting for registry,

role services

adding to transactions,

348–350

adding, 247–248

221

setting, 289–292

checking installed,

creating modules, 61

setting for registry,

245–247

defined, 29

348–350

cmdlet support, 238–239

grouping operators, 111

Security log, 101, 104, 363

component names,

parsing, 36

Select-Object cmdlet, 11, 199

240–242

script scope, 135, 137

self-signed certificates, 19,

defined, 237

scriptblock data type alias, 127

21–23

handling configuration

Scripting.FileSystemObject

semicolon (;), 29, 57, 213

errors, 249–250

ProgID, 198

Server Manager

handling removal errors,

ScriptMethod extension,

cmdlet support, 238–239

252

191, 194

features, 242–245,

installing, 247–250

ScriptProperty extension,

247–252

removing, 250–251

191–192

functionality, 237–238

Server Manager, 239–242

scripts

role services, 239–242,

uninstalling, 250–252

comments, 222–225

247–252

roles

common elements,

roles, 239–242, 247–252

adding, 247–248

222–235

server roles. See roles

checking installed,

conditional statements,

ServerManagerCmd tool,

245–247

225–231

237–238

cmdlet support, 238–239

control loops, 231–235

service logon, 383–385

component names,

defined, 17, 213

service packs, 257–260

240–242

execution order, 57

service recovery, 385–387

defined, 237

execution policy, 17–19

ServiceManager module, 80

handling configuration

formatting commands,

services. See system services

errors, 249–250

213

sessions. See also remote

handling removal errors,

headers in, 223

sessions

252

initialization, 84

adding, 5

installing, 247–250

initializing statements,

defined, 94

removing, 250–251

222–225

exporting elements, 91

457

set alias

importing elements, 91

single-line comments, 222

initializing, 222–225

importing modules,

single-quoted strings, 148–150

Switch construct, 226

61, 81

sl alias, 169

static IP addresses, 319, 323–326

removing modules, 61, 81

sleep alias, 169

Stop-Computer cmdlet, 12,

removing snap-ins, 61

SMTP (Simple Mail Transfer

100, 107, 396, 403

set alias, 169

Protocol), 244

Stop-Job cmdlet, 98–99

set command, 171

snap-ins. See Windows

Stop-Process cmdlet, 12, 169,

Set-Acl cmdlet, 289, 307,

PowerShell extensions

410, 424–425

348–349

SNMP Services, 245

Stop-Service cmdlet, 13, 169,

Set-Alias cmdlet, 11, 169,

sort alias, 169

376, 380

172–174

sorting objects, 43–44

Stop-Transaction cmdlet, 335

Set-AuthenticodeSignature

Sort-Object cmdlet

Stop-Transcript cmdlet, 63,

cmdlet, 11, 19

alias support, 126, 169

216, 223

Set-Content cmdlet, 74,

description, 11

Storage Manager for SANs, 245

287–288

formatting support, 39, 43

strict types in arrays, 164

Set-Date cmdlet, 11, 254, 256

sorting event objects, 367

string data type alias, 127

Set-ExecutionPolicy cmdlet,

special characters, 76, 150

String object

11, 18

Split-Path cmdlet, 75

Contains method, 134

Set-Item cmdlet, 67, 148, 218

splitting strings, 120, 155–157

EndsWith method, 134

Set-ItemProperty cmdlet, 70

spps alias, 169

Insert method, 135

setlocal command, 171

spsv alias, 169

Length property, 134, 188

Set-Location cmdlet

SQL Server

Remove method, 135

associated aliases, 169

COM object support, 198

Replace method, 135

built-in functions, 182

Windows PowerShell

StartsWith method, 135

changing drive working

extensions, 62, 64,

SubString method, 135

location, 282

82–84

ToLower method, 135, 188

description, 12, 74

SQL Server PowerShell

ToString method, 135

example, 76, 147

console, 82

ToUpper method, 135, 188

file system drives, 181

SQLDMO.SQLServer ProgID,

string operators, 154–159

internal commands, 170

198

strings

switching drives, 283

sqlps command, 83

accessing values, 122

viewing provider drives, 71

standard output stream, 45

arithmetic operators, 110

Set-Service cmdlet, 12, 107,

start command, 171

array example, 160

377, 382–383

Start-Job cmdlet

comparison operators,

Setup log, 363

functionality, 98–99

114, 116, 120, 154

Set-Variable cmdlet, 12, 123,

running jobs

concatenating, 155

169, 171

noninteractively, 106

converting values, 132

Set-WSManInstance cmdlet, 63

starting background jobs,

data, 152–154

Setx utility, 17, 58, 148

100–101

defined, 148

SH (Bourne Shell), 2

Start-Process cmdlet, 12,

double-quoted, 148–150

share permissions, 309

171, 410

escape codes, 150–152

SharePoint.OpenDocuments

Start-Service cmdlet, 13, 169,

formatting, 120, 155,

ProgID, 198

376, 380

157–159

shares. See network shares

Start-Sleep cmdlet, 12, 169, 441

joining, 120, 155–156

Shell.Application ProgID, 198

Start-Transaction cmdlet,

multiline, 152–154

Shell.LocalMachine ProgID, 198

219–221, 223, 335

multiplying, 156

shift command, 171

Start-Transcript cmdlet, 63, 216

referencing in variables,

Show-EventLog cmdlet, 12,

startup process

155

107, 365

initializing the

single-quoted, 148–150

Show-Service cmdlet, 12

environment, 26–28

special operators,

Shutdown-Computer cmdlet,

system services, 380–382

154–155

402

statements

splitting, 120, 155–157

Simple Mail Transfer Protocol

#Requires, 224–225

variables in, 153

(SMTP), 244

conditional, 225–231

wildcard characters,

single data type alias, 127

grouping operators, 111

150–152

458

title command

subscribers, 218

system services

System.Security.Principal.

subtraction operator, 110,

configuring recovery,

WindowsBuiltInRole class,

113, 122

385–387

204

Suspend-Service cmdlet, 13,

configuring startup,

System.Security.Principal.

376, 380

382–383

WindowsIdentity class, 204

sv alias, 169

managing, 375–395

System.Security.Principal.

Switch construct

managing logon,

WindowsPrincipal class, 204

example, 231

383–385

System.Security.SecureString

flags supported, 230–231

manipulating, 380–382

class, 204

functionality, 226,

recovery modes, 383–387

System.String class, 204

229–230

viewing, 378–380

System.Text.

System Configuration utility,

viewing relationship with

RegularExpressions.Regex

402

processes, 420–421

class, 204

system date/time, 254–256

System.AppDomain class, 203

System.Threading.Thread

system hardware

System.Array class, 203

class, 204

checking firmware,

System.Console class, 203

System.Type class, 204

267–268

System.Convert class, 131, 203

System.Uri class, 204

checking hard disks,

System.Datetime class

System.Windows.Forms class,

271–275

functionality, 189, 203

206

checking memory,

methods/properties,

System.Windows.Forms.

269–271

132–133, 189

FlowLayoutPanel class, 204

checking partitions,

System.Diagnostics.Debug

System.Windows.Forms.Form

271–275

class, 203

class, 204

checking processors,

System.Diagnostics.EventLog

SystemRoot environment

269–271

class, 202–203

variable, 3

evaluating, 267–280

System.Diagnostics.Process

managing device drivers,

class, 189, 203

T

275–279

System.Drawing.Bitmap class,

system information

203

tab character, 150

$env-computername, 253

System.Drawing.Image class,

TabExpansion function,

$env-userdomain, 254

203

183–185

$env-username, 254

System.Environment class,

Task Scheduler, 411

authentication creden-

202–203

TCP/IP networking

tials, 254, 257

System.Guid class, 203

dynamic IP addressing,

computer name, 253–255

System.IO.Stream class, 203

326–328

current user, 254–255

System.Management.

managing, 319–328

date and time, 254–256

Automation.Host class, 224

network adapters,

domain, 254–255

System.Management.

319–322

examining configuration,

Automation.PowerShell

Simple-TCPIP component,

257–267

class, 203

245

getting basic, 253–254

System.Management.

static IP addressing, 319,

obtaining detailed,

Automation.

323–326

261–267

TransactedString class,

Telnet client, 245

System log, 101, 104, 363, 368

218–219

Telnet server, 245

system processes, 411–412

System.Math class, 133–134

terminating errors, 14

System Restore

System.Net.Dns class, 203

Test-Connection cmdlet, 100,

cmdlets for, 404–405

System.Net.NetworkCredential

396–397

configuring, 404–405

class, 203

Test-ModuleManifest cmdlet,

creating checkpoints,

System.Net.WebClient class, 204

61

403–404, 406–408

System.Random class, 204

Test-Path cmdlet, 75

disabling, 406

System.Reflection.Assembly

TFTP client, 245

editing registry and, 335

class, 204

threads, process, 427–428

enabling, 406

System.Security.Principal.

three-dimensional arrays, 159

recovering from restore

WellKnownSidType class,

time command, 171

points, 408

204

title command, 172

459

token-based agents

token-based agents, 240

user-created variables, 54, 123

verify command, 172

Trace-Command cmdlet, 11

Use-Transaction cmdlet,

virtualization, 242

transactions

219, 221

vol command, 172

adding commands, 221

adding script blocks, 221

cmdlet support, 218–220

V

W

creating, 217–218

values. See also registry values

Wait-Event cmdlet, 365

defined, 217

accessing in variables, 125

Wait-Job cmdlet, 99

functionality, 220–221

assigning to arrays,

Wait-Process cmdlet, 13, 410

performing registry

163–164

WAN (Wide Area Network),

changes, 335

assigning to strings, 155

319

transcripts, creating, 216

comparison operators,

warning message stream, 45

Transport Server, 242

115–117

WDS (Windows Deployment

TroubleshootingPack module,

converting to strings, 132

Services), 242, 244

80

defined, 122

Web agents, 240

trusted publishers, 19

examining in scripts, 225

Web Server (IIS), 244

Trusted Root Certification

managing data types,

WebAdministration module,

Authorities, 19

128–135

80–81

TrustedHosts configuring

parsing, 34–36

Where-Object cmdlet,

setting, 86

removing from arrays,

140–141, 176, 310, 315, 368

TXT file extension, 370

163–164

While loops, 231, 234–235

type alias, 168

setting for parameters, 179

Wide Area Network (WAN), 319

type command, 172

Variable provider, 63, 65

wildcard characters

type operators, 109, 121

variable scope, 135–138

accessing file content,

Types.ps1xml, 190

variables. See also automatic

288

variables

comparison operators,

U

accessing values, 125

116

assigning values, 34–35,

environment variables,

UDDI (Universal Description,

126

147

Discovery, and Integration),

cmdlet support, 123–124

in name values, 15

244

creating profiles, 55

in strings, 150–152

underscore (_), 125

defined, 54, 122

listing functions, 181

Undo-Transaction cmdlet,

defining, 123–125

listing specific

219, 221

environment, 54, 123,

commands, 13

Universal Description,

138, 147–148

reviewing component

Discovery, and Integration

in strings, 153

subsets, 247

(UDDI), 244

listing available, 125

Win32_BaseBoard class (WMI),

Universal Naming Convention,

managing data types,

209

385

128–135

Win32_BIOS class (WMI),

Unregister-Event cmdlet, 365

managing scope,

209, 267

Unrestricted execution policy,

135–138

Win32_BootConfiguration

18

naming considerations,

class (WMI), 209

untrusted publishers, 19

125–126

Win32_CacheMemory class

Update-FormatData cmdlet,

preference, 54, 123, 138,

(WMI), 209

39

143–146

Win32_CDROMDrive class

user accounts

profile support, 123, 214

(WMI), 209

audit rules, 305

referencing, 124–125

Win32_ComputerSystem class

determining availability,

referencing strings, 155

(WMI), 209, 258, 261, 263

265–267

script support, 123

Win32_Desktop class (WMI),

listing, 258

storing expression results,

209

registry permissions, 352

127–128

Win32_DesktopMonitor class

remote commands

storing job objects, 102

(WMI), 209

and, 88

user-created, 54, 123

Win32_DiskDrive class (WMI),

user processes, 411–412

verbose message stream, 45

209, 271

460

Windows Server 2003

Win32_DiskPartition class

Win32_Share class (WMI)

Windows PowerShell console

(WMI), 209, 273

Create method, 313

basic line editing, 31–33

Win32_DiskQuota class (WMI),

delete method, 314

configuring properties,

209

description, 210

7–8

Win32_Environment class

Description property, 311

depicted, 4, 8

(WMI), 209

MaxAllow property, 311

exiting, 4, 27

Win32_Group class (WMI),

setShareInfo method,

functionality, 3–4

258, 265

311–313

initializing, 223

Win32_LogicalDisk class

viewing shares, 310

invoking, 27–28

(WMI), 209, 274

Win32_SoundDevice class

nested, 30

Win32_LogonSession class

(WMI), 210

Properties dialog box,

(WMI), 209

Win32_SystemDriver class

194–197

Win32_NetworkAdapter class

(WMI), 276–279

resizing, 224

(WMI), 209, 320–321

Win32_TcpIpPrinterPort class

ServerManager module,

Win32_NetworkAdapter-

(WMI), 316

237–238

Configuration class (WMI),

Win32_UserAccount class

starting, 3, 62

209, 320, 323–324,

(WMI), 258, 265

Windows PowerShell

326–328

Windows 7, 85

extensions

Win32_NetworkConnection

Windows Deployment Services

adding snap-ins, 60, 64

class (WMI), 209

(WDS), 242, 244

built-in snap-ins, 62–63

Win32_OperatingSystem

Windows Explorer, 198–199

cmdlet support, 60–61

class (WMI), 207, 209, 258,

Windows Firewall

defined, 60, 62

261–263

adding firewall ports,

Exchange Server, 62,

Win32_OSRecovery-

333–334

82–84

Configuration class

COM object support, 197

exporting snap-ins, 60

(WMI), 210

configuring, 328–334

functionality, 62–64

Win32_PageFileUsage class

managing settings,

modules, 60, 77–81

(WMI), 210

328–333

navigating, 72–77

Win32_PhysicalMemory class

removing firewall ports,

provider drives, 72–77

(WMI), 210, 269

333–334

providers, 61, 64–72

Win32_PhysicalMemoryArray

viewing settings, 328–333

registering snap-ins, 61

class (WMI), 210, 270

Windows Internal DB, 245

removing snap-ins, 61,

Win32_Printer class (WMI),

Windows Internet Naming

64, 71

210, 315

Service (WINS), 244

SQL Server, 62, 64, 82–84

Win32_PrinterConfiguration

Windows logs, 362

verifying snap-ins, 225

class (WMI), 210

Windows Management

Windows PowerShell ISE

Win32_PrintJob class (WMI),

Instrumentation. See WMI

changing text size, 7

210

(Windows Management

Command pane, 5

Win32_Process class (WMI),

Instrumentation)

depicted, 5

411, 425, 427–429

Windows Media Player, 198

exiting, 7

Win32_Processor class (WMI),

Windows Media Server 2008,

functionality, 5–7

210, 270

238

Output pane, 5

Win32_QuickFixEngineeering

Windows Memory Diagnostics

repositioning panes, 5

class (WMI), 210

utility, 270

Script pane, 5

Win32_Registry class (WMI),

Windows PowerShell

script support, 213

210

command history buffer,

starting, 5

Win32_SCSIController class

8–9

Windows PowerShell log, 363

(WMI), 210

execution environments, 5

Windows Remote Manage-

Win32_Service class (WMI)

functionality, 2

ment service. See WinRM

description, 210

invoking, 28

service

examining relationships,

processing modes, 4

Windows Script Host (WSH),

420–421

running, 3–9

197, 318

manipulating services,

starting, 26

Windows Search service, 241,

380, 388, 390–392

starting as administrator,

420

system performance, 411

87

Windows Server 2003, 3, 241

461

Windows Server 2008

Windows Server 2008

WINS (Windows Internet

Write-Error cmdlet, 48–49

managing printers, 314

Naming Service), 244

Write-EventLog cmdlet,

remoting support, 85

WINS Server, 245

11, 107

Server Manager support,

wireless networking, 245

Write-Host cmdlet

238

WMI (Windows Management

description, 12, 46

Windows PowerShell

Instrumentation)

displaying strings, 150

console, 3

cmdlet support, 100

formatting options, 46

Windows Server Update

object support, 206–211

module support, 63

Services (WSUS), 242

overview, 206

parsing exceptions, 36

Windows SharePoint Server

PSObject support, 191

Write-Output cmdlet, 13,

2008, 238

query support, 206–211

46–47, 169–170

Windows System Resource

wmi data type alias, 127

Write-Verbose cmdlet,

Manager (WSRM), 245

WMI Query Language, 207

48–49

Windows systems. See

wmiclass alias, 313

Write-Warning cmdlet, 13,

 Microsoft Windows systems

WMPlayer.OCX ProgID, 198

48–49

Windows Updates, 258–260

Word.Application ProgID, 198

writing

Windows Vista

Word.Document ProgID, 198

custom events, 371–373

remoting support, 85, 92

workgroups

file content, 288

SETX utility, 17

adding computers,

to output streams,

Windows PowerShell

400–401

45–49

console, 3

HTTPS support, 86

WScript.Network object, 318

Windows XP, 3, 328

remote commands, 93

WSH (Windows Script Host),

WinRM service

removing computers,

197, 318

enabling remote

401–402

WSMan provider, 65, 72

commands, 85–87

working environment

WSMan.Format.ps1xml, 190

establishing remote back-

environment variables,

WSRM (Windows System

ground jobs, 97–106

254

Resource Manager), 245

establishing remote

examining, 257–267

WSUS (Windows Server

sessions, 94–97

loading, 53

Update Services), 242

example, 40

minishells, 82

executing remote

profile support, 215

X

commands, 87–93

remote sessions, 53, 94

GetWinRm function, 214

restoring, 218

xml data type alias, 127

Status property, 86

working memory set, 440–443

XML file extension, 370

verifying availability,

write alias, 169

XPath queries, 374

85–86

Write-Debug cmdlet, 48–49

XPS Viewer, 245

462

About the Author

William R. Stanek (http://www.williamstanek.com) has over 20 years of hands-on

experience with advanced programming and development. He is a leading

technology expert, an award-winning author, and a pretty-darn-good instructional

trainer. Over the years, his practical advice has helped millions of programmers,

developers, and network engineers all over the world. He has written more than

100 books. Current or forthcoming books include Active Directory Administrator’s

 Pocket Consultant, Windows Group Policy Administrator’s Pocket Consultant,

 Windows 7 Administrator’s Pocket Consultant, and Windows Server 2008 Inside Out.

William has been involved in the commercial Internet community since 1991. His

core business and technology experience comes from more than 11 years of military

service. He has substantial experience in developing server technology, encryption,

and Internet solutions. He has written many technical white papers and training

courses on a wide variety of topics. He frequently serves as a subject matter expert

and consultant.

William has an MS with distinction in information systems and a BS in computer

science, magna cum laude. He is proud to have served in the Persian Gulf War as

a combat crew member on an electronic warfare aircraft. He flew on numerous

combat missions into Iraq and was awarded nine medals for his wartime service,

including one of the United States of America’s highest flying honors, the Air Force

Distinguished Flying Cross. Currently, he resides in the Pacific Northwest with his

wife and children.

William recently rediscovered his love of the great outdoors. When he’s not writing,

teaching, or making presentations, he can be found hiking, biking, backpacking,

traveling, or trekking in search of adventure.

Follow William on Twitter at WilliamStanek.

Document Outline

	Cover

	Home Page

	Copyright page

	Contents at a Glance

	Contents

	Introduction

	Who Is This Book For?

	How Is This Book Organized?

	Conventions Used in This Book

	Find Additional Content Online

	Support

	Chapter 1: Introducing Windows PowerShell

	Getting Started with Windows PowerShell

	Running Windows PowerShell

	Using the Windows PowerShell Console

	Using the Windows PowerShell ISE

	Configuring Windows PowerShell Console Properties

	Working with the Command History

	Working with Cmdlets and Scripts

	Using Cmdlets

	Using Cmdlet Parameters

	Using External Commands

	Using Scripts

	Chapter 2: Getting the Most from Windows PowerShell

	Initializing the Environment

	Passing Startup Parameters

	Invoking Windows PowerShell

	Using –Command to Run Commands

	Using –File to Run Scripts

	Using Nested Consoles

	Understanding Command Input, Parsing, and Output

	Basic Line Editing

	How Parsing Works

	Parsing Assigned Values

	Parsing Exceptions

	Output from Parsing

	Writing and Formatting Output

	Using Formatting Cmdlets

	Writing to Output Streams

	Rendering and Finalizing the Output

	More on Redirecting Input, Output, and Error

	Chapter 3: Managing Your Windows PowerShell Environment

	Using Profiles

	Creating Profiles

	Understanding Execution Order

	Working with the Command Path

	Navigating Windows PowerShell Extensions

	Working with Windows PowerShell Extensions

	Using Snap-ins

	Using Providers

	Navigating and Using Provider Drives

	Using Modules

	PowerShell Extensions for Exchange Server and SQL Server

	Chapter 4: Using Sessions, Jobs, and Remoting

	Enabling Remote Commands

	Executing Remote Commands

	Understanding Remote Execution

	Commands for Remoting

	Invoking Remote Commands

	Establishing Remote Sessions

	Invoking Sessions

	Understanding Remote Execution and Object Serialization

	Establishing Remote Background Jobs

	Using Background Jobs

	Starting Jobs in Interactive Sessions

	Running Jobs Noninteractively

	Working Remotely Without WinRM

	Chapter 5: Navigating Core Windows PowerShell Structures

	Working with Expressions and Operators

	Arithmetic, Grouping, and Assignment Operators

	Comparison Operators

	Other Operators

	Working with Variables and Values

	Variable Essentials

	Assigning and Converting Data Types

	Managing Variable Scopes

	Automatic, Preference, and Environment Variables

	Working with Strings

	Single-Quoted and Double-Quoted Strings

	Escape Codes and Wildcards

	Multiline Strings

	String Operators

	Working with Arrays and Collections

	Creating and Using One-Dimensional Arrays

	Using the Cast Array Structure

	Assigning and Removing Values

	Using Strict Types in Arrays

	Using Multidimensional Arrays

	Chapter 6: Mastering Aliases, Functions, and Objects

	Creating and Using Aliases

	Using the Built-In Aliases

	Creating Aliases

	Importing and Exporting Aliases

	Creating and Using Functions

	Creating Functions

	Using Extended Functions

	Using Filter Functions

	Digging Deeper into Functions

	Examining Function Definitions

	Using the Built-In Functions

	Working with Objects

	Object Essentials

	Object Methods and Properties

	Object Types

	Digging Deeper into Objects

	Working with COM and .NET Framework Objects

	Creating and Using COM Objects

	Working with .NET Framework Classes and Objects

	Working with WMI Objects and Queries

	Chapter 7: Managing Computers with Commands and Scripts

	Getting More from Your Scripts and Profiles

	Creating Transcripts

	Creating Transactions

	Understanding Transactions

	Using Transactions

	Common Elements in Scripts

	Using Comments and Initializing Statements

	Using Conditional Statements

	Using Control Loops

	Chapter 8: Managing Roles, Role Services, and Features

	Server Manager Essentials

	Server Manager Commands

	Available Roles and Role Services

	Available Features

	Checking Installed Roles, Role Services, and Features

	Installing Roles, Role Services, and Features

	Adding Roles, Role Services, and Features

	Handling Configuration Errors and Other Issues

	Uninstalling Roles, Role Services, and Features

	Removing Roles, Role Services, and Features

	Handling Removal Errors and Other Issues

	Chapter 9: Inventorying and Evaluating Windows Systems

	Getting Basic System Information

	Determining the Current User, Domain, and Computer Name

	Determining and Setting the Date and Time

	Specifying Authentication Credentials

	Examining the System Configuration and the Working Environment

	Determining Windows Updates and Service Packs

	Obtaining Detailed System Information

	Determining Available Users and Groups

	Evaluating System Hardware

	Checking Firmware Versions and Status

	Checking Physical Memory and Processors

	Checking Hard Disks and Partitions

	Checking and Managing Device Drivers

	Digging In Even More

	Chapter 10: Managing File Systems, Security, and Auditing

	Managing PowerShell Drives, Directories, and Files

	Adding and Removing PowerShell Drives

	Creating and Managing Directories and Files

	Working with File Contents

	Commands for Managing File Contents

	Reading and Writing File Content

	Accessing Security Descriptors

	Commands for Working with Security Descriptors

	Getting and Setting Security Descriptors

	Working with Access Rules

	Configuring File and Directory Permissions

	Setting Basic Permissions

	Setting Special Permissions

	Taking Ownership

	Configuring File and Directory Auditing

	Chapter 11: Managing Shares, Printers, and TCP/IP Networking

	Managing Network Shares

	Getting Information About Shares

	Changing Share Settings

	Creating Shares

	Deleting Shares

	Managing Printers

	Getting Information About Printers

	Checking Printer Drivers

	Managing Printer Connections

	Managing TCP/IP Networking

	Getting Information About Network Adapters

	Configuring Static IP Addressing

	Configuring Dynamic IP Addressing

	Configuring Windows Firewall

	Viewing and Managing Windows Firewall Settings

	Adding and Removing Firewall Ports

	Chapter 12: Managing and Securing the Registry

	Understanding Registry Keys and Values

	Navigating the Registry

	Managing Registry Keys and Values

	Creating Registry Keys and Values

	Copying Registry Keys and Values

	Moving Registry Keys and Values

	Renaming Registry Keys and Values

	Deleting Registry Keys and Values

	Comparing Registry Keys

	Viewing and Managing Registry Security Settings

	Getting and Setting Registry Security Descriptors

	Working with Registry Access Rules

	Configuring Registry Permissions

	Taking Ownership of Registry Keys

	Auditing the Registry

	Chapter 13: Monitoring and Optimizing Windows Systems

	Managing Windows Events and Logs

	Working with Event Logs

	Viewing and Filtering Event Logs

	Setting Log Options

	Archiving and Clearing Event Logs

	Writing Custom Events to the Event Logs

	Creating and Using Saved Queries

	Managing System Services

	Viewing Configured Services

	Starting, Stopping, and Pausing Services

	Configuring Service Startup

	Managing Service Logon and Recovery Modes

	Digging Deeper into Service Management

	Managing Computers

	Commands for Managing Computers

	Renaming Computer Accounts

	Joining Computers to a Domain

	Adding Computers to a Workgroup

	Removing Computers from Domains and Workgroups

	Managing the Restart and Shutdown of Computers

	Creating and Using System Restore Checkpoints

	Commands for Configuring System Restore

	Enabling and Disabling System Restore

	Creating and Using Checkpoints

	Recovering from Restore Points

	Chapter 14
: Fine-Tuning System Performance

	Managing Applications, Processes, and Performance

	Understanding System and User Processes

	Examining Running Processes

	Filtering Process Output

	Viewing the Relationship Between Running Processes and Services

	Viewing Lists of DLLs Being Used by Processes

	Stopping Processes

	Digging Deeper into Processes

	Performance Monitoring

	Understanding Performance Monitoring Commands

	Tracking Performance Data

	Detecting and Resolving Performance Issues Through Monitoring

	Monitoring System Resource Usage and Processes

	Monitoring Memory Paging and Paging to Disk

	Monitoring Memory Usage and the Working Memory Set for Individual Processes

	Index

	About the Author

	William R. Stanek

cover.jpeg
Micresoft

Windows
PowerShell

2.0

William R. Stanek
Author and Series Editor

Administrator’s
Pocket Consultant

index-1_1.png

index-22_1.jpg
Uizt %

00

25 C\Jsars\rstanehe gex-process

4 wmdles WN00 W00 WSO W) chU(s) TH oracssaan
1 3 e a1
5 7 e o 70
o 7 e e
0 1 e w2 o
Er 2 1z 472 caras
77 T3 4R 4R 10 DS.06 938 dum !

4 OO o

w1t |

index-20_1.jpg
3 Wendows e She V2. 1 Pl (2ol

CEEER P —— AL g "

index-24_1.jpg
“"Windows |

Options | Font [Layaut | Colors

Cursor Sze

© Small
© Medim
© Large

Command Histoy Edit Options

Buter iz ClE| QuickEdMode

NurberofButles:. 4 2]

Insett Mode

iscard Dld Duplicates

(e

index-22_2.jpg
Tie e e oeen n

I e e e e T

ot

[——

< 00
2

a

5 C\usarstrstaneke ger-service

wwnwing asLookupsic Soplization Expariznce
Sropned a6 aoplication | aver Gareasl]
Stopged AupIDSV.

Swnning npinfo feani

Stopoad Aane SapTization snagenent
Rinming AdSOERGpINER. . Windows Audin Fadnainc §
Runming Audiosr Windos Audio

stopoed Boeswc Bft_ockar Urive ncrypti
fwing T Rase. C3 irering Fagine
Ruming BITS Edckground TnlelTigen. T
Ruming Browser Conoute Erausar

stopoed bthary uTuscooth supsore sarvic ©

¥ g §

Aavme

[TeTre

index-67_1.jpg
Scoreh

9
4
52
5L
s
355
7
o7

m
02
7
5
2
4

s
295
El

3
7

/

7

1
3
1
n
o

u
10
a
”
2
2
5
i
u

2008
1686
ey
200
276
620
379
0552

sas0
am:
202
o6
51492
%692
1902
0t
7m0
2

%2
3100
21
518
635
312
33436
45452
2
4515
1881
7
1800
1848
13192
0
3930
1428
0

1
i)
n
7
a3
»
140
14

002
005
s
017
Lesa
00
552

963

238
011
o2
0
027
253
us8
L83

174
168
24
3360
ax
arz

1700

2012
E

ot | A0 | 0 | Wt | iy | 1 [16| Prcectome

end
cenhost
cenhost
cenhost

powerchel
povershel
poverstel
Searchirderer
sideber

