
        
            
                
            
        

    






































 Copyright

© 2009 BBS Technologies 

ALL RIGHTS RESERVED.  No part of this work covered by the copyright herein may be reproduced, 

transmitted, stored, or used in any form or by any means graphic, electronic, or mechanical, 

including but not limited to photocopying, recording, scanning, digitizing, taping, Web distribution, 

information networks, or information storage and retrieval systems except as permitted under 

Section 107 or 108 of the 1976 United States Copyright Act without the prior written permission of 

the publisher. 

For permission to use material from the text please contact Idera at info@idera.com. 

Microsoft® Windows PowerShell® and Microsoft® SQL Server® are registered trademarks of 

Microsoft Corporation in the United Stated and other countries.  All other trademarks are the 

property of their respective owners. 

 About the Author

Dr. Tobias Weltner is one of the most visible PowerShell MVPs in Europe. He has 

published more than 80 books on Windows and Scripting Techniques with Microsoft 

Press and other publishers, is a regular speaker at conferences and road shows and 

does high level PowerShell and Scripting trainings for companies throughout 

Europe. He created the powershell.com website and community in an effort to help 

people adopt and use PowerShell more efficiently. As software architect, he created 

a number of award-winning scripting tools such as SystemScripter (VBScript), the 

original PowerShell IDE and PowerShell Plus, a comprehensive integrated 

PowerShell development system. 

 Acknowledgments

First and foremost, I’d like to thank my family who is always a source of inspiration 

and encouragement. A special thanks to Idera, Rick Pleczko, David Fargo, Richard 

Giles, Conley Smith and David Twamley for helping to bring this book to the English 

speaking world. It has been a pleasure working with you all. You are all great 

friends and partners. For Aleksandar Nikolic, our technical editor and very good 

friend, I thank you very much for all your hard work. You not only edited the book, 

but many times your insight and attention to detail improved the overall value as 

well. Finally, I'd like to thank my dog and close companion Cofi for his loyal faith 

and for pulling me away from work from time to time to enjoy life. 

Sincerely, 

Dr. Tobias Weltner 

Windows PowerShell MVP 

 Mastering PowerShell

Chapters

1. The PowerShell Console

11. Finding and Avoiding Errors

2. Interactive PowerShell

12. Command Discovery and Scriptblocks

3. Variables

13. Text and Regular Expressions

4. Arrays and Hashtables

14. XML

5. The PowerShell Pipeline

15. The File System

6. Using Objects

16. The Registry

7. Conditions

17. Processes, Services, Event Logs

8. Loops

18. Windows Management Instrumentation

9. Functions

19. User Management

10. Scripts

20. Your Own Cmdlets and Extensions

Extras

Copyright Notice

About the Author

Acknowledgments

About Idera's PowerShell Plus

Sponsors

Additional Resources

CHAPTER 1. 

 The PowerShell Console

Welcome to PowerShell! This chapter will introduce you to the PowerShell console and show you how 

to configure it, including font colors and sizes, editing and display options. 

Topics Covered:

•

S

  tarting PowerShell  

•

F igure 1.1: How to always open PowerShell with administrator rights  

•

F irst Steps with the Console  

•

F igure 1.2: First commands in the PowerShell console  

•

In

  complete and Multi-line Entries  

•

Im

  portant Keyboard Shortcuts  

•

De

  leting Incorrect Entries  

•

O

  vertype Mode  

•

C

  ommand History: Reusing Entered Commands  

•

A

  utomatically Completing Input  

•

S

  crolling Console Contents  

•

S

  electing and Inserting Text  

•

Q

  uickEdit Mode  

•

F igure 1.3: Marking and copying text areas in QuickEdit mode  

•

S

  tandard Mode  

•

C

  ustomizing the Console  

•

O

  pening Console Properties  

•

F igure 1.4: Opening console properties  

•

De

  fining Options  

•

F igure 1.5: Defining the QuickEdit and Insert modes  

•

S

  pecifying Fonts and Font Sizes  

•

F igure 1.6: Specifying new fonts and font sizes  

•

S

  etting Window and Buffer Size  

•

F igure 1.7: Specifying the size of the window buffer  

•

S

  electing Colors  

•

F igure 1.8: Select better colors for your console  

•

Di

  rectly Assigning Modifications in PowerShell  

•

S

  aving Changes  

•

P

  iping and Routing  

•

P

  iping: Outputting Information Page by Page  

•

R

  edirecting: Storing Information in Files  

•

S

  ummary  

•

T

  able 1.1: Important keys and their meaning in the PowerShell console  

Table of Contents | About PowerShell Plus

6

Sponsors | Resources | © BBS Technologies



Starting PowerShell

After you installed PowerShell, you'll find the PowerShell icon on the Start Menu in the program 

folder  Windows PowerShell. Open this program folder and click on  Windows PowerShell and the PowerShell console comes up. By the way, if you aren't able to find the program folder, PowerShell 

is probably not installed on your computer. It is an optional download from Microsoft for Windows 

XP, Server 2003, and Windows Vista. 

You can also start PowerShell directly. Just press (Windows)+(R) to open the  Run window and then 

enter  powershell (Enter). If you use PowerShell often, you should open the program folder for 

 Windows PowerShell and right-click on  Windows PowerShell. That will give you several options:

•

Add to the start menu: On the context menu, click on  Pin to Start Menu so that PowerShell 

will be displayed directly on your start menu from now on and you won't need to open its 

program folder first. 

•

Quick Launch toolbar: Click  Add to Quick Launch toolbar if you use Windows Vista and 

would like to see PowerShell right on the Quick Launch toolbar inside your taskbar. Windows 

XP lacks this command so XP users will have to add PowerShell to the Quick Launch toolbar 

manually. 

•

Keyboard shortcuts: Administrators particularly prefer using a keyboard instead of a 

mouse. If you select  Properties on the context menu, you can specify a key combination in 

the  hot-key field. Just click on this field and press the key combination intended to start 

PowerShell, such as (Alt)+(P). In the properties window, you also have the option of setting 

the default window size to start PowerShell in a normal, minimized, or maximized window. 

•

Autostart: If you use PowerShell daily, it makes sense to Autostart the application. Then, it 

will automatically launch the PowerShell window when Windows starts up so all you have to 

do to bring it up is to click on its window button on the taskbar. If you want to set up a 

PowerShell autostart, open the  Windows PowerShell 1.0 program folder and right-click on 

 Windows PowerShell on the  All  Programs menu of your start menu. On the context menu, select  Copy. Next, open  Startup folder, right-click on a blank area, and select paste on the context menu. This will place a PowerShell shortcut in the folder. All you have to do now is 

click on the shortcut with the right button of your mouse and choose  Properties. Specify the 

window size as  Minimized. 

Here is a special note for Vista users: The default settings of 

Windows Vista start all programs without administrator privileges. 

This applies to the PowerShell console as well. So, even if you have 

administrator privileges, you will initially have no access to your 

administrator rights when using the PowerShell console. That's a 

new security feature that does make sense. You'd be surprised to see how 

many routine tasks can be performed without these powerful (and potentially 

dangerous) rights. 

If you need more privileges because commands aren't working right or your 

system complains about lacking administrator rights, then request your full 

administrator privileges. To do so, right-click on the PowerShell entry on your 

start menu and select  Run As Administrator on the context menu. The 

PowerShell console window won't show by default whether you have enabled 

full administrator privileges, but you can add that feature later (see Chapter 

9). 

Table of Contents | About PowerShell Plus

7

Sponsors | Resources | © BBS Technologies



If you'd like to always launch PowerShell with full administrator privileges, 

click on the shortcut on the start menu with the right button of your mouse 

and choose  Properties. Then click below right on  Advanced and activate the 

option  Run As Administrator. 



Figure 1.1: How to always open PowerShell with administrator rights

 (Run without administrative privileges whenever possible)

First Steps with the Console

After PowerShell starts, its console window opens, and you see a blinking text prompt, asking for 

your input with no icons or menus. PowerShell is a command console and almost entirely operated 

via keyboard input. The prompt begins with "PS" and after it is the path name of the directory where you are located. Start by trying out a few commands. For example, type:

hello  (Enter)

As soon as you press (Enter), your entry will be sent to PowerShell. Because PowerShell has never 

heard of the command "hello" you will be confronted with an error message highlighted in red. 

Table of Contents | About PowerShell Plus

8

Sponsors | Resources | © BBS Technologies





Figure 1.2: First commands in the PowerShell console

For example, if you'd like to see which files and folders are in your current directory, then type  dir (Enter). You'll get a text listing of all the files in the directory. PowerShell's communication with you 

is always text-based. PowerShell can do much more than display simple directory lists. Just pick a 

different command as the next one provides a list of all running processes:

 Get-Process (Enter)

PowerShell's advantage is its tremendous flexibility since it allows you to control and display nearly 

all the information and operations on your computer. The command  cls deletes the contents of the 

console window and the  exit command ends PowerShell. 

Incomplete and Multi-line Entries

Whenever you enter something PowerShell cannot understand, you get a red error message, 

explaining what went wrong. However, if you enter something that isn't wrong but incomplete (like a 

string with one missing closing quote), PowerShell gives you a chance to complete your input. You 

then see a double-prompt (">>"), and once you completed the line and pressed ENTER twice, 

PowerShell executes the command. You can also bail out at any time and cancel the current 

command or input by pressing: (Ctrl)+(C). 

The "incomplete input" prompt will also appear when you enter an incomplete arithmetic problem 

like this one:

2  +  (Enter)

>> 6  (Enter)

>>  (Enter)

 8

Table of Contents | About PowerShell Plus

9

Sponsors | Resources | © BBS Technologies



This feature enables you to make multi-line PowerShell entries:

 "This is my little multiline entry.(Enter)

>>  I'm now writing a text of several lines. (Enter)

>>  And I'll keep on writing until it's no longer fun."(Enter)

>>  (Enter)

 This is my little multiline entry. 

 I'm now writing a text of several lines. 

 And I'll keep on writing until it's no longer fun. 

The continuation prompt generally takes its cue from initial and terminal characters like open and 

closed brackets or quotation marks at both ends of a string. As long as the symmetry of these 

characters is incorrect, you'll continue to see the prompt. However, you can activate it even in other 

cases:

dir ` (Enter)

>>  -recurse(Enter)

>>  (Enter)

So, if the last character of a line is what is called a "backtick" character, the line will be continued. 

You can retrieve that special character by pressing (`). 

Important Keyboard Shortcuts

Shortcuts are important since almost everything in PowerShell is keyboard-based. For example, by 

pressing the keys (Arrow left) and (Arrow right), you can move the blinking cursor to the left or 

right. Use it to go back and correct a typo. If you want to move the cursor word by word, hold down 

(Ctrl) while pressing the arrow keys. To place the cursor at the beginning of a line, hit (Home). 

Pressing (End) will send the cursor to the end of a line. 

If you haven't entered anything, then the cursor won't move since 

it will only move within entered text. There's one exception: if 

you've already entered a line and pressed (Enter) to execute the 

line, you can make this line appear again character-by-character 

by pressing (Arrow right). 

Deleting Incorrect Entries

If you've mistyped something, press (Backspace) to delete the character to the left of the blinking 

cursor. (Del) erases the character to the right of the cursor. And you can use (Esc) to delete your 

entire current line. 

The hotkey (Ctrl)+(Home) works more selectively: it deletes all the characters at the current 

position up to the beginning of the line. Characters to the right of the current position (if there are 

any) remain intact. (Ctrl)+(End) does it the other way around and deletes everything from the 

Table of Contents | About PowerShell Plus

10

Sponsors | Resources | © BBS Technologies



current position up to the end of the line. Both combinations are useful only after you've pressed 

(Arrow left) to move the cursor to the middle of a line, specifically when text is both to the left and 

to the right of the cursor. 

Overtype Mode

If you enter new characters and they overwrite existing characters, then you know you are in type-

over mode. By pressing (Insert) you can switch between insert and type-over modes. The default 

input mode depends on the console settings you select. You'll learn more about console settings 

soon. 

Command History: Reusing Entered Commands

For example, you don't have to re-type commands to edit them. Simply press (Arrow up) to re-

display the command that you entered. Press (Arrow up) and (Arrow down) to scroll up and down 

your command history. Using (F5) and (F8) do the same as the up and down arrow keys. 

This command history feature is extremely useful. Later, you'll learn how to configure the number of 

commands the console "remembers." The default setting is the last 50 commands. You can display 

all the commands in your history by pressing (F7) and then scrolling up and down the list to select 

commands using (Arrow up) and (Arrow down) and (Enter). 

The numbers before the commands in the Command History list 

only denote the sequence number. You cannot enter a number to 

select the associated command. What you can do is move up and 

down the list by hitting the arrow keys. 

Simply press (F9) to 'activate' the numbers so that you can select a 

command by its number. This opens a menu that accepts the numbers and 

returns the desired command. 

The keyboard sequence (Alt)+(F7) will clear the command history and start 

you off with a new list. 

(F8) provides more functionality than (Arrow up) as it doesn't just show the last command you 

entered, but keeps a record of the characters you've already typed in. If, for example, you'd like to 

see all the commands you've entered that begin with "d", type:

d (F8)

Press (F8) several times. Every time you press a key another command will be displayed from the 

command history provided that you've already typed in commands with an initial "d." 

Table of Contents | About PowerShell Plus

11

Sponsors | Resources | © BBS Technologies





Automatically Completing Input

An especially important key is (Tab). It will save you a great deal of typing (and typing errors). 

When you press this key, PowerShell will attempt to complete your input automatically. For example, 

type:

cd (Tab)

The command  cd changes the directory in which you are currently working. Put at least one space 

behind the command and then press (Tab). PowerShell suggests a subdirectory. Press (Tab) again to 

see other suggestions. If (Tab) doesn't come up with any suggestions, then there probably aren't 

any subdirectories available. 

This feature is called AutoComplete, which works in many places. For example, you just learned how 

to use the command  Get-Process, which lists all running processes. If you want to know what other 

commands there are that begin with "Get-", then type:

Get- (Tab)

Just make sure that there's no space before the cursor when you press (Tab). Keep hitting (Tab) to 

see all the commands that begin with "Get-". 

A more complete review of the AutoComplete feature is available in 

Chapter 9. 

AutoComplete works really well with long path names that require a lot of typing. For example:

c:\p (Tab)

Every time you press (Tab), PowerShell will prompt you with a new directory or a new file that 

begins with "c:\p." So, the more characters you type, the fewer options there will be. In practice, you should type in at least four or five characters to reduce the number of suggestions. 

When the list of suggestions is long, it can take a second or two until PowerShell has compiled all the 

possible suggestions and displays the first one. 

Wildcards are allowed in path names. For example, if you enter  c:\

 pr*e (Tab) in a typical Windows system, PowerShell will respond 

with "c:\Program Files". 

PowerShell will automatically put the entire response inside double quotation 

marks if the response contains whitespace characters. 

Table of Contents | About PowerShell Plus

12

Sponsors | Resources | © BBS Technologies



Scrolling Console Contents

The visible part of your console depends on the size of your console window, which you can change 

with your mouse. Drag the window border while holding down your left mouse button until the 

window is the size you want. Note that the actual contents of the console, the "screen buffer," don't change. So, if the window is too small to show everything, you should use the scroll bars. 

Selecting and Inserting Text

Use your mouse if you'd like to select text inside the PowerShell window and copy it onto the 

clipboard. Move the mouse pointer to the beginning of the selected text, hold down the left mouse 

button and drag it over the text area that you want to select. 

QuickEdit Mode

QuickEdit is the default mode for selecting and copying text in PowerShell. Select the text using your 

mouse and PowerShell will highlight it. After you've selected the text, press (Enter) or right-click on 

the marked area. This will copy the selected text to the clipboard. which you can now paste into 

other applications. To unselect press (Esc). 

You can also insert the text in your console at the blinking command line by right-clicking your 

mouse. 



Figure 1.3: Marking and copying text areas in QuickEdit mode

Table of Contents | About PowerShell Plus

13

Sponsors | Resources | © BBS Technologies



Standard Mode

If QuickEdit is turned off and you are in Standard mode, the simplest way to mark and copy text is 

to right-click in the console window. If QuickEdit is turned off, a context menu will open. 

Select  Mark to mark text and  Paste if you want to insert the marked text (or other text contents that you've copied to the clipboard) in the console. 

It's usually more practical to activate QuickEdit mode so that you won't have to use to the context 

menu. 

Customizing the Console

You can customize a variety of settings in the console including edit mode, screen buffer size, font 

colors, font sizes etc. 

Opening Console Properties

The basic settings of your PowerShell console are configured in a special  Properties dialog box. Click on the PowerShell icon on the far left of the title bar of the console window to open it. 



Figure 1.4: Opening console properties

That will open a context menu. You should select Properties and A dialog box will open. 

To get help, click on the question mark button on the title bar of the window. A question mark is 

then pinned to your mouse pointer. Next, click on the option you need help for. The help appears as 

a ScreenTip window. 

Table of Contents | About PowerShell Plus

14

Sponsors | Resources | © BBS Technologies



Defining Options

Under the heading  Options are four panels of options:



Figure 1.5: Defining the QuickEdit and Insert modes

•

Edit options: You should select the QuickEdit mode as well as the insert mode. We've 

already discussed the advantages of the  QuickEdit  mode: it makes it much easier to select, copy, and insert text. The  insert mode makes sure that new characters don't overwrite 

existing input so new characters will be added without erasing text you've already typed in 

when you're editing command lines. 

•

Cursor size: Here is where you specify the size of the blinking cursor. 

•

Display options: Determine whether the console should be displayed as a window or full 

screen. The "window" option is best so that you can switch to other windows when you're 

working. The full screen display option is not available on all operating systems. 

•

Command history: Here you can choose how many command inputs the console 

"remembers". This allows you to select a command from the list by pressing (Arrow up) or 

(F7). The option  Discard Old Duplicates ensures that the list doesn't have any duplicate 

entries. So, if you enter one command twice, it will appear only once in the history list. 

Specifying Fonts and Font Sizes

On the  Font tab, you can choose both the font and the font size displayed in the console. 

The console often uses the raster font as its default. This font is available in a specific range of sizes with available sizes shown in the "Size" list. Scalable TrueType fonts are much more flexible. They're marked in the list by a "TT" symbol. When you select a TrueType font, you can choose any size in the size list or enter them as text in the text box. TrueType fonts can be dynamically scaled. 

Table of Contents | About PowerShell Plus

15

Sponsors | Resources | © BBS Technologies







Figure 1.6: Specifying new fonts and font sizes

You should also try experimenting with TrueType fonts by using the "bold fonts" option. TrueType fonts are often more readable if they're displayed in bold. 

Your choice of fonts may at first seem a bit limited. To get more 

font choices, you can add them to the console font list. The limited 

default font list is supposed to prevent you from choosing 

unsuitable fonts for your console. 

One reason for this is that the console always uses the same width for each 

character (fixed width fonts). This restricts the use of most Windows fonts 

because they're proportional typefaces: every character has its own width. 

For example, an "" is narrower than an "m". If you're sure that a certain font 

will work in the console, then here's how to add the font to the console font 

list. 

Open your registry editor. In the key 

 HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\ 

 CurrentVersion\Console\TrueTypeFont insert a new "string value" and give 

this entry the name "00" (numbers, not letters). 

If there's already an entry that has this name, then call the new entry "000" 

or add as many zeroes as required to avoid conflicts with existing entries. 

You should then double-click your new entry to open it and enter the name of 

the font. The name must be exactly the same as the official font name, just 

the way it's stated under the key 

 HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows 

 NT\CurrentVersion\Fonts. 

Table of Contents | About PowerShell Plus

16

Sponsors | Resources | © BBS Technologies



The newly added font will now turn up in the console's option field. However, 

the new font will work only after you either log off at least once or restart 

your computer. If you fail to do so, the console will ignore your new font 

when you select it in the dialog box. 

Setting Window and Buffer Size

On the  Layout tab, you can specify how large the screen buffer should be, meaning how much 

information the console should "remember" and how far back you can scroll with the scroll bars. 

You should select a width of at least 120 characters in the window buffer size area with the height 

should be at least 1,000 lines or larger. This gives you the opportunity to use the scroll bars to scroll 

the window contents back up so that you can look at all the results of your previous commands. 



Figure 1.7: Specifying the size of the window buffer

You can also set the window size and position on this tab if you'd like your console to open at a 

certain size and screen position on your display. Choose the option  Let system position window and Windows will automatically determine at what location the console window will open. 

Selecting Colors

On the  Colors tab, you can select your own colors for four areas:

Table of Contents | About PowerShell Plus

17

Sponsors | Resources | © BBS Technologies



•

Screen text: Console font 

•

Screen background: Console background color 

•

Popup text: Popup window font, such as command history's (F7) 

•

Popup background: Popup window background color 

You have a palette of 16 colors for these four areas. So, if you want to specify a new font color, you 

should first select the option  Screen Text and click on one of the 16 colors. If you don't like any of the 16 colors, then you can mix your own special shade of color. Just click on a palette color and 

choose your desired color value at the upper right from the primary colors red, green, and blue. 



Figure 1.8: Select better colors for your console

Directly Assigning Modifications in PowerShell

Some of the console configuration can also be done from within PowerShell code. You'll hear more 

about this later. To give you a quick impression, take a look at this:

 $host.  ui.rawui  (Enter)

 $host.  ui.rawui.ForegroundColor  =  "Yellow"   (Enter)

 $host.  ui.rawui.WindowTitle  =  "My Console"   (Enter)

These changes will only be temporary. Once you close and re-open PowerShell, the changes are 

gone. You would have to include these lines into one of your "profile scripts," which run every time you launch PowerShell, to make them permanent. You can read more about this in Chapter 10. 

Table of Contents | About PowerShell Plus

18

Sponsors | Resources | © BBS Technologies

Saving Changes

Once you've successfully specified all your settings in the dialog box, you can close the dialog box. If 

you're using Windows Vista, all changes will be saved immediately, and when you start PowerShell 

the next time, your new settings will already be in effect. You may need Admin rights to save 

settings if you launched PowerShell with a link in your start menu that applies for all users. 

If you're using Windows XP, you'll see an additional window and a message asking you whether you 

want to save changes temporarily (Apply properties to current window only) or permanently (Modify 

shortcut that started this window). 

Piping and Routing

You may want to view the information page by page or save it in a file since some commands output 

a lot of information. 

Piping: Outputting Information Page by Page

The pipe command  more outputs information screen page by screen page. You will need to press a 

button (like Space) to continue to the next page. 

Piping uses the vertical bar (|). The results of the command to the left of the pipe symbol are then 

fed into the command on the right side of the pipe symbol. This kind of piping is also known in 

PowerShell as the "pipeline":

 Get-Process | more  (Enter)

You can press (Ctrl)+(C) to stop output. Piping also works with other commands, not just  more. For example, if you'd like to get a sorted directory listing, pipe the result to Sort-Object and specify the 

columns you would like to sort:

dir |  Sort-Object  -property Length, Name  (Enter)

You'll find more background information on piping as well as many useful examples in Chapter 5. 

Redirecting: Storing Information in Files

If you'd like to redirect the result of a command to a file, you can use the redirection symbol ">": Help >  help.txt   (Enter)

The information won't appear in the console but will instead be redirected to the specified file. You 

can then open the file. 

However, opening a file in PowerShell is different from opening a file in the classic console:

Table of Contents | About PowerShell Plus

19

Sponsors | Resources | © BBS Technologies

 help.txt  (Enter)

 The term "help.txt" is not recognized as a cmdlet, function, 

 operable program, or script file. Verify the term and try again. 

 At line:1 character:8

 + help.txt <<<< 

If you only specify the file name, PowerShell will look for it in all folders listed in the PATH 

environment variable. So to open a file, you will have to specify its absolute or relative path name. 

For example:

.\ help.txt  (Enter)

Or, to make it even simpler, you can use AutoComplete and hit (Tab) after the file name:

 help.txt(Tab)

The file name will automatically be completed with the absolute path name, and then you can open 

it by pressing (Enter):

 &   "C:\Users\UserA\help.txt"   (Enter)

You can also append data to an existing file. For example, if you'd like to supplement the help 

information in the file with help on native commands, you can attach this information to the existing 

file with the redirection symbol ">>":

Cmd /c help >>  help.txt  (Enter)

If you'd like to directly process the result of a command, you won't need traditional redirection at all 

because PowerShell can also store the result of any command to a variable:

 $result  = Ping 10.10.10.10

 $result

 Reply from 10.10.10.10: bytes=32 time<1ms TTL=128

 Reply from 10.10.10.10: bytes=32 time<1ms TTL=128

 Reply from 10.10.10.10: bytes=32 time<1ms TTL=128

 Reply from 10.10.10.10: bytes=32 time<1ms TTL=128

 Ping statistics for 10.10.10.10:

     Packets: Sent = 4, Received = 4, Lost = 0 (0% loss), 

 Approximate round trip times in milli-seconds:

     Minimum = 0ms, Maximum = 0ms, Average = 0ms

Variables are universal data storage and variable names always start with a "$". You'll find out more about variables in Chapter 3. 

Table of Contents | About PowerShell Plus

20

Sponsors | Resources | © BBS Technologies

Summary

PowerShell is an optional component for Windows XP and better. You will have to download and 

install PowerShell before using it. Beginning with Windows Server 2008, PowerShell is included with 

Windows by default. It still needs to be enabled in Windows software feature list. You will find 

PowerShell, like any other program, in the start menu below "All Programs." It is located in the program folder  Windows PowerShell 1.0. The program file name is "powershell.exe." 

PowerShell is a basic console program that relies heavily on text input. There are plenty of special 

keys listed in Table 1.1. 

Key

Meaning

(Alt)+(F7)

Deletes the current command history

Display the first (PgUp) or last (PgDn) command you used 

(PgUp), (PgDn)

in current session

(Enter)

Send the entered lines to PowerShell for execution

(End)

Moves the editing cursor to the end of the command line

(Del)

Deletes the character to the right of the insertion point

(Esc)

Deletes current command line

(F2)

Moves in current command line to the next character 

corresponding to specified character

Deletes all characters to the right of the insertion point up 

(F4)

to specified character

(F7)

Displays last entered commands in a dialog box

Displays commands from command history beginning with 

(F8)

the character that you already entered in the command 

line

(F9)

Opens a dialog box in which you can enter the number of 

a command from your command history to return the 

command. (F7) displays numbers of commands in 

Table of Contents | About PowerShell Plus

21

Sponsors | Resources | © BBS Technologies

command history

(Left arrow), 

Move one character to the left or right respectively

(Right arrow)

(Arrow up), (Arrow  Repeat the last previously entered command

down), (F5), (F8)

(Home)

Moves editing cursor to beginning of command line

(Backspace)

Deletes character to the left of the insertion point

(Ctrl)+(C)

Cancels command execution

Deletes all characters from current position to end of 

(Ctrl)+(End)

command line

(Ctrl)+(Arrow 

Move insertion point one word to the left or right 

left), (Ctrl)+

respectively

(Arrow right)

(Ctrl)+(Home)

Deletes all characters of current position up to beginning 

of command line

(Tab)

Automatically completes current entry, if possible

Table 1.1: Important keys and their meaning in the PowerShell console

You will find that the keys (Arrow up), which repeats the last command, and (Tab), which completes 

the current entry, are particularly useful. By hitting (Enter), you complete an entry and send it to 

PowerShell. If PowerShell can't understand a command, an error message appears highlighted in red 

stating the possible reasons for the error. Two special commands are  cls (deletes the contents of the console) and  exit (ends PowerShell). 

You can use your mouse to select information in the console and copy it to the Clipboard by pressing 

(Enter) or by right-clicking when you have turned on the QuickEdit mode. With QuickEdit mode 

turned off, you will have to right-click inside the console and then select  Mark in a context menu. 

The basic settings of the console—QuickEdit mode as well as colors, fonts, and font sizes—can be 

customized in the properties window of the console. This can be accessed by right-clicking the icon 

to the far left in the title bar of the console window. In the dialog box, select  Properties. 

Table of Contents | About PowerShell Plus

22

Sponsors | Resources | © BBS Technologies

Along with the commands, a number of characters in the console have special meanings as you have already become acquainted with three of them:

•

Piping: The vertical bar "|" symbol pipes the results of a command to the next. When you 

pipe the results to the command  more, the screen output will be paused once the screen is 

full, and continued when you press a key. 

•

Redirection: The symbol ">" redirects the results of a command to a file. You can then open and view the file contents. The symbol ">>" appends information to an existing file. 

Table of Contents | About PowerShell Plus

23

Sponsors | Resources | © BBS Technologies

CHAPTER 2. 

 Interactive PowerShell

PowerShell has two faces: interactivity and script automation. In this chapter, you will first learn 

how to work with PowerShell interactively. Then, we will take a look at PowerShell scripts. 

Topics Covered:

•

P

  owerShell as a Calculator  

•

C

  alculating with Number Systems and Units  

•

T

  able 2.1: Arithmetic operators  

•

E

  xecuting External Commands  

•

S

  tarting the "Old" Console  

•

Di

  scovering Useful Console Commands  

•

F igure 2.1: Run PowerShell as administrator  

•

S

  ecurity Restrictions at Program Start  

•

T

  rustworthy Subdirectories  

•

C

  mdlets: "Genuine" PowerShell Commands  

•

T

  able 2.2: The most important standard actions and their descriptions  

•

U

  sing Parameters  

•

U

  sing Named Parameters  

•

S

  witch Parameter  

•

P

  ositional Parameters  

•

C

  ommon Parameters  

•

T

  able 2.3: Common parameters in effect for (nearly) all cmdlets  

•

A

  liases: Giving Commands Other Names  

•

R

  esolving Aliases  

•

C

  reating Your Own Aliases  

•

R

  emoving—or Permanently Retaining—an Alias  

•

O

  verwriting Alias Definitions and Deleting Them Manually  

•

F unctions: "Expanded" Aliases  

•

C

  alling Commands with Arguments  

•

C

  reating Shortcut Commands  

•

In

  voking Files and Scripts  

•

S

  tarting Scripts  

•

R

  unning Batch Files  

•

R

  unning VBScript Files  

•

R

  unning PowerShell Scripts  

•

S

  ummary  

PowerShell as a Calculator

You can use the PowerShell console to execute arithmetic operations the same way you would with a 

calculator. Just enter a math expression and PowerShell will give you the result:

2 + 4  (Enter)

Table of Contents | About PowerShell Plus

24

Sponsors | Resources | © BBS Technologies



 6

You can use all of the usual basic arithmetic operations. Even parentheses will work just the way 

they do when you use your pocket calculator:

(12 + 5)  * 3  / 4.5  (Enter)

 11.3333333333333

Parentheses play a special role in PowerShell as they always works 

from the inside out: the results inside the parentheses are 

produced before evaluating the expressions outside of the 

parentheses, i.e. (2*2)*2 = 4*2. For example, operations 

performed within parentheses have priority and ensure that 

multiplication operations do not take precedence over addition operations. 

Parentheses are also important when using PowerShell commands, as you'll 

discover in upcoming chapters. For example, you could list the contents of 

subdirectories with the  dir command and then determine the number of files 

in a folder by enclosing the  dir command in parentheses. 

(Dir  *.  txt).  Count  (Enter)

 12

Using a comma instead of a decimal point seems to return the wrong result:

4,3  + 2  (Enter)

 4

 3

 2

In the example above, PowerShell simply displayed the numbers again. The comma always creates 

an array. The important thing to remember is that the decimal point is always a point and not a 

comma in PowerShell. 

Calculating with Number Systems and Units

The next arithmetic problem is a little unusual. 

4GB  / 720MB  (Enter)

 5.68888888888889

Table of Contents | About PowerShell Plus

25

Sponsors | Resources | © BBS Technologies



The example above calculates how many CD-ROMs can be stored on a DVD. PowerShell supports 

units like kilobyte, megabyte, and gigabyte. Just make sure you do not use a space between number 

and unit. 

1mb  (Enter)

 1048576

The units  KB,  MB, and  GB can be upper or lower case—how you 

write them doesn't matter to PowerShell. However, white space 

characters do matter. Units of measure must directly follow the 

number and must not be separated from it by a space. Otherwise, 

PowerShell will interpret the unit as a new command. 

Take a look at the following command line:

12  + 0xAF  (Enter)

 187

PowerShell can easily understand hexadecimal values: simply prefix the number with "0x":

0xAFFE  (Enter)

 45054

Here is a quick summary:

•

Operators: Arithmetic problems can be solved with the help of operators. Operators evaluate 

the two values to the left and the right. For basic operations, a total of five operators are 

available, which are also called "arithmetic operators" (Table 2.1). 

•

Brackets: Brackets group statements and ensure that expressions in parentheses are 

evaluated first. 

•

Decimal point: Fractions use a point as decimal separator (never a comma). 

•

Comma: Commas create arrays and so are irrelevant for normal arithmetic operations. 

•

Special conversions: Hexadecimal numbers are designated by the prefix "0x", which 

ensures that they are automatically converted into decimal values. If you add one of the KB, 

MB, or GB units to a number, the number will be multiplied by the unit. White space 

characters aren't allowed between numbers and values. 

•

Results and formats: Numeric results are always returned as decimal values. If you'd like 

to see the results presented in a different way, use a format operator like  -f, which will be 

discussed in detail later in this book. 

Operator Description

example

result

+

Adds two values

5 + 4.5

9.5

Table of Contents | About PowerShell Plus

26

Sponsors | Resources | © BBS Technologies

2gb + 120mb

2273312768

0x100 + 5

261

"Hello " + 

"Hello there" 

"there" 

-

Subtracts two values

5 - 4.5

0.5

12gb - 4.5gb

8053063680

200 - 0xAB

29

*

Multiplies two values

5 * 4.5

22.5

4mb * 3

12582912

12 * 0xC0

2304

"x" * 5

"xxxxx" 

/

Divides two values

5 / 4.5

1.1111111111111

1

34.133333333333

1mb / 30kb

3

0xFFAB / 0xC

5454,25

%

Supplies the rest of 

5%4.5

0.5

division

Table 2.1: Arithmetic operators

Table of Contents | About PowerShell Plus

27

Sponsors | Resources | © BBS Technologies



Executing External Commands

PowerShell can also launch external programs in very much the same way the classic console does. 

For example, if you want to examine the settings of your network card, enter the command  ipconfig

—it works in PowerShell the same way it does in the traditional console:

Ipconfig

 Windows IP Configuration

 Wireless LAN adapter Wireless Network Connection:

  

   Connection-specific DNS Suffix:

    Connection location IPv6 Address  . : fe80::6093:8889:257e:8d1%8

    IPv4 address  . . . . . . . . . . : 192.168.1.35

    Subnet Mask  . . . . . . . . . . : 255.255.255.0

    Standard Gateway . . . . . . . . . : 192.168.1.1

This following command enables you to verify if a Web site is online and tells you the route the data 

packets are sent between a Web server and your computer:

Tracert  powershell.com

 Trace route to powershell.com [74.208.54.218] over a maximum of 30 hops:

   1    12 ms     7 ms    11 ms  TobiasWeltner-PC [192.168.1.1]

   2    15 ms    16 ms    16 ms  dslb-088-070-064-001.pools.arcor-ip.net

   3    15 ms    16 ms    16 ms  han-145-254-11-105.arcor-ip.net

   (...)

  17   150 ms   151 ms   152 ms  vl-987.gw-ps2.slr.lxa.oneandone.net

  18   145 ms   145 ms   149 ms  ratdog.info

You can execute any Windows programs. Just type  notepad (Enter) 

or  explorer (Enter). 

There's a difference between text-based commands like  ipconfig 

and Windows programs like  Notepad. Text-based commands are executed 

synchronously, and the console waits for the commands to complete. 

Windows-based programs are executed asynchronously. Press (Ctrl)+(C) to 

cancel a text-based command, which may take longer than expected and is 

blocking the console. 

To clear the console screen type  cls (Enter). 

Table of Contents | About PowerShell Plus

28

Sponsors | Resources | © BBS Technologies

Starting the "Old" Console

To temporarily switch back to the "old" console, simply enter  cmd (Enter). Since the old console is just another text-based command, you can easily launch it from within PowerShell. To leave the old 

console, type  exit (Enter). Even PowerShell can be closed by entering  exit. Most text-based commands use exit to quit. Occasionally, the command  quit is required in commands instead of  exit. 

Discovering Useful Console Commands

The  cmd command can be used for just one command when you specify the parameter  /c. This is useful for invoking an old console command like  help. This command has no external program that 

you can access directly from PowerShell, it's only available inside the classic console. Using this 

command will return a list of many other useful external console commands. 

Cmd /c Help

 For more information on a specific command, type HELP command-name

 ASSOC    Displays or modifies file extension associations. 

 AT       Schedules commands and programs to run on a computer. 

 ATTRIB   Displays or changes file attributes. 

 BREAK    Sets or clears extended CTRL+C checking. 

 CACLS    Displays or modifies access control lists (ACLs) of files. 

 CALL     Calls one batch program from another. 

 CD       Displays the name of or changes the current directory. 

 CHCP     Displays or sets the active code page number. 

 CHDIR    Displays the name of or changes the current directory. 

 CHKDSK   Checks a disk and displays a status report. 

 CHKNTFS  Displays or modifies the checking of disk at boot time. 

 CLS      Clears the screen. 

 CMD      Starts a new instance of the Windows command interpreter. 

 COLOR    Sets the default console foreground and background colors. 

 COMP     Compares the contents of two files or sets of files. 

 COMPACT  Displays or alters the compression of files on NTFS 

          partitions. 

 CONVERT  Converts FAT volumes to NTFS.  You cannot convert the 

          current drive. 

 COPY     Copies one or more files to another location. 

 DATE     Displays or sets the date. 

 DEL      Deletes one or more files. 

 DIR      Displays a list of files and subdirectories in a directory. 

 DISKCOMP Compares the contents of two floppy disks. 

 DISKCOPY Copies the contents of one floppy disk to another. 

 DOSKEY   Edits command lines, recalls Windows commands, and creates 

          macros. 

 ECHO     Displays messages, or turns command echoing on or off. 

 ENDLOCAL Ends localization of environment changes in a batch file. 

 ERASE    Deletes one or more files. 

 EXIT     Quits the CMD.EXE program (command interpreter). 

 FC       Compares two files or sets of files, and displays the 

          differences between them. 

 FIND     Searches for a text string in a file or files. 

Table of Contents | About PowerShell Plus

29

Sponsors | Resources | © BBS Technologies

 FINDSTR  Searches for strings in files. 

 FOR      Runs a specified command for each file in a set of files. 

 FORMAT   Formats a disk for use with Windows. 

 FTYPE    Displays or modifies file types used in file extension 

          associations. 

 GOTO     Directs the Windows command interpreter to a labeled line 

          in a batch program. 

 GRAFTABL Enables Windows to display an extended character set in 

          graphics mode. 

 HELP     Provides Help information for Windows commands. 

 IF       Performs conditional processing in batch programs. 

 LABEL    Creates, changes, or deletes the volume label of a disk. 

 MD       Creates a directory. 

 MKDIR    Creates a directory. 

 MODE     Configures a system device. 

 MORE     Displays output one screen at a time. 

 MOVE     Moves one or more files from one directory to another 

          directory. 

 PATH     Displays or sets a search path for executable files. 

 PAUSE    Suspends processing of a batch file and displays a message. 

 POPD     Restores the previous value of the current directory saved 

          by PUSHD. 

 PRINT    Prints a text file. 

 PROMPT   Changes the Windows command prompt. 

 PUSHD    Saves the current directory then changes it. 

 RD       Removes a directory. 

 RECOVER  Recovers readable information from a bad or defective disk. 

 REM      Records comments (remarks) in batch files or CONFIG.SYS. 

 REN      Renames a file or files. 

 RENAME   Renames a file or files. 

 REPLACE  Replaces files. 

 RMDIR    Removes a directory. 

 SET      Displays, sets, or removes Windows environment variables. 

 SETLOCAL Begins localization of environment changes in a batch file. 

 SHIFT    Shifts the position of replaceable parameters in batch 

          files. 

 SORT     Sorts input. 

 START    Starts a separate window to run a specified program or 

          command. 

 SUBST    Associates a path with a drive letter. 

 TIME     Displays or sets the system time. 

 TITLE    Sets the window title for a CMD.EXE session. 

 TREE     Graphically displays the directory structure of a drive or 

          path. 

 TYPE     Displays the contents of a text file. 

 VER      Displays the Windows version. 

 VERIFY   Tells Windows whether to verify that your files are written 

          correctly to a disk. 

 VOL      Displays a disk volume label and serial number. 

 XCOPY    Copies files and directory trees. 

You can use all of the above commands in your PowerShell console. To try this, pick some 

commands from the list. For example:

Table of Contents | About PowerShell Plus

30

Sponsors | Resources | © BBS Technologies





Cmd /c help vol

As an added safety net, you should run PowerShell without 

administrator privileges when experimenting with new commands. 

That will protect you against mistakes, because most dangerous 

commands can no longer be executed without administrator rights:

defrag c:

 You must have Administrator privileges to defragment a 

 volume. 

 Use an administrator command line and then run the program 

 again. 

If you must use admin privileges and have enabled User Account Control on 

Windows Vista, remember to start your PowerShell explicitly with 

administrator rights. To do this, right-click  PowerShell.exe and in the context 

menu, select  Run as Administrator. 



Figure 2.1: Run PowerShell as administrator. 

 (Run without administrator privileges whenever possible)

Table of Contents | About PowerShell Plus

31

Sponsors | Resources | © BBS Technologies

Security Restrictions at Program Start

Strangely enough, it seems that some programs can't be launched from PowerShell. While you can 

launch  notepad, you cannot launch  wordpad:

wordpad

 The term "wordpad" is not recognized as a cmdlet, function, 

 operable program or script file. Verify the term and try again. 

 At line:1 char:7

 + wordpad <<<< 

PowerShell always needs to know where the program is stored. So, if you know the exact path name 

of Wordpad, PowerShell launches Wordpad after all - almost:

C:\programs\Windows NT\accessories\ wordpad.exe

 The term "C:\programs\Windows" is not recognized as a 

 cmdlet, function, operable program or script file. 

 Verify the term and try again. 

 At line:1 char:21

 + C:\programs\Windows  <<<< NT\accessories\wordpad.exe

Because the path name includes white space characters and because PowerShell interprets white 

space characters as separators, PowerShell is actually trying to start the program 

 C:\programs\Windows. An error message is generated because this path doesn't exist. If path 

names include spaces, the path must be enclosed in quotation marks. But that causes another 

problem:

 "C:\programs\Windows NT\accessories\wordpad.exe" 

 C:\programs\Windows NT\accessories\wordpad.exe

PowerShell treats text in quotation marks as a string and immediately returns this string. To ensure 

that PowerShell executes the text in the quotation marks, type an ampersand in front of it:

 &   "C:\programs\Windows NT\accessories\wordpad.exe" 

Finally, WordPad successfully starts. Hmmm. Wouldn't it be easier to switch from the current 

subdirectory to the subdirectory where the program we're looking for is located? 

Cd  "C:\programs\Windows NT\accessories" 

 wordpad.exe

 The term "wordpad" is not recognized as a cmdlet, 

 function, operable program or script file. 

 Verify the term and try again. 

 At line:1 char:11

 + wordpad.exe <<<< 

Table of Contents | About PowerShell Plus

32

Sponsors | Resources | © BBS Technologies



This results in another error because PowerShell requires a relative or absolute path. The absolute 

path name is the complete path while a relative path name always refers to the current directory. To 

launch a program in your current subdirectory, you use this relative path:

.\ wordpad.exe

Trustworthy Subdirectories

PowerShell distinguishes between trustworthy folders and all other folders. You won't need to 

provide the path name or append the file extension to the command name if the program is located 

in a trustworthy folder. Commands like  ping or  ipconfig work as-is because they are in located a trustworthy folder, while the program in our last example,  WordPad, is not. 

The Windows environment variable  Path determines whether a folder is trustworthy or not. All 

folders listed in this environment variable are treated as "trustworthy" by PowerShell. You could put all your important programs in one of the folders listed in the environment variable  Path. You can find out this list by entering:

 $env:Path

 C:\Windows\system32;C:\Windows;C:\Windows\System32\Wbem;C:\program 

 Files\Softex\OmniPass;C:\Windows\System32\WindowsPowerShell\v1.0\;c

 :\program Files\Microsoft SQL Server\90\Tools\binn\;C:\program File

 s\ATI Technologies\ATI.ACE\Core-Static;C:\program Files\MakeMsi\;C:

 \program Files\QuickTime\QTSystem\

You'll find more on variables as well as special environment 

variables in the next chapter. 

As a clever alternative, you can add other folders containing important programs to your  Path 

environment variables, such as:

 $env:path  +=  ";C:\programs\Windows NT\accessories" 

 wordpad.exe

After this change, you can suddenly launch  WordPad just by entering its program name. Note that 

your change to the environment variable  Path is valid only as long as PowerShell is running. Once 

you end PowerShell, your modification is discarded. So, if you'd like to permanently extend  Path, 

you need to add the line for the extension to one of your profile scripts. Profile scripts start 

automatically when PowerShell starts and their purpose is to customize your PowerShell 

environment. You read more about profile scripts in Chapter 10. 

•

Programs in special subdirectories: You can simply enter the program name to launch the 

program if the program is located in one of the special folders specified in the  Path 

environment variable. Almost all relevant tools can be launched that way. 

Table of Contents | About PowerShell Plus

33

Sponsors | Resources | © BBS Technologies



•

Specifying a path: You must tell the console where it is if the program is located somewhere 

else. To do so, specify the absolute or relative path name of the program. 

•

Watch out for white space characters: if white space characters occur in path names, 

enclose the entire path in quotes so that PowerShell doesn't interpret white space characters 

as separators. It doesn't matter whether you use double quotation marks ("") or single 

quotation marks ( ' ' ); you just have to be consistent. Stick to single quotes. For example, 

PowerShell "resolves" text in double quotation marks, replacing variables with their values. 

•

The "&" changes string into commands: PowerShell doesn't treat text in quotes as a 

command. Prefix string with "&" to actually execute it. The "&" symbol allows you to execute any string just as if you had entered the text directly on the command line. 

 &  ( "note"   +  "pad" )

If you have to enter a very long path names, remember (Tab), the 

key for automatic completion:

C:\ (Tab)

Press (Tab) again and again until the suggested subdirectory is the one you 

are seeking. Add a "\" and press (Tab) once again in order to specify the next 

subdirectory. 

The moment a white space character turns up in a path, AutoComplete also 

puts the path in quotation marks and inserts an "&" before it. However, if you 

want to add further subdirectories, you must first remove the last quotation 

mark with (Backspace). 

Cmdlets: "Genuine" PowerShell Commands

PowerShells internal commands are called 'cmdlets'. The "mother" of all cmdlets is called  GetCommand:

 Get-Command  -commandType cmdlet

It retrieves a list of all available cmdlets. Cmdlet names always consist of an action (verb) and 

something that is acted on (noun). This naming convention helps you to find the right command. 

Let's take a look at how the system works. 

If you're looking for a command for a certain task, you should first select the action that best 

describes the task. There are relatively few actions that the strict PowerShell naming conditions 

permit (Table 2.2). If you know that you want to obtain something, the proper action is "get." That already gives you the first part of the command name, and all you have to do now is to take a look 

at a list of commands that are likely candidates:

 Get-Command  -verb get

 CommandType  Name                Definition

Table of Contents | About PowerShell Plus

34

Sponsors | Resources | © BBS Technologies

 -----------  ----                ----------

 cmdlet       Get-Acl             Get-Acl [[-Path] <String[]>] [-A... 

 cmdlet       Get-Alias           Get-alias [[-Name] <String[]>] [... 

 cmdlet       Get-Authenticode    Get-AuthenticodeSignature [-File... 

              Signature

 cmdlet       Get-ChildItem       Get-ChildItem [[-Path] <String[]... 

 cmdlet       Get-Command         Get-Command [[-ArgumentList] <Ob... 

 cmdlet       Get-Content         Get-Content [-Path] <String[]> [... 

 cmdlet       Get-Credential      Get-Credential [-Credential] <PS... 

 cmdlet       Get-Culture         Get-Culture [-Verbose] [-Debug] ... 

 cmdlet       Get-Date            Get-Date [[-Date] <DateTime>] [-... 

 cmdlet       Get-EventLog        Get-EventLog [-LogName] <String>... 

 cmdlet       Get-Execution       Get-ExecutionPolicy [-Verbose] [... 

              Policy

 cmdlet       Get-Help            Get-Help [[-Name] <String>] [-Ca... 

 cmdlet       Get-History         Get-History [[-Id] <Int64[]>] [[... 

 cmdlet       Get-Host            Get-Host [-Verbose] [-Debug] [-E... 

 cmdlet       Get-Item            Get-Item [-Path] <String[]> [-Fi... 

 cmdlet       Get-ItemProperty    Get-ItemProperty [-Path] <String... 

 cmdlet       Get-Location        Get-Location [-PSProvider <Strin... 

 cmdlet       Get-Member          Get-Member [[-Name] <String[]>] ... 

 cmdlet       Get-PfxCertificate  Get-PfxCertificate [-FilePath] <... 

 cmdlet       Get-Process         Get-Process [[-Name] <String[]>]... 

 cmdlet       Get-PSDrive         Get-PSDrive [[-Name] <String[]>]... 

 cmdlet       Get-PSProvider      Get-PSProvider [[-PSProvider] <S... 

 cmdlet       Get-PSSnapin        Get-PSSnapin [[-Name] <String[]>... 

 cmdlet       Get-Service         Get-Service [[-Name] <String[]>]... 

 cmdlet       Get-TraceSource     Get-TraceSource [[-Name] <String... 

 cmdlet       Get-UICulture       Get-UICulture [-Verbose] [-Debug... 

 cmdlet       Get-Unique          Get-Unique [-InputObject <PSObje... 

 cmdlet       Get-Variable        Get-Variable [[-Name] <String[]>... 

 cmdlet       Get-WmiObject       Get-WmiObject [-Class] <String> ... 

As you see, the relevant cmdlet  Get-Command comes from the "get" group. 

Action

Description

 Add

Add

 Clear

Delete

 Compare

Compare

 Convert

Convert

 Copy

Copy

Table of Contents | About PowerShell Plus

35

Sponsors | Resources | © BBS Technologies

 Export

Export

 Format

Format

 Get

Acquire

 Group

Group

 Import

Import

 Measure

Measure

 Move

Move

 New

Create new

 Out

Output

 Read

Read

 Remove

Remove

 Rename

Rename

 Resolve

Resolve

 Restart

Restart

 Resume

Resume

 Select

Select

 Set

Set

 Sort

Sort

 Split

Split

Table of Contents | About PowerShell Plus

36

Sponsors | Resources | © BBS Technologies

 Start

Start

 Stop

Stop

 Suspend

Suspend

 Tee

Split up

 Test

Test

 Trace

Trace

 Update

Update

 Write

Write

Table 2.2: The most important standard actions and their descriptions

You can look up help for any cmdlet using  Get-Help:

 Get-Help  Get-Command  -detailed

You can easily discover commands for certain actions because  Get-Command also allows wildcards:

 Get-Command  * help *  -CommandType cmdlet

 CommandType  Name      Definition

 -----------  ----      ----------

 cmdlet       Get-Help  Get-Help [[-Name] <String>] [-Category... 

Using Parameters

Parameters add information so a cmdlet knows what to do. Once again,  Get-Help will show you 

which parameter are supported by any given cmdlet. For example, the cmdlet  Get-ChildItem lists 

the contents of the current subdirectory. The contents of the current folder will be listed if you enter 

the cmdlet without additional parameters:

 Get-ChildItem

For example, if you'd prefer to get a list of the contents of another subdirectory, you should enter 

the subdirectory name after the cmdlet:

Table of Contents | About PowerShell Plus

37

Sponsors | Resources | © BBS Technologies

 Get-ChildItem c:\windows

You can use  Get-Help to output full help on  Get-ChildItem to find out which parameters are supported:

 Get-Help  Get-ChildItem  -full

This will give you comprehensive information as well as several examples. Of particular interest is 

the "Parameters" section:

-path <string[]> 

Specifies a path to one or more locations. Wildcards are permitted. The default location is the 

current directory (.). 

Required? 

false

Position? 

1

Default value

<NOTE: if not specified uses the Current 

location> 

Accept pipeline input? 

true (ByValue, ByPropertyName)

Accept wildcard characters?  true

-include <string[]> 

Retrieves only the specified items. The value of this parameter qualifies the Path parameter. Enter a 

path element or pattern, such as "*.txt". Wildcards are permitted. 

The Include parameter is effective only when the command includes the Recurse parameter or the 

path leads to the contents of a directory, such as C:\Windows\*, where the wildcard character 

specifies the contents of the C:\Windows directory. 

Required? 

false

Position? 

named

Default value



Accept pipeline input? 

false

Table of Contents | About PowerShell Plus

38

Sponsors | Resources | © BBS Technologies

Accept wildcard characters? 

true

-exclude <string[]> 

Omits the specified items. The value of this parameter qualifies the Path parameter. Enter a path 

element or pattern, such as "*.txt". Wildcards are permitted. 

This parameter does not work properly in this cmdlet. 

Required? 

false

Position? 

named

Default value



Accept pipeline input? 

false

Accept wildcard characters? 

true

-filter <string> 

Specifies a filter in the provider's format or language. The value of this parameter qualifies the Path 

parameter. The syntax of the filter, including the use of wildcards, depends on the provider. Filters 

are more efficient than other parameters, because the provider applies them when retrieving the 

objects, rather than having Windows PowerShell filter the objects after they are retrieved. 

Required? 

false

Position? 

2

Default value



Accept pipeline input? 

false

Accept wildcard characters? 

true

Table of Contents | About PowerShell Plus

39

Sponsors | Resources | © BBS Technologies

-name <SwitchParameter> 

Retrieves only the names of the items in the locations. If you pipe the output of this command to 

another command, only the item names are sent. 

Required? 

false

Position? 

named

Default value

False

Accept pipeline input? 

false

Accept wildcard characters? 

false

-recurse <SwitchParameter> 

Gets the items in the specified locations and in all child items of the locations. 

Recurse works only when the path points to a container that has child items, such as C:\Windows or 

C:\Windows\*, and not when it points to items that do not have child items, such as 

C:\Windows\*.exe. 

Required? 

false

Position? 

named

Default value

False

Accept pipeline input? 

false

Accept wildcard characters? 

false

-force <SwitchParameter> 

Overrides restrictions that prevent the command from succeeding, just so the changes do not 

compromise security. For example, Force will override the read-only attribute or create directories to 

complete a file path, but it will not attempt to change file permissions. 

Table of Contents | About PowerShell Plus

40

Sponsors | Resources | © BBS Technologies

Required? 

false

Position? 

named

Default value

False

Accept pipeline input? 

false

Accept wildcard characters? 

false

-codeSigningCert <SwitchParameter> 

Retrieves only the certificates that have code signing authority. This parameter is valid only when 

using the Windows PowerShell Certificate provider. For more information, type "get-help 

about_provider" and "get-help about_signing". 

Required? 

false

Position? 

named

Default value



Accept pipeline input? 

false

Accept wildcard characters? 

false

-literalPath <string[]> 

Specifies a path to one or more locations. Unlike Path, the value of LiteralPath is used exactly as it is 

typed. No characters are interpreted as wildcards. If the path includes escape characters, enclose it 

in single quotation marks. Single quotation marks tell Windows PowerShell not to interpret any 

characters as escape sequences

Required? 

true

Position? 

1

Default value



Table of Contents | About PowerShell Plus

41

Sponsors | Resources | © BBS Technologies



Accept pipeline input? 

true (ByPropertyName)

Accept wildcard characters? 

false

<CommonParameters> 

This cmdlet supports the common parameters: -Verbose, -Debug, -ErrorAction, -ErrorVariable, and -

OutVariable. For more information, type, "get-help about_commonparameters". 

 Get-ChildItem supports a total of its own eight parameters as well as several  CommonParameters. 

Every parameter has a specific name that begins with a hyphen. 

Using Named Parameters

Named parameters really work like key-value pairs. You specify the name of a parameter (which 

always starts with a hyphen), then a space, then the value you want to assign to the parameter. If 

you ever used VBA (Visual Basic for Applications), it is similar to named parameters there. Let's say 

you'd like to list all files with the extension  *.exe that are located somewhere in the folder 

 c:\windows or in one of its subdirectories, you could use this command:

 Get-ChildItem  -path c:\windows  -filter  *.  exe  -recurse  -name There are clever tricks to make life easier. You don't have to specify the complete parameter name 

as it is OK to type out just enough to make clear which parameters you mean:

 Get-ChildItem  -pa c:\windows  -fi  *.  exe  -r  -n

Don't worry: If you are getting too lazy and shorten parameter names too much, PowerShell will 

report ambiguities and specify the parameter it can no longer assign clearly:

 Get-ChildItem  -pa c:\windows  -f  *.  exe  -r  -n

 Get-ChildItem : Parameter cannot be processed because 

 the parameter name 'f' is ambiguous. Possible matches 

 include: -Filter -Force. 

 At line:1 char:14

 + Get-ChildItem  <<<< -pa c:\windows -f *.exe -r -n

You can also turn off parameter recognition. This is necessary in 

the rare event that an argument reads like a parameter name, and 

so must be entered in such a way that it is not interpreted as a 

parameter. So, if you need to output the text "-BackgroundColor" 

Table of Contents | About PowerShell Plus

42

Sponsors | Resources | © BBS Technologies

with W rite-Host, this will likely result in a conflict. PowerShell would assume 

that you meant  -BackgroundColor and notify you that the argument for this 

parameter is missing. 

 Write-Host  -BackgroundColor

 Write-Host : Missing an argument for parameter 

 'BackgroundColor'. Specify a parameter of type 

 "System.consoleColor" and try again. 

 At line:1 char:27

 + Write-Host -BackgroundColor <<<< 

You always have the choice of including the text in quotes. Or you can 

expressly turn off parameter recognition by typing "--". Everything following 

these two symbols will no longer be recognized as a parameter:

 Write-Host  "-BackgroundColor" 

 -BackgroundColor

 Write-Host  --  -BackgroundColor

 -BackgroundColor

Switch Parameter

Sometimes, parameters really are no key-value pairs. Whenever a parameter represents a boolean 

value (true or false), most often it is used as a switch parameter (present or not). So, switch 

parameters stand for themselves, no values follow. If they're specified, they turn on a certain 

function. If they're left out, they don't turn on the function. For example, the parameter  -recurse 

ensures that  Get-ChildItem searches not only the  -path specified subdirectories but all 

subdirectories. And the switch parameter  -name makes  Get-ChildItem output only the names of files (as string rather than rich file and folder objects). 

The help on  Get-ChildItem clearly identifies switch parameters. "<SwitchParameter>" follows the parameter names:

 -recurse <SwitchParameter> 

         Gets the items in the specified locations and all child 

         items of the locations. 

 (...)

Table of Contents | About PowerShell Plus

43

Sponsors | Resources | © BBS Technologies

Positional Parameters

Some parameters have fixed positions while others are "named" - you can find out in Help when you look at the cmdlet parameters and check out their "Position" property. Named parameters are easy: they always need to be named so you always have to specify the parameter name, a space, and 

then the parameter value. Positional parameters work the same but you can also specify them as 

positional. So when a parameter has a position of 1, the first "unnamed" parameter is assigned to it. 

That's why you could have expressed the command we just discussed in one of the following ways:

 Get-ChildItem c:\windows  *.  exe  -recurse  -name

 Get-ChildItem  -recurse  -name c:\windows  *.  exe

 Get-ChildItem  -name c:\windows  *.  exe  -recurse

In all three cases, PowerShell identifies and eliminates the named arguments  -recurse and  -name first because they are clearly specified. The remaining are arguments are "unnamed" and need to be assigned based on their position:

 Get-ChildItem c:\windows  *.  exe

The parameter  -path has the position  1, and no value has yet been assigned to it. So, PowerShell attaches the first remaining argument to this parameter. 

 -path <string[]> 

         Specifies a path to one or more locations. Wildcards are 

         permitted. The default location is the current directory (.). 

         Required?                    false

         Position?                    1

         Standard value used          <NOTE: if not specified uses 

                                      the Current location> 

         Accept pipeline input?       true (ByValue, ByPropertyName)

         Accept wildcard characters?  true

The parameter -filter has the position 2. Consequently, it is assigned the second remaining 

argument. The position specification makes it easier to use a cmdlet because you don't have to 

specify any parameter names for the most frequently and commonly used parameters. 

Here is a tip: In daily interactive PowerShell scripting, you want short and fast commands so use 

aliases, positional parameters, and abbreviated parameter names. Once you write PowerShell 

scripts, you should not use these shortcuts and instead use the true cmdlet names and stick to fully 

named parameters. One reason is that scripts should be portable and not depend on specific aliases 

you may have defined. Second, scripts are more complex and need to be as readable and 

understandable as possible. Named parameters help other people better understand what you are 

doing. 

Common Parameters

Cmdlets also support a set of generic "CommonParameters":

 <CommonParameters> 

Table of Contents | About PowerShell Plus

44

Sponsors | Resources | © BBS Technologies

        This cmdlet supports the common parameters: -Verbose, 

        -Debug, -ErrorAction, -ErrorVariable, and -OutVariable. 

        For more information, type "get-help about_commonparameters". 

These parameters are called "common" because they are permitted for (nearly) all cmdlets and 

behave the same way. 

Common 

Type

Description

Parameter

Generates as much information as possible. Without 

 -Verbose

Switch this switch, the cmdlet restricts itself to displaying 

only essential information

Outputs additional warnings and error messages that 

 -Debug

Switch help programmers find the causes of errors. You can 

find more information in Chapter 11. 

Determines how the cmdlet responds when an error 

occurs. Permitted values:

 NotifyContinue: reports error and continues (default)

 -ErrorAction

Value

 NotifyStop: reports error and stops

 SilentContinue: displays no error message, continues

 SilentStop: displays no error message, stops

 Inquire: asks how to proceed

You can find more information in Chapter 11. 

Name of a variable in which in the event of an error 

 -ErrorVariable  Value

information about the error is stored. You can find 

more information in Chapter 11. 

Name of a variable in which the result of a cmdlet is 

to be stored. This parameter is usually superfluous 

because you can directly assign the value to a 

variable. The difference is that it will no longer be 

displayed in the console if you assign the result to a 

variable. 

 -OutVariable

Value

 $result  =  Get-ChildItem

It will be output to the console and stored in a 

variable if you assign the result additionally to a 

variable: 

 Get-ChildItem  -OutVariable result

Table of Contents | About PowerShell Plus

45

Sponsors | Resources | © BBS Technologies

Table 2.3: Common parameters in effect for (nearly) all cmdlets

Aliases: Giving Commands Other Names

Cmdlet names with their verb-noun convention are very systematic, yet not very practical. In every 

day admin life, you want short and familiar commands. This is why PowerShell has a built-in alias 

system as it comes with a lot of predefined aliases. This is why in PowerShell, both Windows admins 

and UNIX admins can list folder contents. There are predefined aliases called "dir" and "ls" which both point to the PowerShell cmdlet Get-ChildItem. 

 Get-ChildItem c:\

Dir c:\

ls c:\

So, aliases have two important tasks in PowerShell:

•

Historical: New commands are designed to be accessed under old conventional names to 

facilitate the transition to PowerShell 

•

Comfort: Frequently used commands are meant to be accessed over short and concise 

commands 

Resolving Aliases

Use these lines if you'd like to know what "genuine" command is hidden in an alias:

 $alias:Dir

 Get-ChildItem

 $alias:ls

 Get-ChildItem

 $alias:Dir lists the element  Dir of the drive  alias:. That may seem somewhat surprising because there is no drive called  alias: in the classic console. In contrast, PowerShell works with many 

different virtual drives, and  alias: is only one of them. If you want to know more, the cmdlet  Get-PSDrive lists them all. You can also list  alias: like any other drive with  Dir. The result would be a list of aliases in their entirety:

Dir alias:

 CommandType  Name  Definition

 -----------  ----  ----------

 alias        ac    Add-Content

 alias        asnp  Add-PSSnapin

 alias        clc   Clear-Content

 (...)

Table of Contents | About PowerShell Plus

46

Sponsors | Resources | © BBS Technologies

You can also get the list of aliases using the cmdlet  Get-Alias. You receive a list of individual alias definitions by using its parameter  -name:

 Get-alias  -name Dir

 Get-ChildItem

It's a little more complex to list all aliases for a given cmdlet. Just use the PowerShell pipeline which 

feeds the result of a command into the next one and chains together commands. The concept of the 

pipeline will be discussed in detail in Chapter 5.  You may not really grasp the significance of the next command until after you've read this chapter. Nevertheless, here it is:

 Get-Alias |  Where-Object { $_.  Definition  -eq  "Get-ChildItem" }

Here, the list of aliases that  Get-Alias generates is fed into the next cmdlet,  Where-Object. This cmdlet is a pipeline filter and allows only those objects to pass through that meet the specified 

condition. In this case, the condition is called "$_.Definition -eq 'Get-ChildItem' ".  $_ represents the current pipeline object. The condition checks the  Definition property in this object, and if it equals the "Get-ChildItem" string, the object can continue to pass through the pipeline. If not, it is filtered out. 

 CommandType  Name  Definition

 -----------  ----  ----------

 alias        gci   Get-ChildItem

 alias        ls    Get-ChildItem

 alias        Dir   Get-ChildItem

As it turns out, there's even a third alias for  Get-ChildItem called "  gci". Generally speaking, PowerShell allows you to find several approaches to the same goal so you could have found the 

same result by entering:

Dir alias: |  Out-String  -Stream |  Select-String  "Get-ChildItem" 

Here, the PowerShell pipeline works with conventional string, not objects.  Out-String converts the objects that  Dir alias: generates into string. The parameter  -Stream makes sure each objects' string representation is immediately forwarded to the next command in the pipeline.  Select-String filters a string, allowing only a string to pass through that includes the search word you specified. 

Don't worry; all the techniques scratched here will be covered in detail in upcoming chapters. Here is 

another example for you to try out the power of the PowerShell pipeline:

Dir alias: |  Group-Object definition

Here, the individual alias definitions are again fed through the PowerShell pipeline, yet this time the 

cmdlet  Group-Object grouped the objects by their definition property. That's why  Group-Object 

generates a neatly ordered list of all cmdlets, for which there are shorthand expressions for aliases. 

In the Group column, you'll find the respective aliases in braces ({}). 

 Count Name                      Group

 ----- ----                      -----

     1 Add-Content               {ac}

     1 Add-PSSnapin              {asnp}

     1 Clear-Content             {clc}

Table of Contents | About PowerShell Plus

47

Sponsors | Resources | © BBS Technologies

     1 Clear-Item                {cli}

     1 Clear-ItemProperty        {clp}

     1 Clear-Variable            {clv}

     3 Copy-Item                 {cpi, cp, copy}

     1 Copy-ItemProperty         {cpp}

     1 Convert-Path              {cvpa}

     1 Compare-Object            {diff}

     1 Export-Alias              {epal}

     1 Export-Csv                {epcsv}

     1 Format-Custom             {fc}

     1 Format-List               {fl}

     2 ForEach-Object            {foreach, %}

     1 Format-Table              {ft}

     1 Format-Wide               {fw}

     1 Get-Alias                 {gal}

     3 Get-Content               {gc, cat, type}

     3 Get-ChildItem             {gci, ls, Dir}

     1 Get-Command               {gcm}

     1 Get-PSDrive               {gdr}

     3 Get-History               {ghy, h, history}

     1 Get-Item                  {gi}

     2 Get-Location              {gl, pwd}

     1 Get-Member                {gm}

     1 Get-ItemProperty          {gp}

     2 Get-Process               {gps, ps}

     1 Group-Object              {group}

     1 Get-Service               {gsv}

     1 Get-PSSnapin              {gsnp}

     1 Get-Unique                {gu}

     1 Get-Variable              {gv}

     1 Get-WmiObject             {gwmi}

     1 Invoke-Expression         {iex}

     2 Invoke-History            {ihy, r}

     1 Invoke-Item               {ii}

     1 Import-Alias              {ipal}

     1 Import-Csv                {ipcsv}

     3 Move-Item                 {mi, mv, move}

     1 Move-ItemProperty         {mp}

     1 New-Alias                 {nal}

     2 New-PSDrive               {ndr, mount}

     1 New-Item                  {ni}

     1 New-Variable              {nv}

     1 Out-Host                  {oh}

     1 Remove-PSDrive            {rdr}

     6 Remove-Item               {ri, rm, rmdir, del...}

     2 Rename-Item               {rni, ren}

     1 Rename-ItemProperty       {rnp}

     1 Remove-ItemProperty       {rp}

     1 Remove-PSSnapin           {rsnp}

     1 Remove-Variable           {rv}

     1 Resolve-Path              {rvpa}

     1 Set-Alias                 {sal}

     1 Start-Service             {sasv}

Table of Contents | About PowerShell Plus

48

Sponsors | Resources | © BBS Technologies

     1 Set-Content               {sc}

     1 Select-Object             {select}

     1 Set-Item                  {si}

     3 Set-Location              {sl, cd, chdir}

     1 Start-Sleep               {sleep}

     1 Sort-Object               {sort}

     1 Set-ItemProperty          {sp}

     2 Stop-Process              {spps, kill}

     1 Stop-Service              {spsv}

     2 Set-Variable              {sv, set}

     1 Tee-Object                {tee}

     2 Where-Object              {where, ?}

     2 Write-Output              {write, echo}

     2 Clear-Host                {clear, cls}

     1 Out-Printer               {lp}

     1 Pop-Location              {popd}

     1 Push-Location             {pushd}

Creating Your Own Aliases

Anyone can create a new alias, which is a shortcut for another command. The cmdlet  Set-Alias adds 

additional alias definitions. You could actually override commands with aliases since aliases have 

precedence over other commands. Take a look at the next example:

Edit

 Set-Alias edit  notepad.exe

Edit

 Edit typically launches the console-based Editor program. To exit without completely closing the 

console window, press (Alt)+(F) and then (X). 

If you create a new alias called "Edit" and set it to "notepad.exe", the command  Edit will be re-programmed. The next time you enter it, PowerShell will no longer run the old Editor program, but 

the Notepad. 

 $alias:edit

Removing—or Permanently Retaining—an Alias

How do you remove aliases? You don't. All new aliases are discarded as soon as you exit PowerShell. 

All of your own aliases will be gone the next time you start PowerShell. "Built-in" aliases like "dir" 

and "cd" will still be there. 

If you'd like to keep your own aliases permanently, you have the following options:

•

Manually each time: Set your aliases after every start manually using Set-Alias. That is, of 

course, rather theoretical. 

•

Automated in a profile: Let your alias be set automatically when PowerShell starts: add 

your aliases to a start profile. You'll learn how to do this in Chapter 10.  

Table of Contents | About PowerShell Plus

49

Sponsors | Resources | © BBS Technologies



•

Import and export: You can use the built-in import and export function for aliases. 

For example, if you'd like to export all currently defined aliases as a list to a file, enter:

 Export-Alias

Because you haven't entered any file names after  Export-Alias, the command will ask you what the 

name are under which you want to save the list. Type in:

 alias1 (Enter)

The list will be saved. You can look at the list afterwards and manipulate it. For example, you might 

want the list to include a few of your own alias definitions:

Notepad alias1

You can import the list to activate the alias definitions:

 Import-Alias alias1

 Import-Alias : Alias not allowed because an alias with the 

 name "ac" already exists. 

 At line:1 char:13

 + Import-Alias  <<<< alias1

 Import-Alias notifies you that it couldn't create some aliases of the list because these aliases already exist. Specify additionally the option  -Force to ensure that  Import-Alias overwrites existing aliases, : Import-Alias alias1  -Force

You could add the  Import-Alias instruction to your start profile and 

specify a permanent path to the alias list. This would make 

PowerShell automatically read this alias list when it starts. Later, 

you can add new aliases. Then, it would suffice to update the alias 

list with  Export-Alias and to write over the old file. This is one way 

for you to keep your aliases permanently. 

Overwriting Alias Definitions and Deleting Them Manually

You can overwrite aliases with new definitions any time. Just redefine the alias with the cmdlet  Set-

 Alias. Use this command if you'd like to remove an alias completely and don't want to wait until you end PowerShell:

Del alias:edit

Table of Contents | About PowerShell Plus

50

Sponsors | Resources | © BBS Technologies



This instruction deletes the "Edit" alias. Here, the uniform provider approach becomes evident. The very same "Del" command would allow you to delete files and subdirectories in the file system as well. Perhaps you're already familiar with the command from the classic console:

Del C:\ garbage.txt

Here is an example that finds all aliases that point to no valid 

target, which is a great way of finding outdated or damaged 

aliases:

 Get-Alias |  ForEach-Object { 

 if ( ! ( Get-Command  $_.  Definition  -ea SilentlyContinue)) { $_}}

Functions: "Expanded" Aliases

Aliases are simple shortcuts to call commands with another name (shortcut names), or to make the 

transition to PowerShell easier (familiar names). The arguments of a command can never be 

included in an alias, though. If you want that, you will need to use functions. 

Calling Commands with Arguments

If you find yourself using the command  ping quite often to verify network addresses, you may want 

to make this easier by creating a shortcut that not only calls ping.exe, but also appends standard 

arguments to it. Let's see how you could automate this call:

Ping  -n 1  -w 100 10.10.10.10

Aliases won't work in this case because they can't specify command arguments. Functions can since 

they are more flexible:

 function quickping { ping  -n 1  -w 100  $args }

quickping 10.10.10.10

 Pinging 10.10.10.10 with 32 bytes of data:

 Reply from 10.10.10.10: bytes=32 time<1ms TTL=128

 Ping statistics for 10.10.10.10:

     Packets: Sent = 1, Received = 1, Lost = 0 (0% loss), 

 Approximate round trip times in milli-seconds:

     Minimum = 0ms, Maximum = 0ms, Average = 0ms

 Set-Alias qp quickping

qp 10.10.10.10

 Pinging 10.10.10.10 with 32 bytes of data:

 Reply from 10.10.10.10: bytes=32 time<1ms TTL=128

Table of Contents | About PowerShell Plus

51

Sponsors | Resources | © BBS Technologies



 Ping statistics for 10.10.10.10:

     Packets: Sent = 1, Received = 1, Lost = 0 (0% loss), 

 Approximate round trip times in milli-seconds:

     Minimum = 0ms, Maximum = 0ms, Average = 0ms

Unlike alias definitions, you can specify complex code inside of braces in functions. So, you are no 

longer limited to just specify a single command, but can also add any argument you want to be part 

of the call.  $args in this connection acts as placeholder for the arguments that you assign to the function. 

Creating Shortcut Commands

You may have noticed that PowerShell doesn't accept console commands like the following one, 

which do work in the classic console:

Cd.. 

 The term "Cd.." is not recognized as a cmdlet, function, operable 

 program, or script file. Verify the term and try again. 

 At line:1 char:14

 + Set-Location.. <<<< 

The reason is that PowerShell is more strict and needs a space as delimiter between command and 

argument.  Cd is an alias and points to the cmdlet S et-Location.  If you omit a space, PowerShell tried to find a command called "Cd.." and since it can't find one, it outputs an exception. The solution is rather easy: you should define your own "cd.." command by defining a function with that name:

 function Cd.. { Cd .. }

Cd.. 

The entry Cd.. works immediately because now PowerShell is running your new function. You can 

add many other shortcuts this way. 

Functions have exactly the same lifespan as aliases. As soon as 

you exit PowerShell, it "forgets" all new aliases and functions that 

you added. If you want to retain your PowerShell functions, you 

should put them into one of the profile scripts that PowerShell runs 

automatically when it starts. This is covered in Chapter 10. 

Invoking Files and Scripts

To run files (like documents or scripts), PowerShell uses the same rules that apply to executables: 

either, you specify an absolute or relative path, or the file needs to be located in one of the special 

trustworthy folders defined in the  Path environment variable. 

Table of Contents | About PowerShell Plus

52

Sponsors | Resources | © BBS Technologies

 # Save information on all running processes to HTML file 

 # (lasts several seconds):

 Get-Process |  ConvertTo-Html |  Out-File  test.htm

 # File cannot be opened directly:

 test.htm

 The term "test.htm" is not recognized as a cmdlet, function, 

 operable program, or script file. Verify the term and try again. 

 At line:1 char:8

 + test.htm <<<< 

 # Specify a relative or absolute path name:

.\ test.htm

Starting Scripts

Scripts and batch files are pseudo-executables as they contain script code that can be executed by a 

command line interpreter. 

Running Batch Files

Batch files are text files with the extension ".bat". They may include all the commands allowed in a classic cmd.exe console. When a batch file is opened, the classic console immediately starts to 

execute the commands it contains. Let's check it out. First, create this test file:

Notepad  ping.bat

Now enter this text:

@ echo off

 echo An attacker can  do dangerous things here

pause

Dir  % windir %

pause

Dir  % windir %\system

Save the text and close Notepad. Your batch file is ready for action. Try to launch the batch file by 

entering its name:

Ping

The batch file won't run. Because it has the same name and you didn't specify any IP address or 

Web site address, the Ping command spits out its internal help message. If you want to launch your 

batch file, you're going to have to specify either the relative or absolute path name. 

.\ping

Your batch file opens, then immediately run the commands it contains. 

Table of Contents | About PowerShell Plus

53

Sponsors | Resources | © BBS Technologies



PowerShell has just defended a clever attack. If you were using the classic console, you would have 

been fooled by the attacker. All you have to do is switch over to the classic console and see for 

yourself:

Cmd

Ping 10.10.10.10

 An attacker can do dangerous things here

 Press any key . . . 

If an attacker had smuggled a batch file named "ping.bat" into your current folder, then the Ping command, harmless though it might seem, could have had catastrophic consequences. A classic 

console doesn't distinguish between files and commands. It looks  first in the current folder, finds the batch file, and executes it immediately. Such a mix-up would never happen in the PowerShell 

console. So, return to your much safer PowerShell environment:

Exit

Running VBScript Files

VBScript is another popular automation language as its scripts are tagged with the file extension 

".vbs". What we have just discussed about batch files also applies to these scripts:

Notepad  test.vbs

Enter this VBScript code in Notepad:

 Set wmi = GetObject("winmgmts:")

 Set collection = wmi.ExecQuery("select * from Win32_Process")

 For Each process in collection

   WScript.Echo process.getObjectText_

 Next

You should know how to run this script:

.\ test.vbs  (Enter)

You should first switch the Windows Script Host into the console 

display before running the script so it will output its results directly 

within the console. If you don't do this, every output will be shown 

in its own window and you'll have to manually close each one. 

Wscript  // H:CScript

And this is the way to switch it back to Windows display:

WScript  // H:WScript

Table of Contents | About PowerShell Plus

54

Sponsors | Resources | © BBS Technologies

You can also run your VBS script without switching as a console script by 

directly specifying the script host you want:

CScript  test.vbs

The script lists all running processes and provides many interesting details on 

every process. VBScript is a very versatile and powerful automation 

language, and it's important to show how you can use VBScript files in 

PowerShell. 

Running PowerShell Scripts

PowerShell has its own script files with the file extension ".ps1". While you will learn much more about PowerShell scripts in Chapter 10,  you already know enough to write your first script: Notepad  test.ps1

Enter in Notepad any PowerShell command you like. Everything you've successfully entered in the 

console up to now is allowed. PowerShell scripts function very much like the batch files of the classic 

console: if the script is opened later, PowerShell works through everything in your script one step at 

a time, just as if you had directly entered each line one-by-one in the console. 

Dir

 Get-PSProvider

help Dir

Try to bring it to life after you've saved your script:

.\ test.ps1

 File "C:\Users\UserA\test.ps1" cannot be loaded because the 

 execution of scripts is disabled on this system. Please see 

 "get-help about_signing" for more details. 

 At line:1 char:10

 + .\test.ps1 <<<< 

You'll probably receive an error message similar to the one in the above example. In PowerShell, all 

scripts are at first disabled and cannot be started. PowerShell will start scripts only once you enabled 

them (for which you need admin privileges since a regular user cannot change this setting). You can 

give your permission by entering S et-ExecutionPolicy:

 Set-ExecutionPolicy RemoteSigned

Table of Contents | About PowerShell Plus

55

Sponsors | Resources | © BBS Technologies



This grants permission to run locally stored PowerShell scripts as scripts from the Internet remain 

prohibited unless they have a valid signature. The implications of signatures and other security 

settings will be discussed in Chapter 10.  For now, the command described above should be enough for you to experiment with your own PowerShell scripts. To restore the original setting and prohibit 

PowerShell scripts, you should enter:

 Set-ExecutionPolicy Default

Summary

The PowerShell console runs all kinds of commands interactively: you enter a command, and the 

console will more or less immediately return the results. 

Cmdlets are PowerShell's own internal commands. A cmdlet name always consists of a description of 

an action (verb), and the object of the action (noun). The cmdlet  Get-Command will provide a list of all cmdlets.  Get-Help will also offer information about a particular cmdlet and can also search for cmdlet names when you specify a search phrase and wildcards: Get-Command *Service*

In addition, you can use aliases, functions, and scripts in PowerShell. An alias is a shortcut name for 

any other command, enabling you to create your own convenient shorthand expressions for 

commands you use frequently. Functions and scripts combine several PowerShell commands. If you 

enter a command and execute it by pressing (Enter), PowerShell looks for the command in this 

order:

•

Alias: It will first look to see if your command corresponds to an alias. If it does, the 

command will be executed that the alias designates. You can "overwrite" any other command 

with an alias by using the cmdlet  Set-Alias because aliases have highest priority. 

•

Function: If no alias could be found, PowerShell looks next for a function, which resembles 

an alias, but can consist of many PowerShell instructions. You can wrap commands, including 

frequently used arguments, in functions. 

•

Cmdlet: If it's not possible to find a function, PowerShell looks for cmdlets, which are internal 

PowerShell commands that conform to strict naming rules and whose names always consist of 

a verb and a noun. 

•

Application: PowerShell looks first for a cmdlet, and if it can't find any, it then searches for 

external commands in the subdirectories specified in the  Path environment variables. If you'd 

like to use a command at some other location, then you must specify a relative or absolute 

path name. 

•

Script: If PowerShell can't find any external commands, it looks next for a script with the file 

extension ".ps1". However, scripts are executed only when restrictions of the  ExecutionPolicy are eased, allowing PowerShell scripts to be run. 

•

Files: If no PowerShell scripts are found, PowerShell keeps looking for other files. PowerShell 

reports an error if your command doesn't match any files. 

Again, use Get-Command to find out if there are any ambiguities. 

The next line will list all commands that PowerShell knows that use 

"ping" as a name. 

 Get-Command ping

Table of Contents | About PowerShell Plus

56

Sponsors | Resources | © BBS Technologies

Type this if you'd like to find out whether there are commands with the same 

names in differently named categories that conflict:

 Get-Command  -type cmdlet,  function,alias |  Group-Object name | 

 Where-Object { $_.  count  -gt 1}

Table of Contents | About PowerShell Plus

57

Sponsors | Resources | © BBS Technologies

CHAPTER 3. 

 Variables

It is time to combine commands whenever a single PowerShell command can't solve your problem. 

One way of doing this is by using variables. PowerShell can store results of one command in a 

variable and then pass the variable to another command. 

In addition, variables are rich 'objects' and can do much more than simply store data. In this 

chapter, we'll explain what variables are and how you can use them to solve complex problems. 

Topics Covered:

•

Y

  our Own Variables  

•

S

  electing Variable Names  

•

A

  ssigning and Returning Values  

•

P

  opulating Several Variables with Values Simultaneously  

•

E

  xchanging the Contents of Variables  

•

A

  ssigning Different Values to Several Variables  

•

O

  verview of Variables in Use  

•

F inding Variables  

•

V

  erify Whether a Variable Exists  

•

De

  leting Variables  

•

U

  sing Special Variable Cmdlets  

•

T

  able 3.1: Cmdlets for managing variables  

•

W

  rite-Protecting Variables: Creating Constants  

•

V

  ariables with Description  

•

" Automatic" PowerShell Variables  

•

E

  nvironment Variables  

•

R

  eading Particular Environment Variables  

•

S

  earching for Environment Variables  

•

C

  reating New Environment Variables  

•

De

  leting and Modifying Environment Variables  

•

P

  ermanent Modifications of Environment Variables  

•

Dr

  ive Variables  

•

Di

  rectly Accessing File Paths  

•

T

  able 3.2: Variable areas made available by external providers  

•

A

  d-hoc Variables: Sub-Expressions  

•

S

  cope of Variables  

•

A

  utomatic Restriction  

•

C

  hanging Variable Visibility  

•

A

  dvantage of Lifting Visibility Restrictions: Clear and Unambiguous Start Conditions  

•

S

  etting the Scope of Individual Variables  

•

T

  able 3.3: Variable scopes and validity of variables  

•

T

  able 3.4: Practical usage of scope allocations  

•

V

  ariable Types and "Strongly Typing" 

•

A

  ssigning Fixed Types  

•

T

  he Advantages of Specialized Types  

•

T

  able 3.5: Variable types  

•

V

  ariable Management: Behind the Scenes  

Table of Contents | About PowerShell Plus

58

Sponsors | Resources | © BBS Technologies

•

S

  ubsequent Modification of Variables Options  

•

A

  ctivating Write-Protection  

•

T

  able 3.6: Options of a PowerShell variable  

•

T

  ype Specification of Variables  

•

V

  erifying and Validating Variable Contents  

•

T

  able 3.7: Available variable validation classes  

•

S

  ummary  

Your Own Variables

Variables store information temporarily so you can take the information contained in a variable and 

process it in further steps. 

 # Create variables and assign to values

 $amount  = 120

 $VAT  = 0.19

 # Calculate:

 $result  =  $amount  *  $VAT

 # Output result

 $result

 22.8

 # Replace variables in text with values:

 $text  =  "Net amount $amount matches gross amount $result" 

 $text

 Net amount 120 matches gross amount 142.8

PowerShell creates new variables automatically so there is no need to specifically "declare" 

variables. Simply assign data to a variable. The only thing you need to know is that variable names 

are always prefixed with a "$". 

You can then output the variable content by entering the variable name, or you can merge the 

variable content into text strings. To do that, just make sure the string is delimited by double-

quotes. Single-quoted text will not resolve variables. 

Selecting Variable Names

In PowerShell, a variable name always begins with a dollar sign "$". The rest of the name may 

consist of almost anything you want: letters, numbers, and the underline character. PowerShell 

variable names are not case sensitive. 

There is only one exception: certain special characters have special meaning for PowerShell. While 

you can still use those special characters in variable names, you will then need to enclose the 

variable name in braces. The best suggestion is not to use PowerShell's special characters in variable 

names to avoid braces:

Table of Contents | About PowerShell Plus

59

Sponsors | Resources | © BBS Technologies

 # Variable names with special characters belong in braces:

 ${this variable name is  "unusual,"  but permitted}  =  "Hello World" 

 ${this variable name is  "unusual,"  but permitted}

 Hello World

Assigning and Returning Values

The assignment operator "=" sets a variable to a specified value. You can assign almost anything to a variable, even complete command results:

 # Temporarily store results of a cmdlet:

 $listing  =  Get-ChildItem c:\

 $listing



 Directory: Microsoft.PowerShell.Core\FileSystem::C:\

 Mode                LastWriteTime     Length Name

 ----                -------------     ------ ----

 d----        06.26.2007     15:36            2420

 d----        05.04.2007     21:06            ATI

 d----        08.28.2006     18:22            Documents and settings

 d----        08.08.2007     21:46            EFSTMPWP

 d----        04.28.2007     02:18            perflogs

 (...)

 # Temporarily store the result of a legacy external command:

 $result  = ipconfig

 $result

 Windows IP Configuration

 Ethernet adapter LAN Connection:

 Media state

 . . . . . . . . . . . : Medium disconnected  

 Connection-specific DNS Suffix:

 Ethernet adapter LAN Connection 2:

 Media state

 . . . . . . . . . . . : Medium disconnected

 Connection-specific DNS Suffix:

 Wireless LAN adapter wireless network connection:

 Media state

 . . . . . . . . . . . : Medium disconnected

 Connection-specific DNS Suffix:

Populating Several Variables with Values Simultaneously

Not only can the assignment operator assign values to a single variable, it can set the contents of 

several variables in one step. For example, you could set a whole series of variables to one shared 

initial value:

Table of Contents | About PowerShell Plus

60

Sponsors | Resources | © BBS Technologies

 # Populate several variables with the same value in one step:

 $a  =  $b  =  $c  = 1

 $a

 1

 $b

 1

 $c

 1

Exchanging the Contents of Variables

Now and then you might want to exchange the contents of two variables. In traditional programming 

languages, that would require several steps:

 $Value1  = 10

 $Value2  = 20

 $Temp  =  $Value1

 $Value1  =  $Value2

 $Value2  =  $Temp

With PowerShell, swapping variable content is much easier. First of all, you can write several 

statements in one line if you separate the statements from each other by semi-colon. Second, 

assignment operators will accept several variables on each side that replace each other:

 # Exchange variable values:

 $Value1  = 10;  $Value2  = 20

 $Value1,  $Value2  =  $Value2,  $Value1

Assigning Different Values to Several Variables

The real trick in the last example is the comma. PowerShell always uses the comma to create a 

variable array (a variable that holds more than one value). We'll be exploring these arrays in depth 

in Chapter 4,  but it is important for you to know now that the assignment operator also processes arrays. If you state to its left and right an array having the same number of elements, then it will 

assign the elements of the array on the right side to the elements of the array on the left side. This 

is a way for you to use a single assignment operator to populate different variables with different 

values. It can thus simplify the previous example even more:

 # Populate several variables with the same value in one step:

 $Value1,  $Value2  = 10,20

 $Value1,  $Value2  =  $Value2,  $Value1

Table of Contents | About PowerShell Plus

61

Sponsors | Resources | © BBS Technologies

Overview of Variables in Use

PowerShell keeps a record of all variable assignments, which is accessible via a virtual drive called 

 variable:. To see all currently defined variables, you should just output this drive to a list:

Dir variable:

Don't be surprised to see not only variables you've created yourself, but also many more. The 

reason: PowerShell also defines variables and calls them "automatic variables." You'll learn more about this soon. 

Finding Variables

Using the  variable: virtual drive makes it easy to find variables by allowing wildcards, just like in the file system. If you'd like to see all the variables whose name begins with the letters "value", try this: Dir variable:value *

 Name                           Value

 ----                           -----

 value2                          20

 value1                          10

 Dir lists the two variables  $value1 and  $value2 as well as returning their current contents. You can also use the  Dir parameters  -include and  -exclude (the alias for  Get-ChildItem). The next example uses the  -exclude parameter to find all the variables that begin with the letters "value" but don't use an "l" in their names:

Dir variable:  -include value *  -exclude  * 1 *

 Name                           Value

 ----                           -----

 value2                          20

If you'd like to know which variables currently contain the value  20, the solution isn't quite so 

simple, yet it is still doable. It consists of several commands piped together. 

dir variable: |  Out-String  -stream |  Select-String  " 20 " 

 value2                          20

 $                               20

Here, the output from  Dir is passed on to  Out-String,  which converts the results of  Dir into text. The parameter  -stream ensures that every variable supplied by  Dir is separately output as text.  Select-String selects the lines that include the desired value, filtering out the rest. To ensure that only the desired value is found and not other values that contain the number 20 (like 200), white space is 

added before and after the number 20. 

Table of Contents | About PowerShell Plus

62

Sponsors | Resources | © BBS Technologies

Verify Whether a Variable Exists

To find out whether a variable already exists, you should again do as you would with the file system. 

Using the cmdlet  Test-Path, you can verify whether a certain file exists. Similar to files, variables are stored in their own "drive" called  variable: and every variable has a path name that you can verify with  Test-Path:

 # Verify whether the variable $value2 exists:

 Test-Path variable:\value2

 True

 # verify whether the variable $server exists:

 Test-Path variable:\server

 False

Whether a variable already exists or not doesn't usually matter. When you assign a value to an 

existing variable, the new value will simply overwrite the old one. However, sometimes you might 

want to assign a value only when the variable doesn't exist yet. Also, variables can be write-

protected so that you cannot easily overwrite an existing variable. 

Deleting Variables

Because variables are deleted automatically as soon as you exit PowerShell, you don't necessarily 

need to clean them up manually. If you'd like to delete a variable immediately, again, do exactly as 

you would in the file system:

 # create a test variable:

 $test  = 1

 # verify that the variable exists:

Dir variable:\te *

 # delete variable:

del variable:\test

 # variable is removed from the listing:

Dir variable:\te *

Using Special Variable Cmdlets

To manage your variables, PowerShell provides you with the five separate cmdlets listed in Table 

3.1.  You won't need these for everyday tasks because, as you've just seen, the virtual drive variable: enables you to perform the most important management tasks just as you do in the file 

system. Only two of the five cmdlets really offer you new options:

1.  New-Variable enables you to specify options, such as a description or write protection. This 

makes a variable into a constant. Set-Variable does the same for existing variables. 

2.  Get-Variable enables you to retrieve the internal PowerShell variables store. 

Table of Contents | About PowerShell Plus

63

Sponsors | Resources | © BBS Technologies

Cmdlet

Description

Example

Clears the contents of a variable, but not the variable  Clear-

 Clear-

itself. The subsequent value of the variable is NULL 

Variable a

(empty). If a data or object type is specified for the 

 Variable

 same as: 

variable, by using  Clear-Variable the type of the 

 $a = $null

objected stored in the variable will be preserved. 

 Get-

Gets the variable object, not the value in which the 

Get-Variable 

 Variable

variable is stored. 

a

 New-

Creates a new variable and can set special variable 

New-

Variable 

 Variable

options. 

value 12

Remove-

Deletes the variable, and its contents, as long as the  Variable a

 Remove-

 Variable

variable is not a constant or is created by the 

 same as: 

system. 

 del 

 variable:\a

Resets the value of variable or variable options such  Set-Variable 

 Set-

a 12

as a description and creates a variable if it does not 

 Variable

exist. 

 same as: 

 $a = 12

Table 3.1: Cmdlets for managing variables

Write-Protecting Variables: Creating Constants

Constants store a constant value that cannot be modified. They work like variables with a write-

protection. 

PowerShell doesn't distinguish between variables and constants. However, it does offer you the 

option of write-protecting a variable. In the following example, the write-protected variable  $test is created with a fixed value of 100. In addition, a description is attached to the variable. 

 # Create new variable with description and write-protection:

 New-Variable test  -value 100  -description `

 "test variable with write-protection"   -option ReadOnly

 $test

 100

Table of Contents | About PowerShell Plus

64

Sponsors | Resources | © BBS Technologies

 # Variable contents cannot be modified:

 $test  = 200

 The variable "test" cannot be overwritten since it is a 

 constant or read-only. 

 At line:1 char:6

 + $test  <<<< = 200

The variable is now write-protected and its value may no longer be changed. You'll receive an error 

message if you try to change it. You must delete the variable and re-define it if you want to modify 

its value. Because the variable is write-protected, it behaves like a read-only file. You'll have to 

specify the parameter  -force to delete it:

del variable:\test  -force

 $test  = 200

A write-protected variable can still be modified by deleting it and creating a new copy of it. If you 

need strong protection like in traditional constants, you should create a variable with the  Constant 

option. This will change the variable to a proper constant that may neither be modified nor deleted. 

Only when you quit PowerShell are constants removed. Variables with the  Constant option may only 

be created with  New-Variable. You'll get an error message if a variable already exists that has the specified name:

 #New-Variable cannot write over existing variables:

 New-Variable test  -value 100  -description `

 "test variable with copy protection"   -option Constant

 New-Variable : A variable named "test" already exists. 

 At line:1 Char:13

 + New-Variable  <<<< test -value 100 -description 

 "test variable with copy protection" -option Constant

 # If existing variable is deleted, New-Variable can create 

 # a new one with the "Constant" option:

del variable:\test  -force

 New-Variable test  -value 100  -description `

 "test variable with copy protection"  `

 -option Constant

 # variables with the "Constant" option may neither be 

 # modified nor deleted:

del variable:\test  -force

 Remove-Item : variable "test" may not be removed since it is a 

 constant or write-protected. If the variable is write-protected, 

 carry out the process with the Force parameter. 

 At line:1 Char:4

 + del  <<<< variable:\test -force

You can overwrite an existing variable by using the  -force parameter of  New-Variable. Of course, this is only possible if the existing variable wasn't created with the  Constant option. Variables of the constant type are unchangeable once they have been created, and -force does not change this:

Table of Contents | About PowerShell Plus

65

Sponsors | Resources | © BBS Technologies

 # Parameter -force overwrites existing variables if these do not

 # use the "Constant" option:

 New-Variable test  -value 100  -description  "test variable"   -force

 New-Variable : variable "test" may not be removed since it is a 

 constant or write-protected. 

 At line:1 char:13

 + New-Variable  <<<< test -value 100 -description "test variable" 

 # normal variables may be overwritten with -force without difficulty. 

 $available  = 123

 New-Variable available  -value 100  -description  "test variable"   -force Variables with Description

Variables can have an optional description that helps you keep track of what the variable was 

intended for. However, this description appears to be invisible:

 # Create variable with description:

 New-Variable myvariable  -value 100  -description  "test variable"   -force

 # Variable returns only the value:

 $myvariable

 100

 # Dir and Get-Variable also do not deliver the description:

Dir variable:\myvariable

 Name                           Value

 ----                           -----

 myvariable                     100

 Get-Variable myvariable

 Name                           Value

 ----                           -----

 myvariable                     100

By default, PowerShell only shows the most important properties of an object, and the description of 

a variable isn't one of them. If you'd like to see the description, you have to explicitly request it. You can do this by using the cmdlet  Format-Table (you'll learn much about this in Chapter 5). Using Format-Table,  you can specify the properties of the object that you want to see:

 # variable contains a description:

dir variable:\myvariable | 

 Format-Table Name, Value, Description  -autosize

 Name Value Description

 ---- ----- -----------

 test   100 test variable

Table of Contents | About PowerShell Plus

66

Sponsors | Resources | © BBS Technologies

"Automatic" PowerShell Variables

PowerShell uses variables, too, for internal purposes and calls those "automatic variables." These variables are available right after you start PowerShell since PowerShell has defined them during 

launch. The drive  variable: provides you with an overview of all variables:

Dir variable:

 Name                           Value

 ----                           -----

 Error                          {}

 DebugPreference                SilentlyContinue

 PROFILE                        C:\Users\Tobias Weltner\Documents\

                                WindowsPowerShell\Micro... 

 HOME                           C:\Users\Tobias Weltner

 (...)

To understand the meaning of automatic variables, you can simply view their description:

Dir variable: |  Sort-Object Name | 

 Format-Table Name, Description  -autosize  -wrap

 Name                  Description

 ----                  -----------

 $

 ?                     Execution status of last command. 

 ^

 _

 ConfirmPreference     Dictates when confirmation should be requested. 

                       Confirmation is requested when the ConfirmImpact 

                       of the operation is equal to or greater than 

                       $ConfirmPreference. If $ConfirmPreference is 

                       None, actions will only be confirmed when 

                       Confirm is specified. 

 ConsoleFileName       Name of the current console file. 

 DebugPreference       Dictates action taken when an Debug message is 

                       delivered. 

 Error

 ErrorAction           Dictates action taken when an Error message is 

  Preference           delivered. 

 ErrorView             Dictates the view mode to use when displaying 

                       errors. 

 ExecutionContext      The execution objects available to cmdlets. 

 false                 Boolean False

 FormatEnumeration     Dictates the limit of enumeration on formatting

  Limit                IEnumerable objects. 

 HOME                  Folder containing the current user's profile. 

 Host                  This is a reference to the host of this 

                       Runspace. 

 MaximumAliasCount     The maximum number of aliases allowed in a 

                       session. 

Table of Contents | About PowerShell Plus

67

Sponsors | Resources | © BBS Technologies

 MaximumDriveCount     The maximum number of drives allowed in a 

                       session. 

 MaximumErrorCount     The maximum number of errors to retain in a 

                       session. 

 MaximumFunctionCount  The maximum number of functions allowed in a 

                       session. 

 MaximumHistoryCount   The maximum number of history objects to retain 

                       in a session. 

 MaximumVariableCount  The maximum number of variables allowed in a 

                       session. 

 MyInvocation

 NestedPromptLevel     Dictates what type of prompt should be 

                       displayed for the current nesting level. 

 null                  References to the null variable always return 

                       the null value. Assignments have no effect. 

 OutputEncoding        The text encoding used when piping text to a 

                       native executable. 

 PID                   Current process ID. 

 PROFILE

 ProgressPreference    Dictates action taken when Progress Records 

                       are delivered. 

 PSHOME                Parent folder of the host application of this 

                       Runspace. 

 PWD

 ReportErrorShow       Causes errors to be displayed with a description 

  ExceptionClass       of the error class. 

 ReportErrorShow       Causes errors to be displayed with the inner 

  InnerException       exceptions. 

 ReportErrorShow       Causes errors to be displayed with the source of 

  Source               the error. 

 ReportErrorShow       Causes errors to be displayed with a stack 

                       trace. 

  StackTrace

 ShellId               The ShellID identifies the current shell.  This 

                       is used by #Requires. 

 StackTrace

 true                  Boolean True

 VerbosePreference     Dictates the action taken when a Verbose message 

                       is delivered. 

 WarningPreference     Dictates the action taken when a Warning message 

                       is delivered. 

 WhatIfPreference      If true, WhatIf is considered to be enabled for 

                       all commands. 

Most automatic variables are very well documented. Variables are assigned to three categories:

•

User information: PowerShell permanently stores some important information. For 

example, the path name of the standard profile in  $HOME. In addition, some standard 

variables, like  $true and  $false, are set. 

•

Fine adjustments: Numerous default settings allow the behavior of PowerShell to be 

modified and customized. For example, you can set how detailed error messages are 

reported, or whether a command should continue to execute, in the event of an error. You'll 

learn more about this in Chapter 11.  

Table of Contents | About PowerShell Plus

68

Sponsors | Resources | © BBS Technologies



•

Running time information: PowerShell returns valuable information when it executes 

statements. For example, a function can determine who calls it, or a script can determine the 

location of its folder. 

In other respects, automatic variables are no different from the variables you define yourself as you 

can read the contents and use them in much the same way:

 # Verify user profile:

 $HOME

 C:\Users\UserA

 # Verify PowerShell Process -id and access profile:

 "current process -ID of PowerShell is $PID" 

 current process -ID of PowerShell is 6116

 Get-Process  -id  $PID

 Handles  NPM(K)    PM(K)      WS(K) VM(M)   CPU(s)     Id ProcessName

 -------  ------    -----      ----- -----   ------     -- -----------

     656      22   107620      72344   334   118,69   6116 PowerShell

 # Open the standard user profile in notepad for editing:

notepad  $profile

To find out more, use G et-Help:

 Get-Help about_Automatic_variables

PowerShell write protects several of its automatic variables. While you 

can read them, you can't modify them. That makes sense because 

information, like the process-ID of the PowerShell console or the root 

directory, should not be modified. 

 $pid  = 12

 Cannot overwrite variable "PID" because it is read-only or 

 constant. 

 At line:1 char:5

 + $pid  <<<< = 12

A little later in this chapter, you'll find out more about how write-protection 

works. You'll then be able to turn write-protection off and on for variables that 

already exist. However, you should never do this for automatic variables because 

that can cause the PowerShell console to crash. One reason is because 

PowerShell continually modifies some variables. If you set them to read-only, 

PowerShell may stop and not respond to any inputs. 

Table of Contents | About PowerShell Plus

69

Sponsors | Resources | © BBS Technologies

Environment Variables

Older consoles do not typically have a variable system of their own that was as sophisticated as 

PowerShell's. Instead, those consoles relied on "environment variables," which are managed by 

Windows itself. Environment variables are important sources of information for PowerShell because 

they include many details about the operating system. Moreover, while PowerShell's variable are 

visible only inside of the current PowerShell session, environment variables can persist and thus can 

be readable by other programs. 

Working with environment variables in PowerShell is just as easy as working with internal 

PowerShell variables. All you have to do is to tell PowerShell precisely which variable you mean. To 

do this, you should specify the variable source at the beginning of the variable name. For 

environment variables, it's  env:. 

Reading Particular Environment Variables

You can read the location of the Windows folder of the current computer from a Windows 

environment variable:

 $env:windir

 C:\Windows

By adding  env:, you've instructed PowerShell not to look for the variable  windir in the normal PowerShell variable store, but in Windows environment variables. In other respects, the variable 

behaves just like any other PowerShell variable. For example, you could embed it in the text:

 "The Windows folder is here: $env:windir" 

The Windows folder is here: C:\Windows

You can just as easily use the variable with commands and switch over temporarily to the Windows 

folder in the following way:

 # save in current folder:

 Push-Location

 # change to Windows folder

cd  $env:windir

Dir

 # change back to initial location after executed task

 Pop-Location

Searching for Environment Variables

PowerShell keeps track of Windows environment variables and lists them in the  env: virtual drive. 

So, if you'd like an overview of all existing environment variables, you should just list the contents of 

the  env: drive:

Dir env:

Table of Contents | About PowerShell Plus

70

Sponsors | Resources | © BBS Technologies

 Name             Value

 ----             -----

 Path             C:\Windows\system32;C:\Windows;C:\Windows\System32

                  \Wbem;C:\

 TEMP             C:\Users\TOBIAS~1\AppData\Local\Temp

 ProgramData      C:\ProgramData

 PATHEXT          .COM;.EXE;.BAT;.CMD;.VBS;.VBE;.JS;.JSE;.WSF;.WSH; 

                  .MSC;.4mm

 ALLUSERSPROFILE  C:\ProgramData

 PUBLIC           C:\Users\Public

 OS               Windows_NT

 USERPROFILE      C:\Users\Tobias Weltner

 HOMEDRIVE        C:

 (...)

You'll be able to retrieve the information it contains when you've located the appropriate 

environment variable and you know its name:

 $env:userprofile

 C:\Users\Tobias Weltner

Creating New Environment Variables

You can create completely new environment variables in the same way you create normal variables. 

Just specify in which area the variable is to be created, with  env:

 $env:TestVar  = 12

Dir env:\t *

 Name                           Value

 ----                           -----

 TMP                            C:\Users\TOBIAS~1\AppData\Local\Temp

 TEMP                           C:\Users\TOBIAS~1\AppData\Local\Temp

 TestVar                        12

Deleting and Modifying Environment Variables

Deleting and modifying environment variables are done in the same way as normal PowerShell 

variables. For example, if you'd like to remove the environment variable  windir, just delete it from the  env: drive:

 # Environment variable will be deleted:

del env:\windir

 # Deleted environment variables are no longer available:

 $env:windir

You can modify environment variables by simply assigning new variables to them. The next line will 

turn your system into an Apple computer—at least to all appearances:

Table of Contents | About PowerShell Plus

71

Sponsors | Resources | © BBS Technologies

 $env:OS  =  "Apple MacIntosh OS X" 

Dir env:

 Name                           Value

 ----                           -----

 Path                           C:\Windows\system32;C:\Windows; 

                                C:\Windows\System32\Wbem;C:\

 (...)

 OS                             Apple MacIntosh OS X

 USERPROFILE                    C:\Users\Tobias Weltner

 HOMEDRIVE                      C:

Aren't these changes dangerous? After all, the environment variables control the entire system. 

Fortunately, all changes you make are completely safe and reversible. PowerShell works with a copy 

of real environment variables, the so called "process" set. After closing and restarting PowerShell, the environment variables will return to their previous state. Your changes only affect the current 

PowerShell session. Use direct .NET framework methods to change environment variables 

persistently. We cover those in a moment. 

You can add new folders to the list of trustworthy folders by changing or appending environment 

variables. You have read in Chapter 2 that content in trustworthy folders (documents, scripts, programs) can be launched in PowerShell without having to specify an absolute or relative path 

name or even a file extension. 

 # Create a special folder:

md c:\myTools

 # Create an example script in this folder:

 " 'Hello!' "  > c:\myTools\ sayHello.ps1

 # Usually, you would have to specify a qualified path name:

C:\myTools\ sayHello.ps1

 Hello! 

 # The folder is now added to the path environment:

 $env:path  +=  ";C:\myTools" 

 # All scripts and commands can be started immediately in this 

 # folder simply by entering their name:

sayHello

 Hello! 

Permanent Modifications of Environment Variables

All changes to environment variables only affect the local copy that your PowerShell session is using. 

To make changes permanent, you have two choices. You can either make the changes in one of your 

profile scripts, which get executed each time you launch PowerShell or you can use sophisticated 

.NET methods directly to change the underlying original environment variables. When you do this 

your changes are permanent. 

 $oldValue  = [ environment]:: GetEnvironmentvariable( "Path" ,  "User" )

Table of Contents | About PowerShell Plus

72

Sponsors | Resources | © BBS Technologies





 $newValue  =  ";c:\myTools" 

[ environment]:: SetEnvironmentvariable( "Path" ,  $newValue,  "User" ) Access to commands of the .NET Framework as shown in this 

example will be described in depth in Chapter 6. 

When you close and restart PowerShell, the  Path environment variable will now retain the changed 

value. You can easily check this:

 $env:Path

The permanent change you just made applies only to you, the logged-on user. If you'd like the 

change to be in effect for all computer users, replace the  "User"  argument by  "Machine."  You will need full administrator privileges to do that. 

Change environment variables permanently only when there is no 

other way. For most purposes, it is completely sufficient to change 

the temporary process set from within PowerShell. 

Drive Variables

When you access variables outside of PowerShell's own variable system (like the environment 

variables), the prefix to the variable name really is just the name of the virtual drive that gives 

access to the information. Let's take a closer look:

 $env:windir

Using this statement, you've just read the contents of the environment variable  windir. However, in reality,  env:windir is a file path and leads to the "file"  windir on the  env: drive. So, if you specify a path name behind "$", this variable will furnish the contents of the specified "file". 

Directly Accessing File Paths

This actually works with (nearly) all drives, even with real data drives. In this case, the direct 

variable returns the contents of the actual file. The path must be enclosed in braces because normal 

files paths include special characters like ":" and "\", which PowerShell can misinterpret: ${c:\ autoexec.bat}

 REM Dummy file for NTVDM

Table of Contents | About PowerShell Plus

73

Sponsors | Resources | © BBS Technologies



And there's yet another restriction: the path behind "$" is always interpreted literally. You cannot use variables or environment variables in it. As a result, the following command would be useless 

because PowerShell wouldn't find the file:

 ${ $env:windir\ windowsupdate.log}

This problem could be solved by the cmdlet  Invoke-Expression. It 

executes any kind of command that you pass as a string. Here, you 

could assemble the path name and pass it to  Invoke-Expression:

 $command  =  "`${$env:windir\windowsupdate.log}" 

 Invoke-Expression  $command

The "`" character in front of the first "$", by the way, is not a typo but a 

character as it's known as the "backtick" character. You specify it in front of 

all characters that normally have a special meaning that you want to override 

during the current operation. Without the backtick character, PowerShell 

would interpret the contents in the first line as a direct variable and replace it 

with the value of the variable. But after a backtick, the "$" character remains 

a normal text character. 

Why didn't we enclose the text in the first line in simple quotation marks? 

Because then PowerShell wouldn't have made any automatic replacements. 

The environment variable  $env:windir wouldn't have been resolved, either. 

Consequently, you need the backtick character in text whenever you want to 

resolve only part of the text. 

Direct variables work with most (but not all) drives that  Get-PSDrive reports. For example, you 

would address the function with your path name to see the definition of a function:

 $function:tabexpansion

You can also load functions in Notepad in this way:

 $function:tabexpansion >  function.  ps1; notepad  function.  ps1

Area allocator

Description

 env:

Environment variables

 function:

Functions

 variable:

Variables

Table of Contents | About PowerShell Plus

74

Sponsors | Resources | © BBS Technologies

 [Path name]

File system

Table 3.2: Variable areas made available by external providers

Ad-hoc Variables: Sub-Expressions

There are also variables that are never assigned a value in the first place. Instead, the variable 

contains an expression. The expression is evaluated and yields the result each time you query the 

variable. The code in the parentheses always recalculates the content of this "variable." 

 $(2 + 2)

 4

Why not just simply write:

(2 + 2)

 4

Or even simpler:

2 + 2

 4

 $(2+2) is a variable and, consequently, like all other variables, can be embedded. For example, in text:

 "Result = $(2+2)" 

 Result = 4

You'll find that ad hoc variables are important once you're working with objects and want to output a 

particular object property. We'll discuss objects in more detail later in Chapter 6.  Until then, the following example should make the principle clear:

 # Get file:

 $file  = Dir c:\ autoexec.bat

 # File size given by length property:

 $file.  length

 # To embed the file size in text, ad hoc variables are required:

 "The size of the file is $($file.Length) bytes." 

Try this without ad hoc variables. PowerShell would only have replaced  $file with the value of the variable and appended ".Length" as static text:

Table of Contents | About PowerShell Plus

75

Sponsors | Resources | © BBS Technologies



 "The size of the file is $($file.Length) bytes." 

The size of the file is 

 C:\autoexec.bat.Length bytes. 

Scope of Variables

PowerShell variables can have a "scope" which determines where a variable is available. PowerShell supports four special variable scopes:  global,  local, private, and  script. These scopes allow you to restrict variable visibility in functions or scripts. 

Automatic Restriction

If you don't do anything at all, PowerShell will automatically restrict the visibility of its variables. To see how this works, create a little test script:

Notepad  test1.ps1

Notepad will open. Type the following script, save it, and then close Notepad:

 $windows  =  $env:windir

 "Windows Folder: $windows" 

Now call your script:

.\ test.ps1

If your script doesn't start, script execution may be turned off. By 

entering the command  Set-ExecutionPolicy RemoteSigned, you can 

grant PowerShell permission to run scripts. You'll learn more about 

this in Chapter 10. 

The script reports the Windows folder. From within the script, the folder path is stored in the variable 

 $windows. After the script has done its work, take a look to see what variables the script has left behind: retrieve the variable  $windows. It's empty. The variables in your script were defined in a different scope than the variables within your console and so were isolated from each other. 

 $windows in the console and  $windows in your script are, in fact, completely different variables as shown by this script:

 $windows  =  "Hello" 

.\ test1.ps1

 $windows

 "Hello" 

Table of Contents | About PowerShell Plus

76

Sponsors | Resources | © BBS Technologies

Although the script in its variable  $windows stored other information, the variable  $windows in your console retains its value. PowerShell normally creates its own variable scope for every script and 

every function. 

Changing Variable Visibility

You can easily find out how the result would have looked without automatic restrictions on variable 

visibility. All you do is type a single dot "." before the script file path to turn off restrictions on visibility. Type a dot and a space in front of the script:

 $windows  =  "Hello" 

. .\ test1.ps1

 $windows

 "C:\Windows" 

This time, the variables within the script will take effect on variables in the console. If you launch the script "dot-sourced," PowerShell won't create new variables for your script. Instead, it uses the variable scope of the caller. That has advantages and disadvantages that you'll have to weigh 

carefully in each application. 

Advantage of Lifting Visibility Restrictions: Clear and 

Unambiguous Start Conditions

Imagine an example in which a script creates a read-only variable as a constant. Such variables may 

neither be modified nor removed. This won't be a problem if you start the script with scoping 

restrictions because the constant is created in the variable scope of the script. The entire variable 

scope will be completely disposed of when the script ends. Constants that you create in scripts are 

therefore write-protected only within the script. You can create another test script to verify that:

Notepad  test2.ps1

Type in it the following code, which creates a read-only constant:

 New-Variable a  -value 1  -option Constant

 "Value: $a" 

Save the test script and close Notepad. The write-protected constant will be created when you start 

the script the way you would normally, , but it will also be removed when the script ends. You can 

run the script as often as you wish:

.\ test2.ps1

 Value: 1

.\ test2.ps1

 Value: 1

Table of Contents | About PowerShell Plus

77

Sponsors | Resources | © BBS Technologies



Now try to call the "dot-sourced" script. Because it doesn't include any scoping restrictions anymore, the constant will not be created in the variable scope of the script, but in the variable scope of the 

caller, i.e., the console. The constant will be preserved when the script ends. If you call the script a 

second time, it will fail because it can't overwrite the constant that still exists from the script that 

was last invoked:

. .\ test2.ps1

 Value: 1

. .\ test2.ps1

 New-Variable : A variable with the name "a" already exists. 

 At C:\Users\Tobias Weltner\test2.ps1:1 char:13

 + New-Variable  <<<< a -value 1 -option Constant

It's interesting that you can still always run the script, despite the existing variable  $a,  if you start it again normally and with its own variable scope:

.\ test2.ps1

 Value: 1

The script now takes all variables from the caller's variable scope, and so the existing variable  $a as well, but when new variables are created or existing ones modified, this happens exclusively in the 

script's own variable scope. Therefore, conflicts are minimized when scoping restriction is active. 

This works conversely, too: use the  AllScope option if you'd like to 

expressly prevent the own variable scope from redefining a variable 

from another variable scope. This way, the variable will be copied 

automatically to every new variable scope and created there as a 

local variable. This enables you to prevent constants from being re-

defined in another variable scope:

 # Test function with its own local variable scope tries to 

 # redefine the variable $setValue:

 Function Test { $setValue  = 99;  $setValue }

 # Read-only variable is created. Test function may modify this 

 # value nevertheless by creating a new local variable:

 New-Variable setValue  -option  "ReadOnly"   -value 200

Test

 99

 # Variable is created with the AllScope option and automatically 

 # copied to local variable scope. Overwriting is now no longer 

 # possible. 

 Remove-Variable setValue  -force

 New-Variable setValue  -option  "ReadOnly,<b>AllScope</b>"   -value 

Table of Contents | About PowerShell Plus

78

Sponsors | Resources | © BBS Technologies

200

 The variable "setValue" cannot be overwritten since it is a 

 constant or read-only. 

 At line:1 char:27

 + Function Test {$setValue  <<<< = 99; $setValue }

 200

Setting the Scope of Individual Variables

Up to now, the governing principle was "all or nothing": either all variables of a function or a script were private or they were public (global). Now, let's use the scope modifiers  private,  local,  script, and  global. 

Scope 

Description

allocation

The variable will be created only in the current scope and not 

 $private:tes

 t = 1

passed to other scopes. Consequently, it can only be read and 

written in the current scope. 

Variables will be created only in the local scope. That is the 

 $local:test 

default for variables that are specified without a scope. Local 

 = 1

variables can be read from scopes originating from the current 

scope, but they cannot be modified. 

 $script:test   The variable is valid only in a script, but valid everywhere in it. 

Consequently, a function in a script can address other variables, 

 = 1

which, while defined in a script, are outside the function. 

 $global:test   The variable is valid everywhere, even outside functions and 

 = 1

scripts. 

Table 3.3: Variable scopes and validity of variables

PowerShell automatically creates scopes, even when you first start the PowerShell console. It gets 

the first (global) scope. Additional scopes will be added when you use functions and scripts. Every 

function and every script acquires its own scope. As long as you work from within the PowerShell 

console, there will be only one scope. In this case, all scope allocations will function in exactly the 

same way:

Table of Contents | About PowerShell Plus

79

Sponsors | Resources | © BBS Technologies

 $test  = 1

 $local:test

 1

 $script:test  = 12

 $global:test

 12

 $private:test

 12

Create a second scope by defining a function. As soon as you call the function, PowerShell will switch 

to the function's own new scope. And now things appear somewhat confusing: which rules apply to 

variables and their validity? Let's take a look at what happens to variables that you create in the 

scope of the console and then read or modify in the scope of the function:

 # Define test function:

 Function test {  "variable = $a" ;  $a  = 1000 }

 # Create variable in console scope and call test function:

 $a  = 12

Test

 variable = 12

 # After calling test function, control modifications in console scope:

 $a

 12

When you don't use any special scope allocators, a new scope can read the variables of the old 

scope, but not change them. If the new scope modifies a variable from the old scope, as in the 

example above, then the modification will be automatically created in a new local variable of the new 

scope. The modification has no effect on the old scope. 

Is it possible to prevent variables from the old scope from being read by a new scope? The answer is 

yes. Variables are  private for the allocator, since the variables that you create with it are not passed to other scopes. The function then reports "variable = ", because the variable  $a is suddenly invisible to the function. 

 # Define test function:

 Function test {  "variable = $a" ;  $a  = 1000 }

 # Create variable in console scope and call test function:

 $private:a  = 12

Test

 variable =

 # Check variable for modifications after calling test function in console scope:

Table of Contents | About PowerShell Plus

80

Sponsors | Resources | © BBS Technologies



 $a

 12

Only when you create a completely new variable by using  $private: 

is it in fact private. If the variable already existed, PowerShell will 

not reset the scope of the existing variable. That is (somewhat) 

logical, because there is only one scope in the console scope. The 

existing variable is found under the  private: allocator and so is not 

created again. 

To achieve the result you expect, you must either first remove the existing 

variable $a using the statement  Remove-Variable a before you create it 

again, or manually allocate the status of a private variable to an existing 

variable:  (Get-Variable a).Options = "Private" . Also, by using  (Get-Variable 

 a).Options = "None"  you can make a variable become a local variable again. 

The scope of a variable is disclosed, as shown in Table 3.6,  by selecting the Options property. 

It works conversely too as the function can also modify the variable in the console scope. That's the 

purpose of the  global: allocator. If it's specified, then the statement changes the variable in all existing scopes:

 # Define test function:

 Function test {  "variable = $a" ;  $global:a  = 1000 }

 # Create variable in console scope and call test function:

 Remove-Variable a

 $private:a  = 12

Test

 variable =

 # After calling test function check variable for modifications 

 # in console:

 $a

 1000

The allocator  script: works in a very similar way. It makes a variable global inside of a script, but does not touch variables outside of the script. If you call the function directly from within the 

console, then  global: and  script: will supply the same result. But when you use  script: from within PowerShell scripts, you will create variables that are valid everywhere within the script. However, 

after termination of the script, will have no effect on the console used to call the script. 

Scope

Use

 $global

The variable is valid in all scopes and is preserved when a script or a 

Table of Contents | About PowerShell Plus

81

Sponsors | Resources | © BBS Technologies

function ends its work. 

The variable is valid only within a script, but everywhere within it. 

 $script

Once the script is executed, the variable is removed. 

 $private  The variable is valid only in the current scope, either a script or a 

function. It cannot be passed to other scopes. 

The variable is valid only in the current scope. All scopes called with 

 $local

it can read, but not change, the contents of the variable. 

Modifications are also stored in new local variables of the current 

scope.  $local: is the default if you don't specify a particular scope. 

Table 3.4: Practical usage of scope allocations

Variable Types and "Strongly Typing" 

Variables store arbitrary information when PowerShell automatically picks the appropriate data type. 

You don't have to do anything. However, by appending the command  .GetType().Name to a 

variable, you can verify the data type that PowerShell has chosen for a variable. You don't even 

need the variable. Type the value in parentheses and call  .GetType().Name to find out in which data type PowerShell stores the value:

(12).  GetType().  Name

 Int32

(1000000000000).  GetType().  Name

 Int64

(12.5).  GetType().  Name

 Double

(12d).  GetType().  Name

 Decimal

( "H" ).  GetType().  Name

 String

( Get-Date).  GetType().  Name

Table of Contents | About PowerShell Plus

82

Sponsors | Resources | © BBS Technologies

 DateTime

PowerShell assigns the best-fit  primitive data type for a given value. If a number is too large for a 32-bit integer, it will use a 64-bit integer. If it's a decimal number, then the  Double data type will be used. In the case of text, PowerShell uses the  String data type. Date and time values are stored in DateTime objects. 

This process of automatic selection is called "weakly typed," and while easy, it's also often restrictive

—or even risky. If PowerShell picks the wrong data type, strange things can happen. For example, 

let's say a variable should really store the number of files to be copied. If you erroneously assign a 

text value instead of a numeric value to this variable, PowerShell will happily store the text, not the 

number. The variable type will be automatically modified. This is why professional programmers and 

script developers often prefer strongly typed variables that specify the exact type of data to be 

stored, rather than delivering error messages when a wrong data type is assigned. 

Another reason for a strong type specification: Every data type has its own set of helper functions. 

In fact, PowerShell doesn't always select the best data type for a particular value. For example, 

date, time and XML, are by default stored as plain text in a  String data type. This is somewhat 

unfortunate, because you'll have to do without many useful date or XML commands that use 

specialized  DateTime or  XML data types. So, in practice, there are two important reasons for you to set the variable type yourself:

•

Type safety: If you have assigned a type to a variable yourself, then the type will be 

preserved no matter what happens and will never be automatically modified. You can be 

 absolutely sure that a value of the correct type is stored in the variable. If later on someone 

were to mistakenly assign a value to the variable that doesn't match the originally chosen 

type, this will cause an error message to be delivered. 

•

Special variable types: When automatically assigning a variable type, PowerShell takes into 

consideration only general variable types like  Int32 or  String. Often, it's appropriate to store values in a specialized variable type like  DateTime in order to be able to use the special 

commands and options available for this variable type. 

Assigning Fixed Types

To assign a particular type to a variable, enclose it in square brackets before the variable name. For 

example, if you know that a particular variable should hold only numbers in the range 0 to 255, you 

could create this variable explicitly with the  Byte type:

[ Byte] $flag  = 12

 $flag.  GetType().  Name

 Byte

The variable will now store your contents in a single byte, which is not only very economical, but it 

will also flag it with an error if a value outside the permissible range is specified:

 $flag  = 300

 The value "300" cannot be converted to the type "System.Byte". 

 Error: "The value for an unsigned byte was too large or too small." 

 At line:1 char:6

Table of Contents | About PowerShell Plus

83

Sponsors | Resources | © BBS Technologies

 + $flag  <<<< = 300

The Advantages of Specialized Types

There is an additional and important reason to assign data types manually because every data type 

has its own set of special commands. For example, a date can be stored as text in a  String data 

type. And that's just exactly what PowerShell does: it's not clever enough to automatically guess 

that this really is a date or time:

 $date  =  "November 12, 2004" 

 $date

 November 12, 2004

If you store a date as  String, then you'll have no access to special date functions. Only  DateTime objects make them available. So, if you're working with date and time indicators, it's better to store 

them explicitly as  DateTime:

[ datetime] $date  =  "November 12, 2004" 

 $date

 Friday, November 12, 2004 00:00:00

The output of the variable will now immediately tell you the day of the week corresponding to the 

date, and also enable comprehensive date and time calculation commands. That makes it easy, for 

example, to find the date 60 days later:

 $date.  AddDays(60)

 Tuesday, January 11, 2005 00:00:00

PowerShell supports all the usual .NET variable types that you find in Table 3.5.  XML documents can be much better processed using the  XML data type then the standard  String data type:

 # PowerShell stores a text in XML format as a string:

 $t  =  "<servers><server name='PC1' ip='10.10.10.10'/>"   + 

 "<server name='PC2' ip='10.10.10.12'/></servers>" 

 $t

 <servers><server name='PC1' ip='10.10.10.10'/> 

 <server name='PC2' ip='10.10.10.12'/></servers> 

 # If you assign the text to a data type[xml], you'll 

 # suddenly be able to access the XML structure:

[ xml] $list  =  $t

 $list.  servers

 server

 ------

 {PC1, PC2}

Table of Contents | About PowerShell Plus

84

Sponsors | Resources | © BBS Technologies

 $list.  servers.server

 name                                          ip

 ----                                          --

 PC1                                           10.10.10.10

 PC2                                           10.10.10.12

 # Even changes to the XML contents are possible:

 $list.  servers.server[0].  ip  =  "10.10.10.11" 

 $list.  servers

 name                                          ip

 ----                                          --

 PC1                                           10.10.10.11

 PC2                                           10.10.10.12

 # The result could be output again as text, including the 

 # modification:

 $list.  get_InnerXML()

 <servers><server name="PC1" ip="10.10.10.11" /> 

 <server name="PC2" ip="10.10.10.12" /></servers> 

Variable 

Description

Example

type

[array]

An array

[bool]

Yes-no value

[boolean]$flag = $true

[byte]

Unsigned 8-bit integer, 0...255

[byte]$value = 12

[char]

Individual unicode character

[char]$a = "t" 

[datetime]$date = 

[datetime]

Date and time indications

"12.Nov 2004 12:30" 

[decimal]

Decimal number

[decimal]$a = 12

$a = 12d

Double-precision floating point 

[double]

$amount = 12.45

decimal

[guid]

Globally unambiguous 32-byte 

[guid]$id = 

Table of Contents | About PowerShell Plus

85

Sponsors | Resources | © BBS Technologies

[System.Guid]::NewGuid(

identification number

)$id.toString()

[hashtable]

Hash table

[int16]

16-bit integer with characters

[int16]$value = 1000

[int32], 

32-bit integers with characters

[int32]$value = 5000

[int]

[int64], 

64-bit integers with characters

[int64]$value = 4GB

[long]

Widens another data type to include  [Nullablè`1[[System.Dat

[nullable]

the ability to contain null values. It 

eTime]]]$test = Get-Date

can be used, among others, to 

$test = $null

implement optional parameters

[psobject]

PowerShell object

[regex]

Regular expression

$text = "Hello World" 

[regex]::split($text, "lo")

[sbyte]

8-bit integers with characters

[sbyte]$value = -12

[scriptblock] PowerShell scriptblock

[single], 

Single-precision floating point 

[single]$amount = 44.67

[float]

number

[string]

String

[string]$text = "Hello" 

[switch]

PowerShell switch parameter

[timespan]$t = New-

[timespan]

Time interval

TimeSpan $(Get-Date) 

"1.Sep 07" 

[type]

Type

Table of Contents | About PowerShell Plus

86

Sponsors | Resources | © BBS Technologies

[uint16]

Unsigned 16-bit integer

[uint16]$value = 1000

[uint32]

Unsigned 32-bit integer

[uint32]$value = 5000

[uint64]

Unsigned 64-bit integer

[uint64]$value = 4GB

[xml]

XML document

Table 3.5: Variable types

Variable Management: Behind the Scenes

Whenever you create a new variable in PowerShell, it will be stored "behind the scenes" in a 

 PSVariable object. This object contains not just the value of the variable, but also other information, such as the description that you assigned to the variable or additional options like write-protection. 

If you retrieve a variable in PowerShell, PowerShell will return only the variable value. If you'd like to see the remaining information that was assigned to the variable, you'll need the underlying 

 PSVariable object.  Get-Variable will get it to you:

 $testvariable  =  "Hello" 

 $psvariable  =  Get-Variable testvariable

You can now display all the information about  $testvariable by outputting  $psvariable. To see all object properties and not just the default properties, pipe the output to the cmdlet  Format-List:

 $psvariable |  Format-List

 Name        : testvariable

 Description :

 Value       : Hello

 Options     : None

 Attributes  : {}

•

Description: The description you specified for the variable. 

•

Value: the value assigned currently to the variable (i.e. its contents). 

•

Options: Options that have been set such as write-protection or  AllScope. 

•

Attributes: Additional features, such as permitted data type of a variable for strongly typed 

variables. The brackets behind  Attributes indicate that this is an array, which can consist of 

several values that can be combined with each other. 

Table of Contents | About PowerShell Plus

87

Sponsors | Resources | © BBS Technologies

Subsequent Modification of Variables Options

One reason for dealing with the  PSVariable object of a variable is to modify the variable's settings. 

Use either the cmdlet  Set-Variable or directly modify the  PSVariable object. For example, if you'd like to change the description of a variable, get the appropriate  PSVariable object and modify its Description property:

 # Create new variable:

 $test  =  "New variable" 

 # Create PSVariable object:

 $psvariable  =  Get-Variable test

 # Modify description:

 $psvariable.  Description  =  "Subsequently added description" 

Dir variable:\test |  Format-Table name, description

 Name               Description

 ----               -----------

 test               Subsequently added description

 # Get PSVariable object and directly modify the description:

( Get-Variable test).  Description  = 

 "An additional modification of the description." 

Dir variable:\test |  Format-Table name, description

 Name               Description

 ----               -----------

 test               An additional modification of the description. 

 # Modify a description of an existing variable with Set-Variable:

 Set-Variable test  -description  "Another modification" 

Dir variable:\test |  Format-Table name, description

 Name               Description

 ----               -----------

 test               Another modification

As you can see in the example above, you do not need to store the  PSVariable object in its own 

variable to access its  Description property. Instead, use a sub-expression, i.e. a statement in 

parentheses. PowerShell will then evaluate the contents of the sub-expression separately. The 

expression directly returns the required  PSVariable object so you can then call the  Description property directly from the result of the sub-expression. You could have done the same thing by 

using  Set-Variable. Reading the settings works only with the  PSVariable object:

( Get-Variable test).  Description

 An additional modification of the description. 

Table of Contents | About PowerShell Plus

88

Sponsors | Resources | © BBS Technologies

Activating Write-Protection

You can manipulate other variable properties, too. For example, if you'd like to write-protect a 

variable, do this:

 $Example  = 10

 # Put option directly in PSVariable object:

( Get-Variable Example).  Options  =  "ReadOnly" 

 # Modify option as wish with Set-Variable; because the variable 

 # is read-only, -force is required:

 Set-Variable Example  -option  "None"   -force

 # Write-protection turned off again; variable contents may now 

 # be modified freely:

 $Example  = 20

The  Constant option must be set when a variable is created because you may not convert an 

existing variable into a constant. 

 # A normal variable may not be converted into a constant:

 $constant  = 12345

( Get-Variable constant).  Options  =  "Constant" 

 Exception in setting "Options": "The existing variable "constant" 

 may not be set as a constant. Variables may only be set as 

 constants when they are created." 

 At line:1 char:26

 + (Get-Variable constant).O <<<< options = "Constant" 

The remaining two options,  Private and  AllScope, are the basis for local and global variables as they can then be extracted using the method described above. 

Option

Description

 "None" 

NO option (default)

 "ReadOnly  Variable contents may only be modified by means of the  -force 

 " 

parameter

 "Constant

Variable contents can't be modified at all. This option must already 

be specified when the variable is created. Once specified this 

 " 

option cannot be changed. 

 "Private" 

The variable is visible only in a particular context (local variable). 

 "AllScope"  The variable is automatically copied in a new variable scope. 

Table of Contents | About PowerShell Plus

89

Sponsors | Resources | © BBS Technologies

Table 3.6: Options of a PowerShell variable

Type Specification of Variables

PowerShell stores the strict data type of a variable in the  Attributes property if you specified a special type. As long as  Attributes is empty, the variable will store any type of data and PowerShell will automatically select the appropriate data type. 

Once you assign a fixed data type to a variable, the data type will be stored in the  Attributes 

property, setting the variable to the assigned data type. If you delete the  Attributes property, the variable will be un-typed again and stores all kinds of data:

 # List attributes and delete:

( Get-Variable a).  Attributes

 TypeId

 ------

 System.Management.Automation.ArgumentTypeConverterAttribute

 # Delete type specification:

( Get-Variable a).  Attributes.Clear()

 # Strong type specification is removed; now the variable can 

 # store text again:

 $a  =  "Test" 

Verifying and Validating Variable Contents

The  Attributes property of a  PSVariable object can include additional conditions, such as the maximum length of a variable. In the following example, a valid length from 2 to 8 characters is 

assigned to a variable. An error will be generated if you try to store text that is shorter than 2 

characters or longer than 8 characters:

 $a  =  "Hello" 

 $aa  =  Get-Variable a

 $aa.  Attributes.Add( $( New-Object `

 System.Management.Automation.ValidateLengthAttribute `

 -argumentList 2,8))

 $a  =  "Permitted" 

 $a  =  "Prohibited because its length is not from 2 to 8 characters" 

 Because of an invalid value verification (Prohibited because 

 its length is not from 2 to 8 characters) may not be carried out for 

 the variable "a". 

 At line:1 char:3

 + $a  <<<< = "Prohibited because its length is not from 2 to 8

In the above example  Add() added a new .NET object to the  attributes with  New-Object. You'll learn more about  New-Object in Chapter 6.  Along with  ValidateLengthAttribute, there are additional restrictions that you can place on variables. 

Table of Contents | About PowerShell Plus

90

Sponsors | Resources | © BBS Technologies

Restriction

Category

Variable may not be zero

 ValidateNotNullAttribute

 ValidateNotNullOrEmptyAttribut

Variable may not be zero or empty

 e

Variable must match a Regular Expression

 ValidatePatternAttribute

Variable must match a particular number 

 ValidateRangeAttribute

range

Variable may have only a particular set value  ValidateSetAttribute

Table 3.7: Available variable validation classes

In the following example, the variable must contain a valid e-mail address or all values not matching 

an e-mail address will generate an error. The e-mail address is defined by what is called a Regular 

Expression. You'll learn more about Regular Expressions in Chapter 13. 

 $email  =  "tobias.weltner@powershell.com" 

 $v  =  Get-Variable email

 $pattern  =  "\b[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,4}\b" 

 $v.  Attributes.Add( $( New-Object `

 System.Management.Automation.ValidatePatternAttribute `

 -argumentList  $pattern))

 $email  =  "valid@email.de" 

 $email  =  "invalid@email" 

 Because of an invalid value verification (invalid@email) may not 

 be carried out for the variable "email". 

 At line:1 char:7

 + $email  <<<< = "invalid@email" 

If you want to assign a set number range to a variable, use  ValidateRangeAttribute. The variable 

 $age accepts only numbers from 5 to 100:

 $age  = 18

 $v  =  Get-Variable age

 $v.  Attributes.Add( $( New-Object `

 System.Management.Automation.ValidateRangeAttribute `

 -argumentList 5,100))

 $age  = 30

 $age  = 110

Table of Contents | About PowerShell Plus

91

Sponsors | Resources | © BBS Technologies



 Because of an invalid value verification (110) may not be 

 carried out for the variable "age". 

 At line:1 char:7

 + $age  <<<< = 110

If you would like to limit a variable to special key values,  ValidateSetAttribute is the right option. The variable  $option accepts only the contents  yes,  no, or  perhaps:

 $option  =  "yes" 

 $v  =  Get-Variable option

 $v.  Attributes.Add( $( New-Object `

 System.Management.Automation.ValidateSetAttribute `

 -argumentList  "yes" ,  "no" ,  "perhaps" ))

 $option  =  "no" 

 $option  =  "perhaps" 

 $option  =  "don't know" 

 Verification cannot be performed because of an invalid value 

 (don't know) for the variable "option". 

 At line:1 char:8

 + $option  <<<< = "don't know" 

The validations that you applied to variables in the above example 

were originally designed for cmdlets, but you can also use them for 

variables as well. 

If you'd like to find out more about the parameters that a cmdlet accepts, 

you should simply examine the attribute of the cmdlet parameter and look for 

validation entries. The following example examines all parameters of the  Get-

 ChildItem cmdlet and takes a closer look at the range of permitted values of 

the  -OutBuffer parameter:

 # Output all parametersets:

( Get-Command  Get-ChildItem).  ParameterSets

 (...)

 # Output names of parametersets:

( Get-Command  Get-ChildItem).  ParameterSets | 

 ForEach-Object {  $_.  Name }

 Items

 LiteralItems

 # List all parameters of all parametersets:

( Get-Command  Get-ChildItem).  ParameterSets | 

 ForEach-Object {  $_.  Parameters } |  ForEach-Object {  $_.  Name }

 # Select one parameter:

 $parameter  = ( Get-Command  Get-ChildItem).  ParameterSets | 

 ForEach-Object {  $_.  Parameters } | 

Table of Contents | About PowerShell Plus

92

Sponsors | Resources | © BBS Technologies

   Where-Object {  $_.  Name  -eq  "OutBuffer"  } | 

 Select-Object  -first 1

 $parameter

 Name                            : OutBuffer

 ParameterType                   : System.Int32

 IsMandatory                     : False

 IsDynamic                       : False

 Position                        : -2147483648

 ValueFromPipeline               : False

 ValueFromPipelineByPropertyName : False

 ValueFromRemainingArguments     : False

 HelpMessage                     :

 Aliases                         : {ob}

 Attributes                      : 

 {System.Management.Automation. 

                                   AliasAttribute, 

 __AllParameter

                                   Sets,System.Management.Auto

 mat

                                   ion.ValidateRangeAttribute}

 # Determine permitted values:

 $parameter.  Attributes | 

 Where-Object {  $_.  TypeId  -match  "ValidateRangeAttribute"  }

 MinRange    MaxRange  TypeId

 --------    --------  ------

 0         2147483647  System.Management.Automat... 

Summary

Variables store any information. The variable name always begins with the dollar sign "$". The 

variable name can consist of numbers, characters, and special characters like the underline 

character "_". Variables are not case-sensitive. If you'd like to use characters in variable names with special meaning to PowerShell (like parenthesis), the variable name must be enclosed in braces. 

PowerShell doesn't require that variables be specifically created or declared before use. 

Aside from the variables that you create yourself, there are predefined variables that PowerShell 

creates called "automatic variables." These variables function like self-defined variables, but they already include useful key system data or configuration data for PowerShell. 

PowerShell always stores variables internally in a  PSVariable object. For example, it contains settings that write-protect a variable or attach a description to it (Table 3.6). It's easiest for you to activate this special function by using the  New-Variable or  Set-Variable cmdlets (Table 3.1). 

Table of Contents | About PowerShell Plus

93

Sponsors | Resources | © BBS Technologies

By default, variables store any values you want. PowerShell automatically ensures that the variable type matches the value. If you'd like to set variables to a particular variable type ("strong type 

specification"), specify the desired type (Table 3.5) in square brackets before the variable name. 

Then the variable will store only the values that match the type. In addition, the variable will now 

enable the special commands associated with the variable type, such as date manipulation and math 

with the  DateTime variable type. 

Every variable is created in a fixed scope, which PowerShell uses to determine the valid scope of a 

variable. When PowerShell starts, an initial variable scope is created, and every script and every 

function receive their own respective scope. You may specify a special scope by typing the name of 

the desired scope before the variable name and separating it with a colon from the variable name. 

You can use the  local:,  private:,  script:, and  global: scopes, to address local and global variables. In addition, further providers can make their own scopes available, which enable you to address their 

information just like normal variables. For example, environment variables, which can be accessed 

through  env: (Table 3.2). 

Finally, direct variables are special variable types. Variable names determine their values. Either a 

valid file path is specified as a valid file path, and the variable outputs the contents of this data 

object, or the variable name consists of PowerShell code in parentheses. PowerShell then 

recalculates the respective "contents" of the variable. 

Table of Contents | About PowerShell Plus

94

Sponsors | Resources | © BBS Technologies

CHAPTER 4. 

 Arrays and Hash Tables

No matter how many results a command returns, you can always store the results in a variable 

because of a clever trick. PowerShell automatically wraps results into an array when there is more 

than one result. In this chapter, you'll learn how arrays work. 

You'll also discover a special type of array, a hash table. While normal arrays use a numeric index to 

access their elements, hash tables use key-value-pairs. 

Topics Covered:

•

P

  owerShell Commands Return Arrays  

•

S

  toring Results in Arrays  

•

F urther Processing of Array Elements in a Pipeline  

•

W

  orking with Real Objects  

•

C

  reating New Arrays  

•

P

  olymorphic Arrays  

•

A

  rrays With Only One (Or No) Element  

•

A

  ddressing Array Elements  

•

C

  hoosing Several Elements from an Array  

•

A

  dding Elements to an Array and Removing Them  

•

U

  sing Hash Tables  

•

C

  reating a New Hash Table  

•

S

  toring Arrays in Hash Tables  

•

In

  serting New Keys in an Existing Hash Table  

•

M

  odifying and Removing Values  

•

U

  sing Hash Tables for Output Formatting  

•

C

  opying Arrays and Hash Tables  

•

S

  trongly Typed Arrays  

•

S

  ummary  

PowerShell Commands Return Arrays

If you store the result of a command in a variable and then output it, you might at first think that 

the variable contains plain text:

 $a  = ipconfig

 $a

 Windows IP Configuration

 Ethernet adapter LAN Connection

 Media state

 . . . . . . . . . . . : Medium disconnected

    

 Connection-specific DNS Suffix:

    Connection location IPv6 Address  . : fe80::6093:8889:257e:8d1%8

Table of Contents | About PowerShell Plus

95

Sponsors | Resources | © BBS Technologies



    IPv4 address  . . . . . . . . . . . : 192.168.1.35

    Subnet Mask . . . . . . . . . . . . : 255.255.255.0

    Standard Gateway . . . . . . . . . . : 192.168.1.1

However, that's not true. Each line is stored as a separate value in your variable and the variable is 

really an array. This happens automatically whenever a command returns more than one result. 

Storing Results in Arrays

This is how you identify arrays:

 $a  =  "Hello" 

 $a  -is [ Array]

 False

 $a  = ipconfig

 $a  -is [ Array]

 True

If the result is an array, you can find the number of elements stored in it by using the  Count 

property:

 $a.  Count

 53

In this example, the  ipconfig command returned 53 single results that are all stored in  $a. If you'd like to examine a single array element, specify its index number. If an array has 53 elements, its 

valid index numbers are 0 to 52 (the index always starts at 0). 

 # Show the second element:

 $a[1]

 Windows IP Configuration

Whether or not the result is an array depends on the number of 

results that were returned. If more than one, PowerShell returns 

an array. Otherwise, it returns the result directly so the same 

command can behave differently from case to case, depending on 

the number of results. 

 $result  = Dir

 $result  -is [ array]

 True

Table of Contents | About PowerShell Plus

96

Sponsors | Resources | © BBS Technologies

 $result  = Dir C:\ autoexec.bat

 $result  -is [ array]

 False

Use the construct  @() i f you'd like to force a command to always return its 

result in an array. This way the command will always return an array, even if 

the command returns only one result or none at all. This way you find out the 

number of files in a folder:

 $result  = @(Dir)

 $result.  Count

Or in a line:

@(Dir).  Count

Further Processing of Array Elements in a Pipeline

 Ipconfig returns each line of text as array, enabling you to process them individually:

 # Store result of an array and then pass along a pipeline to Select-String:

 $result  = ipconfig

 $result |  Select-String  "Address" 



 Connection location IPv6 Address . . . : fe80::6093:8889:257e:8d1%8

    IPv4 address  . . . . . . . . . . . : 192.168.1.35

    Connection location IPv6 Address  . : fe80::5efe:192.168.1.35%16

    

 Connection location IPv6 Address . . . : fe80::14ab:a532:a7b9:cd3a%11

 # Everything in one line: output only lines including the 

 # word "address":

ipconfig |  Select-String  "Address" 



 Connection location IPv6 Address . . . : fe80::6093:8889:257e:8d1%8

    IPv4-Adress . . . . . . . . . . . . : 192.168.1.35

 Connection location IPv6 Address . . . : fe80::5efe:192.168.1.35%16

 Connection location IPv6 Address . . . : fe80::14ab:a532:a7b9:cd3a%11

The result of  ipconfig was passed to  Select-String,  which is a text filter that allows only text lines that include the searched word through the PowerShell pipeline. With minimal effort, you can reduce the 

results of  ipconfig to the information you find relevant. 

Table of Contents | About PowerShell Plus

97

Sponsors | Resources | © BBS Technologies

Working with Real Objects

 Ipconfig is a legacy command, not a modern PowerShell cmdlet. While it is a command that returns 

individual information stored in arrays, this individual information consists of text. Real PowerShell 

cmdlets return rich objects, not text, even though this is not apparent at first:

Dir



 Directory: Microsoft.PowerShell.Core\FileSystem::C:\Users\

 Tobias Weltner

 Mode                LastWriteTime     Length Name

 ----                -------------     ------ ----

 d----        10/01/2007     16:09            Application Data

 d----        07/26/2007     11:03            Backup

 d-r--        04/13/2007     15:05            Contacts

 d----        06/28/2007     18:33            Debug

 d-r--        10/04/2007     14:21            Desktop

 d-r--        10/04/2007     21:23            Documents

 d-r--        10/09/2007     12:21            Downloads

 (...)

Let's check if the return value is an array:

 $result  = Dir

 $result.  Count

 82

Every element in an array represents a file or a directory. So if you output an element from the 

array to the console, PowerShell automatically converts the object back into text:

 # Access the fifth element:

 $result[4]



 Directory: Microsoft.PowerShell.Core\FileSystem::C:\Users\

 Tobias Weltner

 Mode                LastWriteTime     Length Name

 ----                -------------     ------ ----

 d-r--        04.10.2007     14:21            Desktop

You will realize that each element is much more than plain text when you pass it to the Format-List 

cmdlet and use an asterisk to see all of its properties:

 # Display all properties of this element:

 $result[4] |  Format-List  *

 PSPath            : Microsoft.PowerShell.Core\FileSystem::

                     C:\Users\Tobias Weltner\Desktop

 PSParentPath      : Microsoft.PowerShell.Core\FileSystem::

Table of Contents | About PowerShell Plus

98

Sponsors | Resources | © BBS Technologies

                     C:\Users\Tobias Weltner

 PSChildName       : Desktop

 PSDrive           : C

 PSProvider        : Microsoft.PowerShell.Core\FileSystem

 PSIsContainer     : True

 Mode              : d-r--

 Name              : Desktop

 Parent            : Tobias Weltner

 Exists            : True

 Root              : C:\

 FullName          : C:\Users\Tobias Weltner\Desktop

 Extension         :

 CreationTime      : 04/13/2007 01:54:53

 CreationTimeUtc   : 04/12/2007 23:54:53

 LastAccessTime    : 10/04/2007 14:21:20

 LastAccessTimeUtc : 10/04/2007 12:21:20

 LastWriteTime     : 10/04/2007 14:21:20

 LastWriteTimeUtc  : 10/04/2007 12:21:20

 Attributes        : ReadOnly, Directory

You'll learn more about these types of objects in Chapter 5. 

Creating New Arrays

You can create your own arrays, too. The easiest way is to use the comma operator:

 $array  = 1,2,3,4

 $array

 1

 2

 3

 4

Specify the single elements that you want to store in the array and then separate them by a comma. 

There's even a special shortcut for sequential numbers:

 $array  = 1..4

 $array

 1

 2

 3

 4

Table of Contents | About PowerShell Plus

99

Sponsors | Resources | © BBS Technologies



Polymorphic Arrays

Just like variables, individual elements of an array can store any type of value you assign. This way, 

you can store whatever you want in an array, even a mixture of different data types. You can 

separate the elements using commas:

 $array  =  "Hello" ,  "World" , 1, 2, ( Get-Date)

 $array

 Hello

 World

 1

 2

 Tuesday, August 21, 2007 12:12:28

Why is the  Get-Date cmdlet in the last example enclosed in 

parentheses? Just try it without parentheses. Arrays can only store 

data.  Get-Date is a command and no data. Since you want 

PowerShell to evaluate the command first and then put its result 

into the array, you need to use parentheses. Parentheses identify a 

sub-expression and tell PowerShell to evaluate and process it first. 

Arrays With Only One (Or No) Element

How do you create arrays with just one single element? Here's how:

 $array  = ,1

 $array.  Length

 1

You'll need to use the construct  @(...) to create an array without any elements at all:

 $array  = @()

 $array.  Length

 0

 $array  = @(12)

 $array

 12

 $array  = @(1,2,3,  "Hello" )

 $array

Table of Contents | About PowerShell Plus

100

Sponsors | Resources | © BBS Technologies

 1

 2

 3

 Hello

Addressing Array Elements

Every element in an array is addressed using its index number. Negative index numbers count from 

last to first. You can also use expressions that calculate the index value:

 # Create your own new array:

 $array  =  - 5..12

 # Access the first element:

 $array[0]

 -5

 # Access the last element (several methods):

 $array[ - 1]

 12

 $array[ $array.  Count- 1]

 12

 $array[ $array.  length- 1]

 12

 # Access a dynamically generated array that is not stored in a variable:

( - 5..12)[2]

 -3

Remember, the first element in your array always has the index number 0. The index  -1 will always 

give you the  last element in an array. The example demonstrates that the total number of all 

elements will be returned in two properties:  Count and  Length. Both of these properties will behave identically. 

Choosing Several Elements from an Array

You can use square brackets to select multiple elements in an array. In doing that, you get a new 

array containing only the selected elements from the old array:

 # Store directory listing in a variable:

 $list  = dir

 # Output only the 2nd, 5th, 8th, and 13th entry:

Table of Contents | About PowerShell Plus

101

Sponsors | Resources | © BBS Technologies



 $list[1,4,7,12]

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\Users\

 Tobias Weltner

 Mode                LastWriteTime     Length Name

 ----                -------------     ------ ----

 d----        07/26/2007     11:03     Backup

 d-r--        08/20/2007     07:52     Desktop

 d-r--        08/12/2007     10:21     Favorites

 d-r--        04/13/2007     01:55     Saved Games

The second line selects the second, fifth, eighth, and thirteenth elements (remember that the index 

begins at 0). You can use this approach to reverse the contents of an array:

 # Create an array with values from 1 to 10

 $array  = 1..10

 # Select the elements from 9 to 0 (output array contents 

 # in reverse order):

 $array  =  $array[( $array.  length- 1)..0]

 $array

 10

 9

 ... 

 1

Reversing the contents of an array using the approach (described 

above) is not particularly efficient because PowerShell has to store 

the result in a new array. Instead, you should use the special array 

functions of the .NET Framework (see Chapter 6). They enable you 

to reverse the contents of an array very efficiently:

 # Create an array containing text and output contents:

 $a  = ipconfig

 $a

 # Reverse array contents and then output it again:

[ array]:: Reverse( $a)

 $a

Adding Elements to an Array and Removing Them

Arrays always contain a fixed number of elements. You'll have to make a new copy of the array with 

a new size to add or remove elements later. You can simply use the "+=" operator to do that and 

then add new elements to an existing array:

 # Add a new element to an existing array:

 $array  +=  "New Value" 

Table of Contents | About PowerShell Plus

102

Sponsors | Resources | © BBS Technologies

 $array

 1

 2

 3

 New Value

Array sizes can't be modified so PowerShell will work behind the scenes to create a brand-new, 

larger array, copying the contents of the old array into it, and adding the new element. PowerShell 

works exactly the same way when you want to delete elements from an array. Here, too, the original 

array is copied to a new, smaller array while disposing of the old array. For example, the next line 

removes elements 4 and 5 using the indexes 3 and 4:

 $array  =  $array[0..2]  +  $array[5..10]

 $array.  Count

 9

Using Hash Tables

Hash tables store "key-value pairs." So, in hash tables you do not use a numeric index to address individual elements, but rather the key you assigned to a value. 

Creating a New Hash Table

To create a new hash table, use  @{} instead of  @(), and specify the key-value pair that is to be stored in your new hash table. Use semi-colons to separate key-value pairs:

 # Create a new hash table with key-value pairs

 $list  = @{Name  =  "PC01" ; IP ="10.10.10.10" ; User ="Tobias Weltner" }

 Name                           Value

 ----                           -----

 Name                           PC01

 IP                             10.10.10.10

 User                           Tobias Weltner

 # Access to the key "IP" returns the assigned value:

 $list[ "IP" ]

 10.10.10.10

 # As for arrays, several elements can be selected at the same time:

 $list[ "Name" ,  "IP" ]

 PC01

 10.10.10.10

Table of Contents | About PowerShell Plus

103

Sponsors | Resources | © BBS Technologies

 # A key can also be specified by dot notation:

 $list.  IP

 10.10.10.10

 # A key can even be stored in a variable:

 $key  =  "IP" 

 $list.  $key

 10.10.10.10

 # Keys returns all keys in the hash table:

 $list.  keys

 Name

 IP

 User

 # If you combine this, you can output all values in the hash table

 $list[ $list.  keys]

 PC01

 10.10.10.10

 Tobias Weltner

The example shows that you retrieve the values in the hash table using the assigned key. There are 

two forms of notation you can use to do this:

•

Square brackets:  Either you use square brackets, like in arrays; 

•

Dot notation:  Or you use dot notation, like with objects, and specify respectively the key 

name with the value you want to return. The key name can be specified as a variable. 

The square brackets can return several values at the same time exactly like arrays if you specify 

several keys and separate them by a comma. Note that the key names in square brackets must be 

enclosed in quotation marks (you don't have to do this if you use dot notation). 

Storing Arrays in Hash Tables

You can store classic array inside of hash tables, too. This is possible because hash tables use the 

semi-colon as key-value-pair separators, leaving the comma available to create classic arrays:

 # Create hash table with arrays as value:

 $test  = @{ value1  = 12; value2  = 1,2,3 }

 # Return values (value 2 is an array with three elements):

 $test.  value1

 12

 $test.  value2

Table of Contents | About PowerShell Plus

104

Sponsors | Resources | © BBS Technologies

 1

 2

 3

Inserting New Keys in an Existing Hash Table

If you'd like to insert new key-value pairs in an existing hash table, just specify the new key and the 

value that is to be assigned to the new key. Again, you can choose between the square brackets and 

dot notations. 

 # Create a new hash table with key-value pairs

 $list  = @{Name  =  "PC01" ; IP ="10.10.10.10" ; User ="Tobias Weltner" }

 # Insert two new key-value pairs in the list (two different 

 # notations are possible):

 $list.  Date  =  Get-Date

 $list[ "Location" ]  =  "Hanover" 

 # Check result:

 $list

 Name                           Value

 ----                           -----

 Name                           PC01

 Location                       Hanover

 Date                           08/21/2007 13:00:18

 IP                             10.10.10.10

 User                           Tobias Weltner

Because it's easy to insert new keys in an existing hash table you can create empty hash tables and 

then insert keys as needed:

 # Create empty hash table

 $list  = @{}

 # Subsequently insert key-value pairs when required

 $list.  Name  =  "PC01" 

 $list.  Location  =  "Hanover" 

(...)

Modifying and Removing Values

If all you want to do is to change the value of an existing key in your hash table, just overwrite the 

value:

 # Overwrite the value of an existing key with a new value (two possible notations):

 $list[ "Date" ]  = ( Get-Date).  AddDays( - 1)

 $list.  Location  =  "New York" 

 Name                           Value

 ----                           -----

 Name                           PC01

Table of Contents | About PowerShell Plus

105

Sponsors | Resources | © BBS Technologies

 Location                       New York

 Date                           08/20/2007 13:10:12

 IP                             10.10.10.10

 User                           Tobias Weltner

If you'd like to completely remove a key from the hash table, use  Remove() and as an argument 

specify the key that you want to remove:

 $list.  remove( "Date" )

Using Hash Tables for Output Formatting

An interesting use for hash tables is to format text. Normally, PowerShell outputs the result of most 

commands as a table and internally uses the cmdlet  Format-Table:

 # Both lines return the same result:

Dir

Dir |  Format-Table

If you use  Format-Table, you can pass it a hash table with formatting specifications. This enables you to control how the result of the command is formatted. 

Every column is defined with its own hash table. In the hash table, values are assigned to the 

following four keys:

•

Expression: The name of object property to be displayed in this column 

•

Width: Character width of the column 

•

Label: Column heading 

•

Alignment: Right or left justification of the column 

All you need to do is to pass your format definitions to  Format-Table to ensure that your listing 

shows just the name and date of the last modification in two columns:

 # Setting formatting specifications for each column in a hash table:

 $column1  = @{expression ="Name" ; width = 30; `

label ="filename" ; alignment ="left" }

 $column2  = @{expression ="LastWriteTime" ; width = 40; `

label ="last modification" ; alignment ="right" }

 # Output contents of a hash table:

 $column1

 Name                           Value

 ----                           -----

 alignment                      left

 label                          File name

 width                          30

 expression                     Name

 # Output Dir command result with format table and 

 # selected formatting:

Table of Contents | About PowerShell Plus

106

Sponsors | Resources | © BBS Technologies

Dir |  Format-Table  $column1,  $column2

 File Name           Last Modification

 ---------           ---------------

 Application Data    10/1/2007  16:09:57

 Backup              07/26/2007 11:03:07

 Contacts            04/13/2007 15:05:30

 Debug               06/28/2007 18:33:29

 Desktop             10/4/2007  14:21:20

 Documents           10/4/2007  21:23:10

 (...)

You'll learn more about format cmdlets like  Format-Table in the Chapter 5. 

Copying Arrays and Hash Tables

Copying arrays or hash tables from one variable to another works, but may produce unexpected 

results. The reason is that arrays and hash tables are not stored directly in variables, which always 

store only a single value. When you work with arrays and hash tables, you are dealing with a 

 reference to the array or hash table. So, if you copy the contents of a variable to another, only the reference will be copied, not the array or the hash table. That could result in the following 

unexpected behavior:

 $array1  = 1,2,3

 $array2  =  $array1

 $array2[0]  = 99

 $array1[0]

 99

Although the contents of  $array2 were changed in this example, this affects  $array1 as well, because they are both identical. The variables  $array1 and  $array2 internally reference the same storage area. Therefore, you have to create a copy if you want to copy arrays or hash tables,:

 $array1  = 1,2,3

 $array2  =  $array1.  Clone()

 $array2[0]  = 99

 $array1[0]

 1

Whenever you add new elements to an array (or a hash table) or remove existing ones, a copy 

action takes place automatically in the background and its results are stored in a new array or hash 

table. The following example clearly shows the consequences:

 # Create array and store pointer to array in $array2:

 $array1  = 1,2,3

 $array2  =  $array1

 # Assign a new element to $array2. A new array is created in the process and stored 

 in $array2:

Table of Contents | About PowerShell Plus

107

Sponsors | Resources | © BBS Technologies

 $array2  += 4

 $array2[0] = 99

 # $array1 continues to point to the old array:

 $array1[0]

 1

Strongly Typed Arrays

Arrays are typically polymorphic: you can store any type of value you want in any element. 

PowerShell automatically selects the appropriate type for each element. If you want to limit the type 

of data that can be stored in an array, use "strong typing" and predefine a particular type. You should specify the desired variable type in square brackets. You also specify an open and closed 

square bracket behind the variable type because this is an array and not a normal variable:

 # Create a strongly typed array that can store whole numbers only:

[ int[]] $array  = 1,2,3

 # Everything that can be converted into a number is allowed 

 # (including strings):

 $array  += 4

 $array  += 12.56

 $array  +=  "123" 

 # If a value cannot be converted into a whole number, an error 

 # will be reported:

 $array  +=  "Hello" 

 The value "Hello" cannot be converted into the type "System.Int32". 

 Error: "Input string was not in a correct format." 

 At line:1 char:6

 + $array  <<<< += "Hello" 

In the example,  $array was defined as an array of the  Integer type. Now, the array is able to store only whole numbers. If you try to store values in it that cannot be turned into whole numbers, an 

error will be reported. 

Summary

Arrays and hash tables can store as many separate elements as you like. Arrays assign a sequential 

index number to elements that always begin at 0. Hash tables in contrast use a key name. That's 

why every element in hash tables consists of a key-value pair. 

You create new arrays with  @(Element1, Element2, ...). You can also leave out  @() for arrays and only use the comma operator. You create new hash tables with  @{key1=value1;key2=value2; ...). 

@{} must always be specified for hash tables. Semi-colons by themselves are not sufficient to 

create a new hash table. 

Table of Contents | About PowerShell Plus

108

Sponsors | Resources | © BBS Technologies

You can address single elements of an array or hash able by using square brackets. Specify either the index number (for arrays) or the key (for hash tables) of the desired element in the square 

brackets. Using this approach you can select and retrieve several elements at the same time. 

Table of Contents | About PowerShell Plus

109

Sponsors | Resources | © BBS Technologies

CHAPTER 5. 

 The PowerShell Pipeline

The PowerShell pipeline chains together a number of commands similar to a production assembly. 

So, one command hands over its result to the next, and at the end, you receive the result. 

Topics Covered:

•

U

  sing the PowerShell Pipeline  

•

O

  bject-oriented Pipeline  

•

T

  ext Not Converted Until the End  

•

T

  able 5.1: Typical pipeline cmdlets and functions  

•

S

  treaming: Real-time Processing or Not? 

•

" Blocking" Pipeline Commands  

•

C

  onverting Objects into Text  

•

M

  aking Object Properties Visible  

•

F ormatting Pipeline Results  

•

Di

  splaying Particular Properties  

•

U

  sing Wildcard Characters  

•

S

  criptblocks and "Synthetic" Properties  

•

C

  hanging Column Headings  

•

O

  ptimizing Column Width  

•

 P

   ropertySets  and Views   

•

S

  orting and Grouping Pipeline Results  

•

S

  ort Object and Hash Tables  

•

G

  rouping Information  

•

U

  sing Grouping Expressions  

•

U

  sing Formatting Cmdlets to Form Groups  

•

F iltering Pipeline Results  

•

F iltering Objects Out of the Pipeline  

•

S

  electing Object Properties  

•

L imiting Number of Objects  

•

P

  rocessing All Pipeline Results Simultaneously  

•

R

  emoving Doubles  

•

A

  nalyzing and Comparing Results  

•

S

  tatistical Calculations  

•

C

  omparing Objects  

•

C

  omparing Before-and-After Conditions  

•

De

  tecting Changes to Objects  

•

C

  omparing File Contents  

•

S

  aving Snapshots for Later Use  

•

E

  xporting Pipeline Results  

•

S

  uppressing Results  

•

C

  hanging Pipeline Formatting  

•

F orcing Text Display  

•

E

  xcel: Exporting Objects  

•

H

  TML Outputs  

•

T

  he Extended Type System (Part One)  

•

R

  endering Text as Text and Only Text  

•

Y

  our Wish Has Priority  

Table of Contents | About PowerShell Plus

110

Sponsors | Resources | © BBS Technologies

•

K

  nown Objects and Formatting  

•

U

  nknown Objects  

•

E

  mergency Mode  

•

" The Case of the Vanished Column" 

•

E

  TS Enhancement  

•

P

  lanning Enhancement  

•

S

  ummary  

Using the PowerShell Pipeline

Instruction chains are really nothing new. The old console was able to forward (or "pipe") the results of a command to the next with the "pipe" operator "|". One of the more known usages was to pipe data to the tool  more,  which then would present the data screen page by screen page:

Dir | more

In contrast to the traditional concept of text piping, the PowerShell pipeline takes an object-oriented 

approach and implements it in real time. Have a look:

Dir |  Sort-Object Length |  Select-Object Name, Length | 

 ConvertTo-Html |  Out-File  report.htm

.\ report.htm

It returns an HTML report on the current directory contents sorted by file size. All of this starts with 

a  Dir command, which then passes its result to  Sort-Object. The sorted result then gets limited to only the properties you want in the report.  ConvertTo-Html converts the objects to HTML which is 

then written to a file. 

Object-oriented Pipeline

What you see here is a true object-oriented pipeline so the results from a command remain rich 

objects. Only at the end of the pipeline will the results be reduced to text or HTML or whatever you 

choose for output. Take a look at  Sort-Object. It sorts the directory listing by file size. If the pipeline had simply fed plain text into  Sort-Object, you would have had to tell  Sort-Object just where the file size information was to be found in the raw text. You would also have had to tell  Sort-Object to sort this information numerically and not alphabetically. Not so here. All you need to do is tell  Sort-Object which object property you want to sort. The object nature tells  Sort-Object all it needs to know: where the information you want to sort is found, and whether it is numeric or letters. 

You only have to tell  Sort-Object which object property to use for sorting because PowerShell sends results as rich .NET objects through the pipeline.  Sort-Object does all the rest automatically. Simply replace  Length with another object property, such as  Name or  LastWriteTime, to sort according to these criteria. Unlike text, information in an object is clearly structured: this is a crucial PowerShell 

pipeline advantage. 

Table of Contents | About PowerShell Plus

111

Sponsors | Resources | © BBS Technologies



Text Not Converted Until the End

The PowerShell pipeline is always used, even when you provide only a single command. PowerShell 

attaches to your input the cmdlet  Out-Default which converts the resulting objects into text at the end of the pipeline. 

Even a simple  Dir command is appended internally and converted into a pipeline command:

Dir |  Out-Default

Of course, the real pipeline benefits show only when you start adding more commands. The chaining 

of several commands allows you to use commands like Lego building blocks to assemble a complete 

solution from single commands. The following command would output only a directory's text files 

listing in alphabetical order:

Dir  *.  txt |  Sort-Object

The cmdlets in Table 5.1 have been specially developed for the pipeline and the tasks frequently performed in it. They will all be demonstrated in the following pages of this chapter. 

Just make sure that the commands you use in a pipeline actually 

do process information from the pipeline. The following line, while 

it is technically OK, is really useless because  notepad.exe cannot 

process pipeline results:

Dir |  Sort-Object | notepad

If you'd like to open pipeline results in an editor, you should put the results in 

a file first and then open the file with the editor:

Dir |  Sort-Object |  Out-File  result.txt; notepad  result.txt

Cmdlet/Functi

Description

on

 Compare-Object  Compares two objects or object collections and marks their 

differences

 ConvertTo-Html

Converts objects into HTML code

 Export-Clixml

Saves objects to a file (serialization)

 Export-Csv

Saves objects in a comma-separated values file

Table of Contents | About PowerShell Plus

112

Sponsors | Resources | © BBS Technologies

 ForEach-Object

Returns each pipeline object one after the other

 Format-List

Outputs results as a list

 Format-Table

Outputs results as a table

 Format-Wide

Outputs results in several columns

 Get-Unique

Removes duplicates from a list of values

 Group-Object

Groups results according to a criterion

Imports objects from a file and creates objects out of them 

 Import-Clixml

(deserialization)

 Measure-Object

Calculates the statistical frequency distribution of object 

values or texts

 more

Returns text one page at a time

 Out-File

Writes results to a file

 Out-Host

Outputs results in the console

 Out-Host 

Returns text one page at a time

 -paging

 Out-Null

Deletes results

 Out-Printer

Sends results to printer

 Out-String

Converts results into plain text

 Select-Object

Filters properties of an object and limits number of results 

as requested

 Sort-Object

Sorts results

 Tee-Object

Copies the pipeline's contents and saves it to a file or a 

Table of Contents | About PowerShell Plus

113

Sponsors | Resources | © BBS Technologies



variable

 Where-Object

Filters results according to a criterion

Table 5.1: Typical pipeline cmdlets and functions

Streaming: Real-time Processing or Not? 

When you combine several commands in a pipeline, you'll want to ask  when each separate 

command will actually be processed: consecutively or at the same time? The pipeline processes the 

results in real time, at least when the commands chained together in the pipeline support real-time 

processing. That's why there are two pipeline modes:

•

Sequential (slow) mode: In sequential mode, pipeline commands are executed one at a 

time. So the command's results are passed on to the next one only after the command has 

completely performed its task. This mode is slow and hogs memory because results are 

returned only after all commands finish their work and the pipeline has to store the entire 

results of each command. The sequential mode basically corresponds to the variable concept 

that first saves the result of a command to a variable before forwarding it to the next 

command. 

•

Streaming Mode (quick): The streaming mode immediately processes each command 

result. Every single result is directly passed onto the subsequent command. It rushes through 

the entire pipeline and is immediately output. This quick mode saves memory because results 

are output while the pipeline commands are still performing their tasks. The pipeline doesn't 

have to store all of the command's results, but only one single result at a time. 

"Blocking" Pipeline Commands

You can sort pipeline results through a blocking operation because sorting can only take place when 

all results are available. This also means there can be long processing times and it can even cause 

instability if you don't pay attention to memory requirements:

 # Attention: danger! 

Dir C:\  -recurse |  Sort-Object

If you execute this extreme example, you won't see any signs of 

life from PowerShell for a long time. If you let the command run 

too long, you may even lose control of your computer and have to 

reboot it because it runs out of memory. What's going on here? 

In this example  Dir returns all files and directors of C:\. These results are 

passed by the pipeline to  Sort-Object, and because  Sort-Object can only sort 

the results when all of them are available, it collects the results as they come 

in. Those results then create a "data jam" in the pipeline. The two problem 

Table of Contents | About PowerShell Plus

114

Sponsors | Resources | © BBS Technologies

areas in sequential mode are:

First problem: You won't see any activity as long as data is being collected. 

The more data that has to be acquired, the longer the wait time will be. In 

the above example, it can take several minutes. 

Second problem: Because enormous amounts of data have to be stored 

temporarily before  Sort-Object can process them, the memory space 

requirement is very high. In this case, it's even higher that the entire 

Windows system will respond more and more clumsily until finally you won't 

be able to control it any longer. 

That's not all. In this specific case, confusing error messages will pile up: if 

you have  Dir output a complete recurse folder listing, it may encounter 

subdirectories where you have no access rights. This will lead to (benign) 

error messages that will always be immediately output. Since the results of 

the  Dir command are passed along the pipeline to the following command, 

which collects it before outputting it, error messages will appear out of the 

blue. 

So, if you use sequential pipeline commands like Sort-Object, which block the 

pipeline and wait for all results, make sure the pipeline is not processing 

excessive amount of data. 

Whether a command supports streaming is up to the programmer. For  Sort-Object, there are 

technical reasons why this command must first wait for all results. Otherwise, it wouldn't be able to 

sort the results. If you use commands that are not designed for PowerShell then clearly their original 

programmers could not have taken into account the special demands of PowerShell. For example, if 

you use the traditional command  more.com to output information one page at a time, it will work 

but  more.com is also a blocking command that could interrupt pipeline streaming:

 # If the preceding command can execute its task quickly, 

 # you may not notice that it can be a block:

Dir |  more.com

 # If the preceding command requires much time, 

 # its blocking action may cause issues:

Dir c:\  -recurse |  more.com

But also genuine PowerShell cmdlets, functions, or scripts can block pipelines if the programmer 

doesn't use streaming. Surprisingly, PowerShell developers forgot to add streaming support to the 

integrated  more function. This is why  more essentially doesn't behave much differently than the ancient  more.com command:

 # The more function doesn't support streaming, either, 

 # and that means you'll have to wait:

Dir c:\  -recurse | more

Table of Contents | About PowerShell Plus

115

Sponsors | Resources | © BBS Technologies



The cmdlet  Out-Host means you don't have to wait. Its parameter  -paging also supports page-by-page outputs. Because this cmdlet supports streaming, you won't have to sit in front of the console 

twiddling your thumbs:

Dir c:\  -recurse |  Out-Host  -paging

In Chapters 9 and 10,  you'll learn what a programmer has to watch out for so that PowerShell cmdlets, functions, or scripts will support 

the pipeline streaming mode. 

Converting Objects into Text

At the end of a day, you want commands to return visible results, not objects. So, while results stay 

rich data objects while traveling the pipeline, at the end of the pipeline, they must be converted into 

text. This is done by (internally) adding  Out-Default to your input. The following commands are 

identical:

Dir

Dir |  Out-Default

 Out-Default transforms the pipeline result into visible text. To do so, it first calls  Format-Table (or Format-List when there are more than five properties to output) internally, followed by  Out-Host. 

 Out-Host outputs the text in the console. So, this is what happens internally:

Dir |  Format-Table |  Out-Host

Making Object Properties Visible

To really see all the object properties and not just the ones PowerShell "thinks" are important, use Format-Table and add a "*" to select all object properties. 

Dir |  Format-Table  *

 PSPat PSPar PSChi PSDri PSPro PSIsC Mode Name Pare Exis Root Full

 h     entPa ldNam ve    vider ontai           nt     ts      Name

       th    e                   ner                              

                                                                  

                                                                  

 ----- ----- ----- ----- ----- ----- ---- ---- ---- ---- ---- ----

 Mi... Mi... Ap... C     Mi...  True d... A... T... True C:\  C... 

 Mi... Mi... Ba... C     Mi...  True d... B... T... True C:\  C... 

 Mi... Mi... Co... C     Mi...  True d... C... T... True C:\  C... 

 Mi... Mi... Debug C     Mi...  True d... D... T... True C:\  C... 

 Mi... Mi... De... C     Mi...  True d... D... T... True C:\  C... 

Table of Contents | About PowerShell Plus

116

Sponsors | Resources | © BBS Technologies



You now get so much information that columns shrink to an unreadable format. 

For example, if you'd prefer not to reduce visual display because of 

lacking space, use the  -wrap parameter, like this:

Dir |  Format-Table  *  -wrap

Still, the horizontal table design is unsuitable for more than just a handful of properties. This is why 

PowerShell uses  Format-List instead of  Format-Table whenever there are more than five properties to display, and you should do the same:

Dir |  Format-List  *

You will now see a list of several lines for each object's property. For a folder, it might look like this: PSPath            : Microsoft.PowerShell.Core\FileSystem::C:\

                     Users\Tobias Weltner\Music

 PSParentPath      : Microsoft.PowerShell.Core\FileSystem::C:\

                     Users\Tobias Weltner

 PSChildName       : Music

 PSDrive           : C

 PSProvider        : Microsoft.PowerShell.Core\FileSystem

 PSIsContainer     : True

 Mode              : d-r--

 Name              : Music

 Parent            : Tobias Weltner

 Exists            : True

 Root              : C:\

 FullName          : C:\Users\Tobias Weltner\Music

 Extension         :

 CreationTime      : 13.04.2007 01:54:53

 CreationTimeUtc   : 12.04.2007 23:54:53

 LastAccessTime    : 10.05.2007 21:37:26

 LastAccessTimeUtc : 10.05.2007 19:37:26

 LastWriteTime     : 10.05.2007 21:37:26

 LastWriteTimeUtc  : 10.05.2007 19:37:26

 Attributes        : ReadOnly, Directory

A file has slightly different properties:

 PSPath            : Microsoft.PowerShell.Core\FileSystem::C:\

                     Users\Tobias Weltner\views.PS1

 PSParentPath      : Microsoft.PowerShell.Core\FileSystem::C:\

                     Users\Tobias Weltner

 PSChildName       : views.PS1

 PSDrive           : C

 PSProvider        : Microsoft.PowerShell.Core\FileSystem

 PSIsContainer     : False

 Mode              : -a---

Table of Contents | About PowerShell Plus

117

Sponsors | Resources | © BBS Technologies

 Name              : views.PS1

 Length            : 4045

 DirectoryName     : C:\Users\Tobias Weltner

 Directory         : C:\Users\Tobias Weltner

 IsReadOnly        : False

 Exists            : True

 FullName          : C:\Users\Tobias Weltner\views.PS1

 Extension         : .PS1

 CreationTime      : 18.09.2007 16:30:13

 CreationTimeUtc   : 18.09.2007 14:30:13

 LastAccessTime    : 18.09.2007 16:30:13

 LastAccessTimeUtc : 18.09.2007 14:30:13

 LastWriteTime     : 18.09.2007 16:46:12

 LastWriteTimeUtc  : 18.09.2007 14:46:12

 Attributes        : Archive

The property names are located on the left and their content on the right. You now know how to find 

out which properties an object contains. 

Formatting Pipeline Results

Transforming objects produced by the pipeline is carried out by formatting cmdlets. There are four 

choices:

 Get-Command  -verb format

 CommandType  Name           Definition

 -----------  ----           ----------

 Cmdlet       Format-Custom  Format-Custom [[-Property] <Objec... 

 Cmdlet       Format-List    Format-List [[-Property] <Object[... 

 Cmdlet       Format-Table   Format-Table [[-Property] <Object... 

 Cmdlet       Format-Wide    Format-Wide [[-Property] <Object>... 

These formatting cmdlets are not just useful for converting all of an object's properties into text but 

you can also select the properties you want to see. 

Displaying Particular Properties

To do so, you should type the property that you want to see and not just an asterisk behind the 

cmdlet. The next instruction gets you a directory listing with only  Name and  Length. Because subdirectories don't have a property called  Length, the  Length column for the subdirectory is empty: Dir |  Format-Table Name, Length

 Name                 Length

 ----                 ------

 Sources

 Test

 172.16.50.16150.dat  16

Table of Contents | About PowerShell Plus

118

Sponsors | Resources | © BBS Technologies

 172.16.50.17100.dat  16

 output.htm           10834

 output.txt           1338

Using Wildcard Characters

Wildcard characters are allowed so the next command outputs all running processes that begin with 

"l". All properties starting with "pe" and ending in "64" are output:

 Get-Process i * |  Format-Table name,pe * 64

 Name          PeakPagedMemory  PeakWorkingSet64  PeakVirtualMemory

               Size64                             Size64

 ----          ---------------  ----------------  -----------------

 IAAnotif              3432448           6496256           81596416

 IAANTmon               761856           2363392           25346048

 Idle                        0                 0                  0

 ieuser               12193792          25616384          180887552

 iexplore             37224448          52764672          203845632

 IfxPsdSv              1396736           3436544           43646976

 IFXSPMGT              3670016           9932800           73412608

 IFXTCS                3375104           7675904           72654848

 iPodService           3231744           5177344           57401344

 iTunesHelper          2408448           5935104           70582272

If you want to use even more complex wildcards, regular expressions are permitted (more 

information coming in Chapter 13). For example, WMI objects that are returned by  Get-WmiObject contain a number of properties that PowerShell returns and that all begin with the "__" character. To exclude these properties, you should use a wildcard like this one:

 Get-WmiObject Win32_Share |  Format-List [ a-z] *

 Status         : OK

 Type           : 2147483648

 Name           : ADMIN$

 AccessMask     :

 AllowMaximum   : True

 Caption        : Remote Admin

 Description    : Remote Admin

 InstallDate    :

 MaximumAllowed :

 Path           : C:\Windows

 Status         : OK

 Type           : 2147483648

 Name           : C$

 AccessMask     :

 AllowMaximum   : True

 Caption        : Default share

 Description    : Default share

 InstallDate    :

 MaximumAllowed :

Table of Contents | About PowerShell Plus

119

Sponsors | Resources | © BBS Technologies

 Path           : C:\

 (...)

Scriptblocks and "Synthetic" Properties

Scriptblocks can be used as columns as they basically act as PowerShell instructions included in 

braces that work like synthetic properties to calculate their value. Within a scriptblock, the variable 

$_ contains the actual object. The scriptblock could convert the  Length property into kilobytes if you'd like to output file sizes in kilobytes rather than bytes:

Dir |  Format-Table Name, { [ int]( $_.  Length/ 1KB) }

 Name        [int]($_.Length/1KB)

 ----        --------------------

 output.htm                    11

 output.txt                    13

 backup.pfx                     2

 cmdlet.txt                    23

Or perhaps you'd like your directory listing to denote how many days have passed since a file or a 

subdirectory was last modified. While the file object doesn't furnish such information, you could 

calculate this by means of available properties and provide it its own new property. In the 

 LastWriteTime property, the date of the last modification is indicated. By using the  New-TimeSpan cmdlet, you can calculate how much time has elapsed up to the current date. To see how this works, 

look at the line below as an example that calculates the time difference between January 1, 2000, 

and the current date:

 New-TimeSpan  "01/01/2000"  ( Get-Date)

 Days              : 2818

 Hours             : 11

 Minutes           : 59

 Seconds           : 3

 Milliseconds      : 699

 Ticks             : 2435183436996134

 TotalDays         : 2818,49934837516

 TotalHours        : 67643,9843610037

 TotalMinutes      : 4058639,06166022

 TotalSeconds      : 243518343,699613

 TotalMilliseconds : 243518343699,613

Use this scriptblock to output how many days have elapsed from the  LastWriteTime property up to 

the current date and to read it out in its own column:

{( New-TimeSpan  $_.  LastWriteTime ( Get-Date)).  Days}

 Dir would then return a subdirectory listing that shows how old the file is in days:

Dir |  Format-Table Name, Length, `

{( New-TimeSpan  $_.  LastWriteTime ( Get-Date)).  Days}  -autosize

Table of Contents | About PowerShell Plus

120

Sponsors | Resources | © BBS Technologies

 Name              Length (New-TimeSpan 

                          $_.LastWriteTime 

                          (Get-Date)).Days

 ----              ------ ----------------

 Application Data                       61

 Backup                                 55

 Contacts                              158

 Debug                                  82

 Desktop                                19

 Documents                               1

 (...)

Changing Column Headings

As you use synthetic properties, you'll notice that column headings look strange because PowerShell 

puts code in them that computes the column contents. However, after reading the last chapter,  you know that you can use a hash table to format columns more effectively and that you can also 

rename them:

 $column  = @{Expression ={ [ int]( $_.  Length/ 1KB) }; Label ="KB"  }

Dir |  Format-Table Name,  $column

 Name        KB

 ----        --

 output.htm  11

 output.txt  13

 backup.pfx   2

 cmdlet.txt  23

Optimizing Column Width

Text output conforms to the width of your PowerShell console's display buffer as it tries to 

accommodate as much data as possible. Because the pipeline processes results in real time,  Format-

 Table cannot know how wide of a space the column elements will occupy. As a result, the cmdlet 

tends to be generous in sizing columns. If you specify the  -auto parameter,  Format-Table will collect all results first before setting the maximum width for all elements. You can optimize output, but the 

results will no longer be output in real time:

 $column  = @{Expression ={ [ int]( $_.  Length/ 1KB) }; Label ="KB"  }

Dir |  Format-Table Name,  $column  -auto

 Name        KB

 ----        --

 output.htm  11

 output.txt  13

 backup.pfx   2

 cmdlet.txt  23

Table of Contents | About PowerShell Plus

121

Sponsors | Resources | © BBS Technologies

 PropertySets and Views

If you don't specify any particular properties behind the formatting cmdlet, PowerShell will 

determine which object properties to convert into text. This automatic feature comes from what is 

known as the Extended Type System (ETS), which you'll learn more about a bit later. For many 

commands, PowerShell supplies  PropertySets,  which are compilations of especially important object properties. They make it unnecessary to specify properties manually, yet still receive basic 

information. 

If you output the result of  Get-Process without further specifications, PowerShell will routinely 

convert the following  Process properties objects into text:

 Get-Process

 Handles  NPM(K)  PM(K)  WS(K)  VM(M)  CPU(s)    Id  ProcessName

 -------  ------  -----  -----  -----  ------    --  -----------

      36       2    712     48     21          2616  agrsmsvc

     328       9  16620   3752    114           464  AppSvc32

     105       3   1044    592     37          1228  Ati2evxx

You can set quite a different priority by specifying a  PropertySet like  PSResources after  Format-Table:

 Get-Process |  Format-Table PSResources

 Name        Id  Handle  Working  PagedMem  Private   VirtualMe Total

                 Count   Set      orySize   Memory    morySize  Process

                                            Size      or Time

 ----        --  ------  -------  --------  --------  --------- -------

 agrsmsvc  2616      36    49152    729088    729088   21884928

 AppSvc32   464     328  3842048  17018880  17018880  119091200

 Ati2evxx  1228     105   606208   1069056   1069056   38473728

 Ati2evxx  1732     130  3743744   2097152   2097152   50249728

 ATSwpNav  2064      79  1069056   4808704   4808704   60739584   00:09

 (...)

And PowerShell will select other properties when you use the  PropertySet  PSConfiguration:

 Get-Process |  Format-Table PSConfiguration

 Name        Id PriorityClass  FileVersion

 ----        -- -------------  -----------

 agrsmsvc  2616

 AppSvc32   464

 Ati2evxx  1228

 Ati2evxx  1732

 ATSwpNav  2064 Normal         7, 7, 0, 25

This raises the question of what exactly is a  PropertySet and how to find out what they are about. 

 PropertySets are defined for each cmdlet. If you want to see which  PropertySets are available for the Get-Process cmdlet, use G et-Member to list all members of the  PropertySet type:

Table of Contents | About PowerShell Plus

122

Sponsors | Resources | © BBS Technologies

 Get-Process |  Get-Member  -MemberType PropertySet



 TypeName: System.Diagnostics.Process

 Name            MemberType  Definition

 ----            ----------  ----------

 PSConfiguration PropertySet PSConfiguration {Name, Id, 

                             PriorityClass, FileVersion}

 PSResources     PropertySet PSResources {Name, Id, Handlecount, 

                             WorkingSet, NonPagedMemorySize, 

                             PagedMemory... 

The properties that make a  PropertySet visible are listed after the respective  PropertySet. As you see, two  PropertySets exist for the  Get-Process cmdlet. No practical  PropertySets are defined for most other cmdlets, but you make up for that. In the section about the ETS toward the end of this 

chapter, you'll learn how to define a command's properties that are most important for you as a 

 PropertySet. 

Views work in a similar way as they set not just the properties that are to be converted into text, but 

they can also specify column names or widths and even group information. 

 # All running processes grouped after start time:

 Get-Process |  Format-Table  -view StartTime

 # All running processes grouped according to priority:

 Get-Process |  Format-Table  -view Priority

Views are highly specific and always apply to particular object types and particular formatting 

cmdlets. The  Priority view applies only to  Format-Table and only when you display  Process objects with it. This view doesn't work for  Format-List:

 Get-Process |  Format-List  -view Priority

 Format-List : View name Priority cannot be found. 

 At line:1 char:26

 + Get-Process | Format-List  <<<< -view Priority

You'll get an error message if you try to use it to format a file listing and not processes,:

Dir |  Format-Table  -view Priority

 Format-Table : View name Priority cannot be found. 

 At line:1 char:19

 + Dir | Format-Table  <<<< -view Priority

Unfortunately, there is no built-in option for finding out which views are available. In the section on 

the ETS, you'll learn solutions to this problem, and you'll also read about how to define your own 

views. 

Table of Contents | About PowerShell Plus

123

Sponsors | Resources | © BBS Technologies



Sorting and Grouping Pipeline Results

Your first task is to process and concentrate this information since PowerShell commands often 

return large amounts of data. Using the cmdlets  Sort-Object and  Group-Object, you can sort and group other command results. In the simplest scenario, just append  Sort-Object to a pipeline 

command and your output will already be sorted. It's really very simple:

Dir |  Sort-Object

When you do that,  Sort-Object selects the property it uses for sorting. It's better to choose the 

sorting criterion yourself as every object property may be used as a sorting criterion. For example, 

you could use one to create a descending list of a subdirectory's largest files:

Dir  |  Sort-Object  -property Length  -descending

So that you can make good use of  Sort-Object and all the other 

following cmdlets, you must also know which properties are 

available for the objects traveling through the pipeline. In the last 

section, you learned how to do that. Send the result of  Dir to 

 Format-List * first, then you'll see all properties and you can select 

one to use for subsequent sorting:

Dir |  Format-List  *

The parameter  -property allows you to use any object property as a sorting criterion. In this case, Length is used and  Sort-Object does the rest of the work itself. You need only describe where the file size is located (it is clearly available in the  Length object property). You do not have to state 

explicitly that the file size is numeric and so has to be sorted numerically, not alphabetically.  SortObject can sort by more than one property at the same time. For example, if you'd like to 

alphabetize all the files in a subdirectory by type first ( Extension property) and then by name ( Name property), specify both properties:

Dir |  Sort-Object Extension, Name

Sort Object and Hash Tables

 Sort-Object not only uses properties for sorting operations. You may also use hash tables as an 

alternative. Let's assume that you want to sort a subdirectory listing by file size and name, while the 

file size must be sorted in descending and names in ascending order. How do you accomplish that? 

In any case, not like this:

Dir |  Sort-Object Length, Name  -descending,  -ascending

 Sort-Object : A parameter could not be found that matches 

 parameter name "System.Object[]". 

 At line:1 char:18

Table of Contents | About PowerShell Plus

124

Sponsors | Resources | © BBS Technologies

 + Dir | Sort-Object  <<<< Length, Name -descending, -ascending

You can solve this problem by passing  Sort-Object to a hash table (see Chapter 4). 

Dir |  Sort-Object @{expression ="Length" ;Descending =$true}, `

@{expression ="Name" ;Ascending =$true}

The hash table makes it possible to append additional information to a property, so you can 

separately specify for each property the sorting sequence you prefer. 

Apropos hash tables: can you sort these, too? At first glance, it would seem so:

 $hash=@{ "Tobias"= 90;  "Martina"= 90;  "Cofi"= 80;  "Zumsel"= 100}

 $hash |  Sort-Object Value  -descending

 Name                           Value

 ----                           -----

 Tobias                         90

 McGuffin                       100

 Cofi                           80

 Martina                        90

Yet it does work if you pass the enumerator directly to  Sort-Object. This is what you'll get with 

 GetEnumerator():

 $hash.  GetEnumerator() |  Sort-Object Value  -descending

 Name                           Value

 ----                           -----

 Zumsel                         100

 Martina                        90

 Tobias                         90

 Cofi                           80

Grouping Information

 Group-Object works by grouping similar objects and then reporting their number. You only need 

specify the property to  Group-Object as your grouping criterion. The next line returns a good status overview of services:

 Get-Service |  Group-Object Status

 Count  Name     Group

 -----  ----     -----

    91  Running  {AeLookupSvc, AgereModemAudio, Appinfo, Ati 

                 External Event Utility...}

    67  Stopped  {ALG, AppMgmt, Automatic LiveUpdate - Scheduler, 

                 BthServ...}

Table of Contents | About PowerShell Plus

125

Sponsors | Resources | © BBS Technologies

In this case,  Group-Object returns an object for every group. The number of groups depends only on how many different values could be found in the property specified in the grouping operation. The 

 Status property always returns either the values "running" or "stopped" for services. This is why Group-Object returned exactly two objects in this example. 

The results' object always contains the properties  Count,  Name, and  Group. Services are grouped according to the desired criteria in the  Group property. The following shows how you could obtain a list of all currently running services:

 $result  =  Get-Service |  Group-Object Status

 $result[0].  Group

It works in a very similar way for other objects. In a file system,  Group-Object would put file types in a subdirectory and list their frequency if you use  Extension as grouping property:

Dir |  Group-Object Extension

Of course, you could subsequently also sort the result:

Dir |  Group-Object Extension |  Sort-Object Count  -descending

 Count  Name  Group

 -----  ----  -----

    22        {Application Data, Backup, Contacts, Debug...}

    16  .ps1  {filter.ps1, findview.PS1, findview2.PS1, findvi...}

    12  .txt  {output.txt, cmdlet.txt, ergebnis.txt, error.txt...}

     4  .csv  {ergebnis.csv, history.csv, test.csv, test1.csv}

     3  .bat  {ping.bat, safetycopy.bat, test.bat}

     2  .xml  {export.xml, now.xml}

     2  .htm  {output.htm, report.htm}

Using Grouping Expressions

 Group-Object not only groups by set properties but also can use PowerShell expressions. These must be specified in braces behind  Group-Object. The respective object is within the expression as is 

customary for a  $_ variable. The expression can report back on any results. Then  Group-Object 

groups the objects accordingly. 

In the following line, the expression returns  True if the file size exceeds 100 KB or  False as the line returns two groups,  True and  False. All files larger than 100KB are in the  True group: Dir |  Group-Object { $_.  Length  -gt 100KB}

 Count  Name   Group

 -----  ----   -----

    67  False  {Application Data, Backup, Contacts, Debug...}

     2  True   {export.xml, now.xml} in the column Count... 

Table of Contents | About PowerShell Plus

126

Sponsors | Resources | © BBS Technologies

However, the expression's return value doesn't have to be either  True or  False, but is arbitrary. In the next line, the expression determines the file name's first letter and returns this in capitals. The 

result:  Group-Object groups the subdirectory contents by first letters:

Dir |  Group-Object { $_.  name.SubString(0,1).  toUpper()}

 Count  Name  Group

 -----  ----  -----

     4  A     {Application Data, alias1, output.htm, output.txt}

     2  B     {Backup, backup.pfx}

     2  C     {Contacts, cmdlet.txt}

     5  D     {Debug, Desktop, Documents, Downloads...}

     5  F     {Favorites, filter.ps1, findview.PS1, findview2.PS1...}

     3  L     {Links, layout.lxy, liste.txt}

     3  M     {MSI, Music, meinskript.ps1}

     3  P     {Pictures, p1.nrproj, ping.bat}

     7  S     {Saved Games, Searches, Sources, SyntaxEditor...}

    15  T     {Test, test.bat, test.csv, test.ps1...}

     2  V     {Videos, views.PS1}

     1  [     {[test]}

     1  1     {1}

     4  E     {result.csv, result.txt, error.txt, export.xml}

     4  H     {mainscript.ps1, help.txt, help2.txt, history.csv}

     1  I     {info.txt}

     2  N     {netto.ps1, now.xml}

     3  R     {countfunctions.ps1, report.htm, root.cer}

     2  U     {unsigned.ps1, .ps1}

If you take a closer look at the  Group-Object result, you'll notice that after each group name is an array in which single group objects are summarized. So, you could output a practical, alphabetically 

grouped directory view from this result:

Dir |  Group-Object { $_.  name.SubString(0,1).  toUpper()} | 

 ForEach-Object { ( $_.  Name) * 7;  "=======" ;  $_.  Group}

 (...)

 BBBBBBB

 =======

 d----        26.07.2007     11:03            Backup

 -a---        17.09.2007     16:05       1732 backup.pfx

 CCCCCCC

 =======

 d-r--        13.04.2007     15:05            Contacts

 -a---        13.08.2007     13:41      23586 cmdlet.txt

 DDDDDDD

 =======

 d----        28.06.2007     18:33            Debug

 d-r--        30.08.2007     15:56            Desktop

 d-r--        17.09.2007     13:29            Documents

 d-r--        24.09.2007     11:22            Downloads

 -a---        26.04.2007     11:43       1046 drive.vbs

 (...)

Table of Contents | About PowerShell Plus

127

Sponsors | Resources | © BBS Technologies

Of course, it will cost a little memory space to store the grouped objects in arrays. Use the parameter  -noelement if you don't need the grouped objects.. You could then receive a quick listing of how many processes of which companies are running on your computer. However, because of the 

 -noelement parameter, you will not be able to see any longer which processes these are in detail:

 Get-Process |  Group-Object  -property Company  -noelement

 Count Name

 ----- ----

    50

     1 AuthenTec, Inc. 

     2 LG Electronics Inc. 

     1 Symantec Corporation

     2 ATI Technologies Inc. 

    30 Microsoft Corporation

     1 Adobe Systems, Inc. 

     1 BIT LEADER

     1 LG Electronics

     1 Intel Corporation

     2 Apple Inc. 

     1 BlazeVideo Company

     1 ShellTools LLC

     2 Infineon Technologies AG

     1 Just Great Software

     1 Realtek Semiconductor

     1 Synaptics, Inc. 

Using Formatting Cmdlets to Form Groups

 Group-Object isn't the only option for grouping information. Formatting cmdlets like  Format-Table or Format-List can also group information if you use the  -groupBy parameter. You can specify the property that you want to use as a grouping criterion after it. For example, if you'd like to group a 

subdirectory's contents by file type, use the  Extension property:

Dir |  Format-Table  -groupBy Extension

The result appears to be correct at first glance. However, if you look more carefully, you'll find many 

groups repeated as  Format-Table tried not to disrupt the streaming pipeline and processed the files unleashed by  Dir running through the pipeline in real time. This leads to a continual accumulation of new groups as files pass through the pipeline that no longer fit into the current group. So, if you 

want to form groups, you will need to interrupt pipeline streaming and sort the files first, based on 

the criterion you want to group them afterwards:

Dir |  Sort-Object Extension, Name |  Format-Table  -groupBy Extension



 Directory: Microsoft.PowerShell.Core\FileSystem::C:\Users\

 Tobias Weltner

 Mode                LastWriteTime     Length Name

 ----                -------------     ------ ----

 -a---        10.08.2007     11:28        116 ping.bat

Table of Contents | About PowerShell Plus

128

Sponsors | Resources | © BBS Technologies



 -a---        18.09.2006     23:43         24 backupcopy.bat

 -a---        15.08.2007     20:00        569 test.bat

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\Users\

 Tobias Weltner

 Mode                LastWriteTime     Length Name

 ----                -------------     ------ ----

 -a---        15.08.2007     08:44        307 history.csv

 -a---        15.08.2007     09:35       8160 test.csv

In this example, the result of  Dir is directly sorted by  Sort-Object 

according to two properties, first by extension and then by name. 

The result is that the groups are sorted alphabetically by name. 

Filtering Pipeline Results

Pipeline filters allow only certain objects or object properties through the pipeline. That's practical, 

because often you will want all results that a command returns.  Where-Object permits only those 

objects to pass through that meet certain criterion.  Select-Object also allows only certain object properties to travel through the pipeline. You can use  ForEach-Object to process all objects in the pipeline sequentially, enabling you to make your own filters. Finally,  Get-Unique removes pipeline duplicates. Let's take a closer look at filters. 

Filtering Objects Out of the Pipeline

If you're only interested in certain objects, assign  Where-Object the task of closely examining all objects and allowing only those through that meet your criterion, which consists of object properties. 

For example, if you don't want to view all services returned by  Get-Service, but only currently 

running services, you'll first have to know which service object property reveals whether the service 

is running or not. You will need more detailed knowledge about the properties supported by an 

object. 

You already know how to ferret out these properties. If you'll recall,  Format-List neatly lists all of an object's properties when you use the asterisk character as an argument. You will only need an object 

example that you can examine with  Format-List. 

To do so, use the same command that you will want to use later in your pipeline, such as  Get-

 Service and save its result to a variable. As commands return their results in arrays and store each object in it as array elements, you can take the first element you find out of the array and pass it to 

 Format-List:

 $result  =  Get-Service

 $result[0] |  Format-List  *

 Name                : AeLookupSvc

 CanPauseAndContinue : False

 CanShutdown         : False

Table of Contents | About PowerShell Plus

129

Sponsors | Resources | © BBS Technologies

 CanStop             : True

 DisplayName         : Applicationlookup

 DependentServices   : {}

 MachineName         : . 

 ServiceName         : AeLookupSvc

 ServicesDependedOn  : {}

 ServiceHandle       :

 Status              : Running

 ServiceType         : Win32ShareProcess

 Site                :

 Container           :

Now, you can already see all of the object's properties and then its current values. It should be 

obvious right away that the information sought can be found in the  Status property, so you only 

want to view the objects whose  Status property contains the "running" value. You're now ready to use the pipeline filter:

 Get-Service |  Where-Object {  $_.  Status  -eq  "Running"  }

 Status   Name               DisplayName

 ------   ----               -----------

 Running  AeLookupSvc        Applicationlookup

 Running  AgereModemAudio    Agere Modem Call Progress Audio

 Running  Appinfo            Applicationinformation

 Running  AppMgmt            Applicationmanagement

 Running  Ati External Ev... Ati External Event Utility

 Running  AudioEndpointBu... Windows-Audio-Endpoint-building

 Running  Audiosrv           Windows-Audio

 Running  BFE                Basis Filter Engine

 Running  BITS               Intelligent Background Transmiss... 

 (...)

In fact, it works just the way you want it to work so that now you can see only those services that 

are actually running. How does  Where-Object function? The cmdlet expects you to type a PowerShell 

command in braces and evaluate the command for every pipeline object. The object that  Where-

 Object was just examining can always be found in the variable  $_.  $_.Status returns the  Status property content and needs only be compared to the value that you want to let through. 

In reality, the instruction behind  Where-Object works like a condition (see Chapter 7): if the expression results in  $true, the object will be let through. That's why you may formulate conditions as complex as you like, but you must only make sure that your instruction results in either  $true or $false. 

The pipeline filter's principle may be applied to all object types and works in the same way 

everywhere. As an experienced administrator, you may be a little disappointed that the service 

objects returned by  Get-Service contain relatively little information. If you want to list all services that would automatically start, but at the moment aren't running, you can leverage the built-in 

Windows Management Instrumentation (WMI) infrastructure as an information source to supply 

more data. You'll harvest much more information when you ask it about services:

 $services  =  Get-WmiObject Win32_Service

 $services[0] |  Format-List  *

Table of Contents | About PowerShell Plus

130

Sponsors | Resources | © BBS Technologies

 Name                    : AeLookupSvc

 Status                  : OK

 ExitCode                : 0

 DesktopInteract         : False

 ErrorControl            : Normal

 PathName                : C:\Windows\system32\svchost.exe -k netsvcs

 ServiceType             : Share Process

 StartMode               : Auto

 __GENUS                 : 2

 __CLASS                 : Win32_Service

 __SUPERCLASS            : Win32_BaseService

 __DYNASTY               : CIM_ManagedSystemElement

 __RELPATH               : Win32_Service.Name="AeLookupSvc" 

 __PROPERTY_COUNT        : 25

 __DERIVATION            : {Win32_BaseService, CIM_Service, CIM_Logic

                           alElement, CIM_ManagedSystemElement}

 __SERVER                : TOBIASWELTNE-PC

 __NAMESPACE             : root\cimv2

 __PATH                  : \\TOBIASWELTNE-PC\root\cimv2:Win32_Service. 

                           Name="AeLookupSvc" 

 AcceptPause             : False

 AcceptStop              : True

 Caption                 : Applicationlookup

 CheckPoint              : 0

 CreationClassName       : Win32_Service

 Description             : Processes application compatibility cache 

                           requirements when applications start. 

 DisplayName             : Applicationlookup

 InstallDate             :

 ProcessId               : 1276

 ServiceSpecificExitCode : 0

 Started                 : True

 StartName               : localSystem

 State                   : Running

 SystemCreationClassName : Win32_ComputerSystem

 SystemName              : TOBIASWELTNE-PC

 TagId                   : 0

 WaitHint                : 0

The information needed for your criteria are located in the  Started and  StartMode properties. And because the  Where-Object pipeline filter is used very often, there exists a practical abbreviation for it: "?". Here is an example of what your pipeline filter could look like:

 Get-WmiObject Win32_Service | 

? {( $_.  Started  -eq  $false)  -and ( $_.  StartMode  -eq  "Auto" )} | 

 Format-Table          

 ExitCode Name           ProcessId  StartMode  State  Status

 -------- ----           ---------  ---------  -----  ------

        0 Automatic...      0 Auto    Stopped     OK

        0 ehstart           0 Auto    Stopped     OK

        0 LiveUpdate...     0 Auto    Stopped     OK

Table of Contents | About PowerShell Plus

131

Sponsors | Resources | © BBS Technologies



        0 WinDefend         0 Auto    Stopped     OK

If everything works properly, these lines shouldn't report any services at all because services in the 

"auto" start-up mode are automatically started and, for this reason, should be running. If you're notified of services, you should verify whether these services are (no longer) running despite auto 

start. One cause could be that the service has completed its task and was then ended as scheduled. 

Incidentally, because WMI objects are not on the internal PowerShell list, results are always 

displayed as lists. For this reason, at the end our above example, we set a table format using 

 Format-Table, which is much clearer. 

The internal WMI service will provide you with helpful information 

about your computer in response to almost any question. You'll 

find out exactly what it is in Chapter 18.  If you use the  -query parameter, you can pass SQL-type queries to this service so that 

the command will automatically return only the information sought 

and make pipeline filtering superfluous. You should always keep in mind 

when using any command that the pipeline filter is practical and easy to use, 

but not particularly economical. It limits results that are already available. It 

is better right at the beginning to ask only about the information needed, as 

it is not as easy to do for all commands as it is for  Get-WmiObject:

 Get-WmiObject  -query  "select * from win32_Service wherè

   Started=false and StartMode='Auto'"  |  Format-Table



 ExitCode Name            ProcessId StartMode State   Status

 -------- ----            --------- --------- -----   ------

        0 Automatic Li...         0 Auto      Stopped OK

        0 ehstart                 0 Auto      Stopped OK

        0 LiveUpdate N...         0 Auto      Stopped OK

        0 WinDefend               0 Auto      Stopped OK

Selecting Object Properties

The information contained in individual objects may be limited as well. You've just seen that some 

objects, depending on type, may contain many properties of which you often need only a few. By 

using  Select-Object, you can select those properties that really interest you. All other properties will not be allowed through by  Select-Object. For example, the following lines will acquire the user object for the integrated Guest account of your computer:

 Get-WmiObject Win32_UserAccount  -filter `

 "LocalAccount=True AND Name='guest'" 

 AccountType : 512

 Caption     : TobiasWeltne-PC\guest

 Domain      : TobiasWeltne-PC

Table of Contents | About PowerShell Plus

132

Sponsors | Resources | © BBS Technologies



 SID         : S-1-5-21-3347592486-2700198336-2512522042-501

 FullName    :

 Name        : guest

Most of these properties won't interest you, so  Select-Object was able to remove them. In the 

following, just three of your specified properties were returned:

 Get-WmiObject Win32_UserAccount  -filter `

 "LocalAccount=True AND Name='guest'"  | 

 Select-Object Name, Disabled, Description

 Name   Disabled  Description

 ----   --------  -----------

 guest  True      Default account for guests... 

You could have had the same result if you had used a formatting cmdlet. That would even have been 

to your advantage since you could use the  -autosize parameter to optimize column width:

 Get-WmiObject Win32_UserAccount  -filter `

 "LocalAccount=True AND Name='guest'"  | 

 Format-Table Name, Disabled, Description  -autosize

 Name Disabled Description

 ---- -------- -----------

 guest    True Default account for guest access to computer or domain

The significant difference:  Format-Table converts properties specified to the object into text. In contrast,  Select-Object creates a completely new object containing just these specified properties: Get-WmiObject Win32_UserAccount  -filter `

 "LocalAccount=True AND Name='guest'"  | 

 Select-Object Name, Disabled, Description | 

 Format-Table  *

 Name Disabled Description

 ---- -------- -----------

 guest    True Default account for guest access to computer or domain

You should make sparing use of  Select-Object because it takes a 

disproportionate effort to create a new object .  Instead, use 

formatting cmdlets to specify which object properties are to be 

displayed.  Select-Object is particularly useful when you don't want 

to convert a pipeline result into text, but instead want to output a 

comma-separated list using  Export-Csv or HTML code using  ConvertTo-Html. 

If you type an asterisk as wildcard character after  Select-Object, all properties will be marked as relevant. Formatting cmdlets will now output all object properties:

Table of Contents | About PowerShell Plus

133

Sponsors | Resources | © BBS Technologies

Dir |  Select-Object  * |  Format-Table  -wrap

If you'd like to view nearly all of an object's properties, it's easier to display only the properties you don't want by typing the parameter  -exclude to specify those properties you want to remove from 

the object. The next line will output all of a file's properties and directory objects, except for those 

beginning with "PS" (and show internal PowerShell help properties):

Dir |  Select-Object  *  -exclude PS *

Limiting Number of Objects

 Select-Object filters not only object properties but can also, if you prefer, reduce the number of objects allowed to traverse the pipeline. This function is considerably more interesting because it 

allows you to view, among others, the five largest files of a directory or the five processes that have 

been running the longest:

 # List the five largest files in a directory:

Dir |  Sort-Object Length  -descending | 

 Select-Object  -first 5

 # List the five longest-running processes:

 Get-Process |  Sort-Object StartTime | 

 Select-Object  -last 5 |  Format-Table ProcessName, StartTime

 # Alias shortcuts make the line shorter but also harder to read:

gps | sort StartTime  -ea SilentlyContinue | 

select  -last 5 | ft ProcessName, StartTime

 ProcessName            StartTime

 -----------            ---------

 iexplore               20.09.2007 15:00:20

 iexplore               20.09.2007 15:05:26

 iexplore               20.09.2007 15:30:51

 PowerShellPlus.vshost  20.09.2007 16:07:54

 iexplore               20.09.2007 16:56:20

A couple of things are interesting here. For example, if you sort a list of processes by  StartTime, you'll presumably get several error messages. If you aren't logged on with administrator privileges, 

you may not retrieve the information from some processes. However, you can avoid this difficulty by 

setting  Sort-Object with parameter  -ErrorAction (in short:  -ea) to  SilentlyContinue. This option is available for nearly every cmdlet and makes sure that error messages won't be displayed. 

As a result of such restricted access, not all processes will have any control at all over  StartTime. 

Wherever you can't read the start time because you don't have administrator privileges, a null value 

will be returned, which messes up the sorting result. You wouldn't get the right results if you wanted 

to use  -first to view the processes that last started running,:

 Get-Process |  Sort-Object StartTime | 

 Select-Object  -first 5 | 

 Format-Table ProcessName, StartTime

 ProcessName    StartTime

 -----------    ---------

Table of Contents | About PowerShell Plus

134

Sponsors | Resources | © BBS Technologies



 services

 SLsvc

 SearchIndexer  

 opvapp

 sdclt

 Sort-Object uses the value  0 for empty properties. That's why PowerShell gives you the processes for which it couldn't find any start times. This is interesting since those would be exactly the 

processes which you have no full access rights. However, this is a problem you can solve, and you 

already know how: by using the pipeline as just previously described. You should simply filter all of 

the pipeline's objects out that have an empty  StartTime property so that you can better understand what those processes actually are, and then add the  Description property in the output. That's where process objects record a brief description of the process:

 Get-Process |  Where-Object { $_.  StartTime  -ne  $null} | 

 Sort-Object StartTime |  Select-Object  -first 5 | 

 Format-Table ProcessName, StartTime, Description

 ProcessName   StartTime            Description

 -----------   ---------            -----------

 taskeng       19.09.2007 09:35:19  Task planning module

 dwm           19.09.2007 09:35:19  Desktop window manager

 explorer      19.09.2007 09:35:19  Windows Explorer

 GiljabiStart  19.09.2007 09:35:21  Giljabi Start

 ATSwpNav      19.09.2007 09:35:21  ATSwpNav Application

If you concatenate several commands in the pipeline, you can use 

 Tee-Object to skim off intermediate results: either because you 

need this information somewhere else, too, or because you want to 

check how the pipeline is working. 

 Get-Process |  Tee-Object  -variable a1 | 

 Select-Object Name, Description | 

 Tee-Object  -variable a2 | 

 Sort-Object Name

 Get-Process first returns all running processes in this pipeline.  Select-Object 

removes every object property except for  Name and  Description. It then sorts 

the processes by name. At two locations in this pipeline,  Tee-Object accesses 

the current pipeline result and stores it in a variable without further slowing 

or influencing pipeline execution. After the pipeline has done its work, you'll 

find the intermediate result in the variables  $a1 and  $a2, and you'll be able 

to analyze it in more depth or use it somewhere else. 

If you decide not to set  Tee-Object to the  -variable parameter, the 

intermediate result will be saved to a file, and  Tee-Object will expect you to 

provide a file path name. The same applies if you expressly specify the 

 -filePath parameter. 

Table of Contents | About PowerShell Plus

135

Sponsors | Resources | © BBS Technologies



Processing All Pipeline Results Simultaneously

If you prefer, you may also submit the results separately to the pipeline and then decide on a case-

by-case basis what to do with them. The right tool is the  ForEach-Object cmdlet that can convert 

objects into text:

 Get-Service |  ForEach-Object { 

 "The service {0} is called '{1}': {2}"   -f `

 $_.  Name,  $_.  DisplayName,  $_.  Status }

 The service AeLookupSvc is called 'Application Lookup': Running

 The service AgereModemAudio is called 'Agere Modem Call Progress 

 Audio': Running

 The service ALG is called 'Application Layer Gateway Service': Stopped

 The service Appinfo is called 'Application Information': Running

 The service AppMgmt is called 'Application Management': Stopped

 The service Ati External Event Utility is called 'Ati External Event 

 Utility': Running

 The service AudioEndpointBuilder is called 'Windows-Audio-Endpoint-

 Generator': Running

 (...)

An instruction block in braces follows  ForEach-Object so you can execute as many PowerShell 

commands as you like as long as you separate the commands by ";". This statement block is 

executed for every single pipeline object: within the block the current object is available in the $_ 

variable. In the example,  ForEach-Object output a text for every service retrieved by  Get-Service and inserts into the text the three properties  Name,  DisplayName, and  Status. 

In case you're asking yourself right now what "-f" is and how to insert 

information into text: look it up in Chapter 13,  where all the tasks 

involving text are explained in detail. 

 ForEach-Object is actually just  Where-Object's big brother;  ForEach-Object, 

 Where-Object, can filter out pipeline objects by criterion. To enable  ForEach-

 Object to do this, you merely use a condition. That is, only if the condition is met 

will the object you want be back in the pipeline. The following lines all lead to the 

same result:

 Get-Service |  Where-Object {  $_.  Status  -eq  "Running"  }

 Get-Service | ? {  $_.  Status  -eq  "Running"  }

 Get-Service |  ForEach-Object {  if ( $_.  Status  -eq  "Running" ) {  $_ } 

}

 Get-Service |  % {  if ( $_.  Status  -eq  "Running" ) {  $_ } }

All four lines retrieve a list of currently running services. You see that  Where-

 Object can be shortened with "?" and  ForEach-Object with "%". You also can see that  Where-Object is actually only  ForEach-Object with a built-in condition. For 

 Where-Object, the condition is directly within the braces, and for  ForEach-Object 

in parentheses after the  If statement. The rationale for the existence of  Where-

Table of Contents | About PowerShell Plus

136

Sponsors | Resources | © BBS Technologies



 Object is comfort and clarity. 

 ForEach-Object actually executes three script blocks, not just one. 

If you specify only one script block in braces after  ForEach-Object, 

it will be executed once for every pipeline object. If you specify two 

script blocks, the first will be executed once and before the first 

pipeline object. If you specify three script blocks, the last will be 

executed once after the last pipeline object. The following will help you carry 

out initialization and tidying tasks or simply output initial and ending 

messages:

 Get-Service |  ForEach-Object { "Running services:" }{ 

 if ( $_.  Status  -eq  "Running" ) {  $_ } }{ "Done." }

The three script blocks of  ForEach-Object actually correspond to the three 

script blocks  begin,  process, and  end, which you'll examine in more detail in 

Chapters 9 and 12.  You'll understand after reading these chapters that functions, cmdlets like  ForEach-Object and script blocks, are all three 

basically the same. 

Removing Doubles

 Get-Unique removes duplicate entries from a sorted list as it presumes that the list was initially sorted according to criterion to make things easier.  Get-Unique goes through every element on the 

list and compares it with the preceding ones. If two are identical, the new object is discarded. So, if 

you haven't done any sorting,  Get-Unique won't work:

1,2,3,1,2,3,1,2,3 |  Get-Unique

 1,2,3,1,2,3,1,2,3

Only after you sort the list—in this case, an array—will doubles be removed:

1,2,3,1,2,3,1,2,3 |  Sort-Object |  Get-Unique

 1,2,3

This method is particularly interesting when you break down text files' contents into single words. 

You can use the following line to do so:

 $filename  =  "c:\autoexec.bat" 

 $( foreach ( $line  in  Get-Content  $filename) {

 $line.  tolower().  split( " " )})

Table of Contents | About PowerShell Plus

137

Sponsors | Resources | © BBS Technologies

Then, you could sort this list of each word of a file and then either send it to  Get-Unique (the list of all words that are in a text) or to  Group-Object (the number of words used in a text):

 $filename  =  "c:\autoexec.bat" 

 $( foreach ( $line  in  Get-Content  $filename) {

 $line.  tolower().  split( " " )}) |  Sort-Object |  Get-Unique $( foreach ( $line  in  Get-Content  $filename) {

 $line.  tolower().  split( " " )}) |  Sort-Object |  Group-Object Analyzing and Comparing Results

Using the cmdlets  Measure-Object and  Compare-Object, you can measure and evaluate PowerShell command results. For example,  Measure-Object allows you to determine how often particular object 

properties are distributed.  Compare-Object enables you to compare before-and-after snapshots. 

Statistical Calculations

Using the  Measure-Object cmdlet, you can carry out statistical calculations so you can work out 

minimal, maximal, and average values for a particular object property. For example, if you want to 

know how files sizes are distributed in a directory, let  Dir give you a directory listing and then examine the  Length property:

Dir |  Measure-Object Length

 Count    : 50

 Average  :

 Sum      :

 Maximum  :

 Minimum  :

 Property : Length

 Measure-Object counts by default only the specified property's frequency. You should now know that there are 50 objects that have the  Length property. Use the relevant parameters if you'd also like to receive the other statistical statements:

Dir |  Measure-Object Length  -average  -maximum  -minimum  -sum

 Count    : 50

 Average  : 36771,76

 Sum      : 1838588

 Maximum  : 794050

 Minimum  : 0

 Property : Length

 Measure-Object can also search through other text files and ascertain the frequency of characters, words, and lines in them:

 Get-Content c:\ autoexec.bat |  Measure-Object  -character  -line  -word

Table of Contents | About PowerShell Plus

138

Sponsors | Resources | © BBS Technologies





 Lines  Words  Characters Property 

 -----  -----  ---------- --------

     1      5          24

Comparing Objects

You may often want to compare "before-and-after" conditions to find out which processes have 

restarted since a certain point in time, or which services have changed in comparison to a particular 

initial state. The  Compare-Object cmdlet can perform this task by making use of the fact that 

PowerShell commands do not retrieve text internally, but real objects. 

Comparing Before-and-After Conditions

For example, you should take a snapshot first if you want to find out whether new processes have 

started up, or running processes, have terminated in a certain period of time::

 $before  =  Get-Process

All processes will now be stored in the variable  $before. To be exact,  $before is an array in which every process is represented by a process object. You can now compare the current state at any 

time you like with this snapshot. Just pass the snapshot list and the list of currently running 

processes to  Compare-Object,  which will subsequently establish the differences between the two 

lists:

 Compare-Object  -referenceObject  $before `

 -differenceObject ( Get-Process)

 InputObject                                     SideIndicator

 -----------                                      -------------

 System.Diagnostics.Process (regedit)             => 

 System.Diagnostics.Process (SearchFilterHost)    <=

 System.Diagnostics.Process (SearchProtocolHost)  <=

If you're wondering right now why the current list of processes 

after  -differenceObject is enclosed in parentheses, just remember 

that parameters expect actual results. In the example, the list of 

currently running processes is acquired as they are newly 

generated by the  Get-Process cmdlet. This command must be 

placed between parentheses because  Get-Process is a cmdlet and the list in 

question... Everything in parentheses will be executed by PowerShell first and 

the call result returned afterwards.  Compare-Object can work with this result. 

If you had left out the parentheses,  -differenceObject wouldn't have known 

what to do with the  Get-Process specification. 

Alternatively, you could, of course, have stored the list of current processes 

in a variable first, and then passed this variable, even without parentheses, 

Table of Contents | About PowerShell Plus

139

Sponsors | Resources | © BBS Technologies

to  Compare-Object. It's not absolutely necessary to specify the parameter 

name if you state the arguments in the right order at the very beginning, that 

is, first the list with the "before" state, and then the list with the "after" 

state:

 $after  =  Get-Process

 Compare-Object  $before  $after

The  SideIndicator column (line?) reports whether a new process has started running ("=>") or has been ended in the meantime ("<="). Consequently,  Compare-Object returns only those processes that are different. Use  -includeEqual as an additional parameter, if you want to see the processes that have not been changed. Use the additional parameter  -excludeDifferent, if you'd like to see only those processes that have not been modified. 

Detecting Changes to Objects

If you use  Compare-Object as described above, it will only check whether every object in one list is matched in another list. While comparing them to their initial state, may be sufficient to determine 

whether objects were removed or added, you can't use this approach to establish whether an 

object's inner status has changed. 

For example, if you'd like to verify whether services have stopped or started in comparison to their 

defined initial state,  Compare-Object won't initially help you because when a service is stopped it still exists: only its inner status has changed. You should instead instruct  Compare-Object to 

compare one or more of the object's properties by using  Format-List to easily determine which 

properties are available to you. You should. first acquire a service object and experiment around 

with it a little:

 # Pick out Windows Update Service:

 $service  =  Get-Service wuauserv

 # Inspect all properties of this services:

 $service |  Format-List  *

 Name                : wuauserv

 CanPauseAndContinue : False

 CanShutdown         : True

 CanStop             : True

 DisplayName         : Windows Update

 DependentServices   : {}

 MachineName         : . 

 ServiceName         : wuauserv

 ServicesDependedOn  : {rpcss}

 ServiceHandle       :

 Status              : Running

 ServiceType         : Win32ShareProcess

 Site                :

 Container           :

Table of Contents | About PowerShell Plus

140

Sponsors | Resources | © BBS Technologies



It quickly turns out that the  Status property retrieves the desired information. So, you could first make another snapshot of all services, stop a service subsequently, and then instruct  Compare-Object to use the  Status property to ascertain differences:

 # Save current state:

 $before  =  Get-Service

 # Pick out a service and stop this service:

 # (Note: this usually requires administrator rights. 

 # Stop services only if you are sure that the service

 # is absolutely not required. 

 $service  =  Get-Service wuauserv

 $service.  Stop()

 # Record after state:

 $after  =  Get-Service

 # A simple comparison will not find differences because 

 # the service existed before and after:

 Compare-Object  $before  $after

 # A comparison of the Status property reports the halted 

 # service but not its name:

 Compare-Object  $before  $after  -Property Status

 Status   SideIndicator

 ------   -------------

 Stopped  => 

 Running  <=

 # A comparison with the Status and Name properties returns

 # the required information:

 Compare-Object  $before  $after  -Property Status, Name



 Status   Name      SideIndicator

 ------   ----      -------------

 Stopped  wuauserv  => 

 Running  wuauserv  <=

If you instruct  Compare-Object with the parameter  -property to compare the  Status and  Name properties, you'll receive the information you want: the service  wuauserv was executed in the list in $before, but not in the list in  $after. So it was stopped. 

This example shows how to stop services. In the next chapter,  

you'll learn more about the methods (commands) built into objects. 

What's important to note here is only that you change the state of 

any service. You could also accomplish that by using the Microsoft 

Management Console Snapin for services:

 services.msc

Start or stop only those services that you know won't incur any risk when you 

start or stop them. If an error message pops up when you try to modify a 

service, this is usually because you don't have administrator rights. Just 

Table of Contents | About PowerShell Plus

141

Sponsors | Resources | © BBS Technologies

remember that for Vista, or when group policies are in effect, that you must 

start up PowerShell with administrator rights. Otherwise, you're only a 

normal user, even if you log on with an administrator account. 

Since the  Compare-Object results consist of objects, you could make a further analysis of the result. 

Perhaps all that interests you are executed modifications. Use a pipeline filter, such as  Where-

 Object, to specify to the filter that you're interested in only those objects in which the  SideIndicator property corresponds to the value "=":

 Compare-Object  $before  $after  -property Status, Name | 

 Where-Object {  $_.  SideIndicator  -eq  "=>"  }                      

 Status   Name      SideIndicator

 ------   ----      -------------

 Stopped  wuauserv  => 

If you'd like to formulate the result in plain text, use a loop, such as,  Where-Object, and use the information in the retrieved objects to put together the plain text:

 Compare-Object  $before  $after  -property Status, Name | 

 Where-Object {  $_.  SideIndicator  -eq  "=>"  } | 

 ForEach-Object {  "The service {0} has changed its status to {1}"  `

 -f  $_.  Name,  $_.  Status}

 The service wuauserv has changed its status to Stopped

You can use this same procedure for widely varying monitoring tasks. Think in advance about which 

command you could use to determine an object's status to be monitored and, which of the object's 

properties will describe its status. For example, if you want to find out whether files in a directory 

have changed, the right command would be  Dir and the property could be  Length (because of the changed file size) or  LastWriteTime (the contents could have been changed even if its size is just as large as it was before). Here's an example:

 # Create test file and Before snapshot of the directory:

 "Hello"  >  test.txt

 $before  = Dir

 # Modify test file and create After snapshot of the directory:

 "Hello world"  >  test.txt

 $after  = Dir

 # Compare-Object reports all files whose size has changed:

 Compare-Object  $before  $after  -property Length, Name

 Length  Name      SideIndicator

 ------  ----      -------------

     26  test.txt  => 

     16  test.txt  <=

 # Files whose size is unchanged, however, were not recognized 

Table of Contents | About PowerShell Plus

142

Sponsors | Resources | © BBS Technologies

 # although they were changed:

 "Hey!"  >  test.txt

 $after  = Dir

 Compare-Object  $before  $after  -property Length, Name

 # So, when comparing, it is crucial to select a meaningful 

 # property, e.g., LastWriteTime:

 Compare-Object  $before  $after  -property Length, LastWriteTime, Name



 Length  LastWriteTime        Name      SideIndicator

 ------  -------------        ----      -------------

     16  20.09.2007 14:13:09  test.txt  => 

     16  20.09.2007 14:13:02  test.txt  <=

Comparing File Contents

A special form of the "snapshot" is a file's text contents. If you read text contents using  Get-Content, you'll get an array with lines of text.  Compare-Object can compare this array again and determine which lines within text files have changed: Here's another example:

 # Create first test file:

@ " 

>>  Hello

>>  world

>>  " @ >  test1.txt

>> 

 # Create second test file:

@ " 

>>  Hello

>>  beautiful

>>  world

>>  " @ >  test2.txt

>> 

 # Compare both files and show only differing lines:

 Compare-Object  -referenceObject  $( Get-Content  test1.txt) `

 -differenceObject  $( Get-Content  test2.txt)

 InputObject  SideIndicator

 -----------  -------------

 beautiful    => 

 Compare-Object  -referenceObject  $( Get-Content  test1.txt) `

 -differenceObject  $( Get-Content  test2.txt)  -includeEqual

 InputObject  SideIndicator

 -----------  -------------

 Hello        ==

 world        ==

 beautiful    => 

Table of Contents | About PowerShell Plus

143

Sponsors | Resources | © BBS Technologies

Saving Snapshots for Later Use

Some before-and-after comparisons may not be able to be completed in one day. Perhaps you would 

like to compare operating states over a longer time period, and are not sure if the computer (and 

your PowerShell) is running the entire time without interruptions. Or maybe you would like to use 

the same precisely set initial state. In this case, you can "serialize" the objects in the initial state. In other words, the objects are stored as a file in a special data format, more or less "frozen." Later, you can load the object at any time from the file and use them for comparison. 

The  Export-Clixml cmdlet carries out serialization. All you need to do is to specify a file name under which the objects can be saved. For example, the following line saves a list of all running processes 

to the file  before.xml:

 Get-Process |  Export-Clixml before.xml

Because the initial state is now stored as a file, you could close PowerShell and reboot your 

computer. As soon as you are ready to compare the current processes with the stored initial status, 

you can load the file back in PowerShell:

 $before  =  Import-Clixml before.xml

However, if you try to compare the contents of  $before with the current list of processes,  Compare-Object will output an endless list of deviations:

 $after  =  Get-Process

 Compare-Object  $before  $after

In the simplest scenario,  Compare-Object only verifies whether the objects are in both lists. But as soon as you serialize or "freeze" objects, your object type changes. If you use  Import-Clixml later to input these objects, the information will be brought back to life in a different type while the objects 

will continue to contain all information. Why? Because the re-input objects no longer correspond to 

running processes but are the "unfrozen" older processes. 

You already know the solution to the problem: simply instruct  Compare-Object to compare particular properties because the revived objects continue to contain all the important information. As soon as 

you compare objects,  Compare-Object doesn't care at all about the object type as long as the 

objects to be compared support the same properties:

 Compare-Object  $before  $after  -property Name

 Name     SideIndicator

 ----     -------------

 notepad  => 

 regedit  <=

You now know that a process called  notepad has been added since the snapshot and a process called 

 regedit was ended. However, you wouldn't yet know whether the processes that have the same 

name are in fact identical. To find out, you would have to include additional object properties in the 

comparison, such as the process ID, which clearly identifies processes:

 Compare-Object  $basis ( Get-Process)  -property Id, Name

Table of Contents | About PowerShell Plus

144

Sponsors | Resources | © BBS Technologies



 Id    Name                   SideIndicator

 --    ----                   -------------

  

 7788  notepad                => 

 8004  PowerShellPlus.vshost  => 

 3032  PowerShellPlus.vshost  <=

  344  regedit                <=

Now, you can see as well that PowerShell was started up again once. The instance of PowerShell 

with the process ID  8004 was ended and in its place a new instance of PowerShell with the process 

ID  3032 was started. 

Exporting Pipeline Results

You have learned that pipeline results are converted into text when they reach the pipeline's end at 

the latest and are output in the console because PowerShell appends the  Out-Default cmdlet to the 

end of every entry. As a result, this cmdlet decided where pipeline results will be output. Along with 

 Out-Default, there are a number of additional output cmdlets that you can put at your pipeline's end so the result is redirected to a file or printed out rather than output in the console. The pipeline 

stops its work on reaching the first output cmdlet; if you enter one,  Out-Host, which PowerShell 

appends automatically, won't go into operation:

 Get-Command  -verb out

 CommandType  Name         Definition

 -----------  ----         ----------

 Cmdlet       Out-Default  Out-Default [-InputObject <PSObject>]... 

 Cmdlet       Out-File     Out-File [-FilePath] <String> [[-Enco... 

 Cmdlet       Out-Host     Out-Host [-Paging] [-InputObject <PSO... 

 Cmdlet       Out-Null     Out-Null [-InputObject <PSObject>] [-... 

 Cmdlet       Out-Printer  Out-Printer [[-Name] <String>] [-Inpu... 

 Cmdlet       Out-String   Out-String [-Stream] [-Width <Int32>]... 

Dir |  Out-File  output.txt

.\ output.txt

Dir |  Out-Printer

 Out-File supports the parameter  -encoding, which you can use to 

determine the format in which information is written to a file. If 

you don't remember which encoding formats are allowed, just 

specify a value which you know is absolutely false, and then the 

error message will tell you which values are allowed:

Dir |  Out-File  -encoding Dunno

 Out-File : Cannot validate argument "Dunno" because it does 

 not 

 belong to the set "unicode, utf7, utf8, utf32, ascii, 

 bigendianunicode, default, oem". 

Table of Contents | About PowerShell Plus

145

Sponsors | Resources | © BBS Technologies

 At line:1 char:25

 + Dir | Out-File -encoding  <<<< Dunno

An alternative to  Out-File is  Export-Csv. You can specify comma-separated 

lists with this cmdlet. You'll read more about that a little later on. 

Suppressing Results

Send the output to  Out-Null if you want to suppress command output:

 # This command not only creates a new directory but also returns 

 # the new directory:

md testdirectory

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\Users\

 Tobias Weltner

 Mode   LastWriteTime     Length Name

 ----   -------------     ------ ----

 d----  19.09.2007 14:31         testdirectory

rm testdirectory

 # Here the command output is sent to "nothing" 

md testdirectory |  Out-Null

rm testdirectory

 # That matches the following redirection:

md testdirectory >  $null

rm testdirectory

Changing Pipeline Formatting

At first glance,  Out-Host seems somewhat superfluous since all results will end up in the console 

when you don't specify any output cmdlet. So what's the use of  Out-Host? On the one hand, this 

cmdlet supports optional parameters like  -paging, which can be used to output information page by 

page. You already tried that at the beginning of this chapter. In addition, you can use  Out-Host to control pipeline formatting, which in itself is much more important. 

The reason is that all output cmdlets not only output all pipeline results to the relevant output 

device, but also automatically convert pipeline objects into readable text. You've already learned 

how this conversion works by formatting cmdlets like  Format-Table. This gets interesting when you 

specify neither a formatting nor an output cmdlet in your pipeline. Then, PowerShell takes action 

automatically, though sometimes the result can be confusing. 

For example, can you explain why the next instruction outputs all services in table form, but the 

following in list form? 

 # Outputs services in table form:

Table of Contents | About PowerShell Plus

146

Sponsors | Resources | © BBS Technologies

 Get-Service

 # Outputs services in list form:

 Get-Location;  Get-Service

In the second line, the results of two commands are mixed. That's permitted, and you just have to 

remember to separate individual commands by a semicolon. None of the two commands outputs its 

results by using an output cmdlet. That's why all results remain in the pipeline and are automatically 

processed at the end by  Out-Host. That's exactly what causes the problem since PowerShell extends 

the line in the following way behind the scenes:

 &  { Get-Location;  Get-Service} |  Out-Default

 Out-Default determines whether you gave one of the formatting cmdlets a particular format. If not, it tries to find an appropriate format. In doing so, it takes a cue from the first object in the result, 

the path name of  Get-Location. However, an unexpectedly colorful series of  Get-Service services follows so no predefined format exists with which this muddled medley can be displayed,  Out-Default falls back on the list format. You can encounter the problem described here in many places. 

It also affects, among others, functions or scripts:

 # Example of problem when using a function:

 function test {

 Get-Location

 Get-Service

}

test

 # Example of problem when using a script:

@ " 

 Get-Location

 Get-Service

 " @ >  test.ps1

.\ test.ps1

The solution to this problem: either specify a format for the pipeline yourself or send the results of 

individual commands to the console:

 # Specify the output format yourself so that PowerShell won't need 

 # to specify the format:

 Get-Location |  Format-Table;  Get-Service

 # Or send the intermediate results to the console so that no mixed 

 # results appear:

 Get-Location |  Out-Host;  Get-Service

Forcing Text Display

PowerShell delays conversion until the last possible moment and converts pipeline objects into text 

only until they reach the end of the pipeline since information is typically lost when objects are 

converted into text. However, by using  Out-String, you can force PowerShell to convert objects into text any time you like.  Out-String is the only output cmdlet that continues the pipeline instead of terminating it.  Out-String puts the objects it receives back into the pipeline as text. You can assign the result to a variable Because it behaves like a normal pipeline command.:

Table of Contents | About PowerShell Plus

147

Sponsors | Resources | © BBS Technologies





 $text  = Dir |  Out-String

 $text.  toUpper()

The result of  Out-String is always a single, complete text. That also means that  Out-String blocks the pipeline stream and waits until all results arrive. If you'd prefer getting the text line by line in an array, use the  -stream parameter; then  Out-String will transform incoming objects into single blocks of text in real time and won't block the pipeline:

Dir |  Out-String  -stream |  ForEach-Object {  $_.  toUpper() }

If possible, you should avoid turning objects into text because that 

makes them lose the structure and many options that only original 

objects offer. 

Excel: Exporting Objects

All output cmdlets convert pipeline results into text that may be displayed haphazardly. An 

alternative are comma-separated lists generated by  Export-Csv. Comma-Separated Value (CSV) files 

that can then be opened in programs like Microsoft Excel allows you to continue working smoothly 

with the data retrieved by PowerShell. You can then turn columns of numbers into expressive 

graphics. 

Dir |  Export-Csv  test.csv

.\ test.csv

The objects returned by  Dir are converted into text along with all their properties. Open the resulting CSV file and, if you have installed Microsoft Excel, the information will be displayed column-by-column as an Excel spreadsheet. You could also display the information in a text editor if you don't 

have Excel. 

While Excel can open a CSV file, but cannot identify the columns 

correctly, the fault may lie with your country settings.  Export-CSV 

uses as default separator the list separator "," that is internationally 

customary. For example, if you're using a German system, the 

Windows control panel country settings would use the not very 

customary tab character as list separator. So that Excel can import comma-

separated lists correctly, you must change either the list separator character in 

your regional settings or change the separator character from a comma to a tab 

in the resulting CSV file:

 # Make a comma-separated list

Dir |  Export-Csv  test1.csv

 # Replace a comma by a tab respectively in this list

 Get-Content  test1.csv |  ForEach-Object {  $_.  replace( ',' ,  "`t" ) } 

| 

 Out-File  test2.csv

Table of Contents | About PowerShell Plus

148

Sponsors | Resources | © BBS Technologies

 # A German system will now assign columns correctly in Excel:

.\ test2.csv

However, this is a case of a very simple replacement so it doesn't take into 

consideration the commas that could be found in column text. 

 Export-Csv consequently takes care of the formatting data job by writing all object properties as 

arrays in comma-separated files. What happens when you mess things up by using a formatting 

cmdlet is shown by the next example:

Dir |  Format-Table |  Export-Csv  test.csv

.\ test.csv

The information in the CSV file is now nearly unreadable, and it becomes clear how formatting 

cmdlets do their work behind the scenes by embedding objects in their own formatting instructions. 

That's why you may never use formatting cmdlets if you want to use  Export-Csv to store raw 

information in a file. In general, you should also use formatting cmdlets only at the end of your 

pipeline so that formatting instructions will not disrupt other commands. 

A question remains: if you use formatting cmdlets to specify which of an object's properties you're 

interested in, how then can you determine which properties are written into the CSV file? The 

answer is to strip away the unwanted properties from the objects by using  Select-Object. You can 

then state the property that you want to keep. All the others will be removed from the object. That's 

the solution, for  Export-Csv always writes all (remaining) properties into the CSV file:

Dir |  Select-Object Name, Length, LastWriteTime |  Export-Csv  test.csv

.\ test.csv

HTML Outputs

If you'd like, PowerShell can also pack its results into (rudimentary) HTML files. Converting objects 

into HTML formats is done by  ConvertTo-Html:

 Get-Process |  ConvertTo-Html |  Out-File  output.htm

.\ output.htm

But don't be alarmed if the procedure takes a while because PowerShell has to read out all of the 

objects' properties and save them as a HTML table. If you want to see only particular properties as a 

HTML report, as in the case of  Export-Csv, you should never use formatting cmdlets. It would be 

better for you to use  Select-Object here. You could also take this opportunity to give the HTML page a title by using the  -title parameter. The title will turn up later on the title bar of the browser that is displaying your file. Unfortunately, the cmdlet doesn't have formatting options that go beyond this:

 Get-Process |  Select-Object Name, Description | 

 ConvertTo-Html  -title  "Process Report"  | 

 Out-File  output.htm

.\ output.htm

Table of Contents | About PowerShell Plus

149

Sponsors | Resources | © BBS Technologies

The Extended Type System (Part One)

One of the PowerShell console's most remarkable capabilities is converting any object into text. You 

have seen how different formatting cmdlets can turn object properties into text and output them as 

text either beside or below each other. 

What is striking in this connection is above all that PowerShell succeeds in only converting an 

object's essential properties into text. PowerShell would have to fail right from the beginning if it had 

to convert absolutely all of an object's properties into text, for then even a simple directory listing 

would generate a confusing amount of information:

Dir |  Format-Table  *  -wrap

 PSPat PSPar PSChi PSDri PSPro PSIsC Mode  Name  Paren Exist Root  Full

 h     entPa ldNam ve    vider ontai             t         s       Name

       th    e                   ner                                   

                                                                       

                                                                       

 ----- ----- ----- ----- ----- ----- ----  ----  ----- ----- ----  ----

 Micro Micro Appli C     Micro  True d---- Appli Tobia  True C:\   C:\U

 soft. soft. catio       soft.             catio s Wel             sers

 Power Power n Dat       Power             n Dat tner              \Tob

 Shell Shell a           Shell             a                       ias 

 .Core .Core             .Core                                     Welt

 \File \File             \File                                     ner\

 Syste Syste             Syste                                     Appl

 m::C: m::C:             m                                         icat

 \User \User                                                       ion

 s\Tob s\Tob                                                       Data

 ias W ias W

 eltne eltne

 r\App r

 licit

 ion D

 ata

 Micro Micro Backu C     Micro  True d---- Backu Tobia  True C:\   C:\U

 soft. soft. p           soft.             p     s Wel             sers

 Power Power             Power                   tner              \Tob

 Shell Shell             Shell                                     ias 

 .Core .Core             .Core                                     Welt

 \File \File             \File                                     ner\

 Syste Syste             Syste                                     Back

 m::C: m::C:             m                                         up

 \User \User

 s\Tob s\Tob

 ias W ias W

 eltne eltne

 r\Bac r

 kup

 (...)

Table of Contents | About PowerShell Plus

150

Sponsors | Resources | © BBS Technologies

You don't have to make do with this raw, completely unserviceable text conversion of object properties. You can convert text in a way that makes sense in a practical way by using the Extended 

Type System (ETS),. Only the ETS can enable PowerShell to process internal objects, waiting until 

they reach the end of the pipeline before transforming them into understandable text. 

Dir

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\Users\

 Tobias Weltner

 Mode                LastWriteTime     Length Name

 ----                -------------     ------ ----

 d----        01.10.2007     16:09            Application Data

 d----        26.07.2007     11:03            Backup

 (...)

The ETS consists of two parts. One part takes care of formatting objects and will be described next. 

The other part attends to object properties and will be explained in the next chapter. 

Rendering Text as Text and Only Text

The ETS goes into action only when objects are output in the console. The ETS does nothing if the 

data is already available as text. So, if you wanted to use  Out-String to convert a directory listing into text right from the beginning and then pass it through one of the formatting cmdlets, it would 

not be rendered any differently:

 # Convert directory listing objects into plain text:

 $text  = Dir |  Out-String

 # All additional outputs will return the identical result, 

 # for text will not be converted:

 $text

 $text |  Format-Table

 $text |  Format-List

Your Wish Has Priority

The ETS will still remain inactive if you specify after a formatting cmdlet like  Format-Table which properties should be converted into text., The conversion of objects into text is not the problem, but 

the selection and differentiation of important and unimportant properties is the issue. If you specify 

which properties should be converted, you won't let the ETS make this decision:

 # If you specify the properties, ETS will no longer select them:

Dir |  Format-Table Name, Length, LastWriteTime

Table of Contents | About PowerShell Plus

151

Sponsors | Resources | © BBS Technologies



Known Objects and Formatting

If you use a formatting cmdlet like  Format-Table without selecting properties after it, the ETS will go into action for the first time, because the way in which these objects are to be displayed and which 

properties are to be shown now must be selected automatically. To do this, the ETS first determines 

what kinds of objects are to be converted into text:

Dir |  ForEach-Object {  $_.  GetType().  FullName }

 Dir returns files in a  System.IO.FileInfo object and files in a  System.IO.DirectoryInfo object. Then, the ETS looks in its own internal records to see how these objects must be converted into text. The 

records are stored in the form of XML files that have the file extension ".ps1xml":

Dir  $pshome\ *.  format.ps1xml

 Mode       LastWriteTime   Length  Name

 ----       -------------   ------  ----

 -a---   13.04.2007 19:40    22120  Certificate.format.ps1xml

 -a---   13.04.2007 19:40    60703  DotNetTypes.format.ps1xml

 -a---   13.04.2007 19:40    19730  FileSystem.format.ps1xml

 -a---   13.04.2007 19:40   250197  Help.format.ps1xml

 -a---   13.04.2007 19:40    65283  PowerShellCore.format.ps1xml

 -a---   13.04.2007 19:40    13394  PowerShellTrace.format.ps1xml

 -a---   13.04.2007 19:40    13540  Registry.format.ps1xml

Every object is precisely defined in these XML files. Among others, the definition includes which 

object properties are supposed to be converted into text and whether the object should be displayed 

in the form of a list or table. 

The ETS runs into trouble only when you mix several object types 

that don't really fit together, as is the case here:

 Get-Process; Dir |  Format-Table

 (...)

 out-lineoutput : Object of type 

 "Microsoft.PowerShell.Commands. 

 Internal.Format.FormatStartData" is not legal or not in the 

 correct sequence. This is likely caused by a user-specified 

 "format-table" command which is conflicting with the default 

 formatting. 

The files and directories that  Dir outputs cannot be displayed by the 

formatting that PowerShell uses for  Processes. So, they won't allow 

themselves to be mixed. One solution would be to send the objects 

individually to the fitting formatter:

 Get-Process |  Format-Table; Dir |  Format-Table

Table of Contents | About PowerShell Plus

152

Sponsors | Resources | © BBS Technologies

Another solution would be not to use any formatting cmdlets at all, because 

then the ETS would nose around automatically until it found the fitting format

—as you will see soon. 

Unknown Objects

If the object that the ETS is supposed to convert into text is unknown because it isn't defined in one 

of the ps1xml records, the ETS will flatly convert all properties of the object into text. Then, the 

question becomes whether the object is to be displayed as a table or a list. If there are fewer than 

five, the ETS uses a table view, otherwise a list view. You can verify that easily enough yourself by 

fabricating your own "homemade" objects:

 # Create a new empty object:

 $object  =  New-Object PSObject

 # Attach a new property:

 Add-Member NoteProperty  "a"  1  -inputObject  $object

 # Powershell outputs the object with Format-Table and show the 

 # single property:

 $object

 a

 -

 1

 # Add three additional properties:

 Add-Member NoteProperty  "b"  1  -inputObject  $object

 Add-Member NoteProperty  "c"  1  -inputObject  $object

 Add-Member NoteProperty  "d"  1  -inputObject  $object

 # The object is still shown as a table:

 $object

 a  b  c  d

 -  -  -  -

 1  1  1  1

 # The fifth property makes a difference:

 Add-Member NoteProperty  "e"  1  -inputObject  $object

 # Now the object is converted with Format-List (properties below 

 # and not beside each other):

 $object

 a : 1

 b : 1

 c : 1

 d : 1

 e : 1

Table of Contents | About PowerShell Plus

153

Sponsors | Resources | © BBS Technologies

Emergency Mode

If during output the ETS discovers a critical condition, it will automatically switch over to list view. 

Such a critical condition can arise, for example, when the ETS encounters unexpected objects. The 

following instruction will initially output the list of running processes in table view, but because file 

system objects turn up suddenly and unexpectedly, during the output the ETS switches over to 

emergency mode and lines up the remaining objects in list view. 

 Get-Process; Dir

"The Case of the Vanished Column" 

When encountering unknown objects, the ETS always takes its cue from the first object that it 

outputs. That can cause a strange phenomenon. The ETS always shows all object properties for an 

unknown object, but only all object properties of the  first object that the ETS outputs. If further objects follow with more properties, the present selection of properties remains and information is 

suppressed. 

The following example shows how information can be withheld:  Get-Process returns a list of running processes. They are sorted by the property S tartTime and subsequently the only properties that are output are N ame and S tartTime:

 Get-Process |  Sort-Object StartTime |  Select-Object Name,StartTime

When you execute these lines, you may possibly get a lot of error messages, but that's not your 

fault. Without administrator privileges, you aren't allowed to access many processes: you can't even 

ask what the start-up time was. As a result, you'll get a list of processes of which only a few are 

listed with their start times. Only the process names are output. The start times of all processes is 

simply suppressed. Why? 

Whenever you use  Select-Object to take a property away from an object, you change the object 

type.  Get-Process retrieves  Process objects, and you cannot simply cancel the properties of these objects. That's why  Select-Object wraps the information of the incoming  Process objects in new objects, which it creates new:

 Get-Process |  Sort-Object StartTime | 

 Select-Object Name,StartTime | 

 ForEach-Object {  $_.  GetType().  FullName }

 System.Management.Automation.PSCustomObject

 (...)

The new objects are of the  PSCustomObject type. There is no entry in the ETS record for this object type, and so the ETS outputs all the properties of the  first object. Because you had used  Sort-Object to sort the output by ascending start times, the list begins with the objects that have no start time 

because of access restrictions. 

As a result, the ETS recognizes only one property,  Name, in the first object. It doesn't find the start time in the first object and so start times are not output for the following objects. You can solve this 

problem by not relying on the ETS, but instead selecting the object you want:

Table of Contents | About PowerShell Plus

154

Sponsors | Resources | © BBS Technologies

 Get-Process |  Sort-Object StartTime | 

 Select-Object Name,StartTime | 

 Format-Table Name, StartTime

ETS Enhancement

If the ETS is familiar with a certain object type, it can convert it into text optimally. For unknown 

objects, conversion is far less elegant, possibly even useless. Fortunately, the ETS can be enhanced: 

all you need to do is to teach ETS how to handle new object types so that they, too, can be 

displayed as text optimally. 

Planning Enhancement

The first step of ETS enhancement is to determine which object type you want to display better. You 

may frequently use  Get-WmiObject to get information from the WMI service, but you're not happy 

with the way PowerShell displays these objects:

 Get-WmiObject Win32_Processor

 __GENUS                     : 2

 __CLASS                     : Win32_Processor

 __SUPERCLASS                : CIM_Processor

 __DYNASTY                   : CIM_ManagedSystemElement

 __RELPATH                   : Win32_Processor.DeviceID="CPU0" 

 __PROPERTY_COUNT            : 48

 __DERIVATION                : {CIM_Processor, CIM_LogicalDevice, 

                               CIM_LogicalElement, CIM_Managed

                               SystemElement}

 __SERVER                    : TOBIASWELTNE-PC

 __NAMESPACE                 : root\cimv2

 __PATH                      : \\TOBIASWELTNE-PC\root\cimv2:Win32_

                               Processor.DeviceID="CPU0" 

 AddressWidth                : 32

 Architecture                : 9

 Availability                : 3

 Caption                     : x64 Family 6 Model 15 Stepping 6

 ConfigManagerErrorCode      :

 ConfigManagerUserConfig     :

 CpuStatus                   : 1

 CreationClassName           : Win32_Processor

 CurrentClockSpeed           : 1000

 CurrentVoltage              : 12

 DataWidth                   : 64

 Description                 : x64 Family 6 Model 15 Stepping 6

 DeviceID                    : CPU0

 ErrorCleared                :

 ErrorDescription            :

 ExtClock                    :

 Family                      : 1

Table of Contents | About PowerShell Plus

155

Sponsors | Resources | © BBS Technologies

 InstallDate                 :

 L2CacheSize                 : 4096

 L2CacheSpeed                :

 L3CacheSize                 : 0

 L3CacheSpeed                : 0

 LastErrorCode               :

 Level                       : 6

 LoadPercentage              :

 Manufacturer                : GenuineIntel

 MaxClockSpeed               : 2167

 Name                        : Intel(R) Core(TM)2 CPU T7400 @ 2.16GHz

 NumberOfCores               : 2

 NumberOfLogicalProcessors   : 2

 OtherFamilyDescription      :

 PNPDeviceID                 :

 PowerManagementCapabilities :

 PowerManagementSupported    : False

 ProcessorId                 : BFEBFBFF000006F6

 ProcessorType               : 3

 Revision                    : 3846

 Role                        : CPU

 SocketDesignation           : U1

 Status                      : OK

 StatusInfo                  : 3

 Stepping                    : 6

 SystemCreationClassName     : Win32_ComputerSystem

 SystemName                  : TOBIASWELTNE-PC

 UniqueId                    : 

 UpgradeMethod               : 8

 Version                     : Modell 15, Stepping 6

 VoltageCaps                 :

First, find out what type of object is returned by the command:

 $object  =  Get-WmiObject Win32_Processor |  Select-Object  -first 1

 $object.  GetType().  FullName

 System.Management.ManagementObject

This shows you that you need an ETS enhancement for objects of the type 

 System.Management.ManagementObject. Next, take a look at this object's properties and select one 

that you want the ETS to convert into text. For example,  DeviceID,  Name, and  ProcessorID. Then, formulate the definition of the object in XML. In the  TableHeaders area, set column headers, and in the  TableRowEntries area, set object properties. 

 <Configuration> 

   <ViewDefinitions> 

     <View> 

       <Name>CustomView</Name> 

       <ViewSelectedBy> 

         <TypeName> System.Management.ManagementObject</TypeName> 

       </ViewSelectedBy> 

Table of Contents | About PowerShell Plus

156

Sponsors | Resources | © BBS Technologies

       <TableControl> 

         <TableHeaders> 

           <TableColumnHeader> 

             <Label> Name</Label> 

             <Width>12</Width> 

           </TableColumnHeader> 

           <TableColumnHeader> 

             <Label> Description</Label> 

             <Width>30</Width> 

           </TableColumnHeader> 

           <TableColumnHeader> 

             <Label> ID</Label> 

           </TableColumnHeader> 

         </TableHeaders> 

         <TableRowEntries> 

           <TableRowEntry> 

             <TableColumnItems> 

               <TableColumnItem> 

                 <PropertyName> DeviceID</PropertyName> 

               </TableColumnItem> 

               <TableColumnItem> 

                 <PropertyName> Description</PropertyName> 

               </TableColumnItem> 

               <TableColumnItem> 

                 <PropertyName> ProcessorID</PropertyName> 

               </TableColumnItem> 

             </TableColumnItems> 

           </TableRowEntry> 

         </TableRowEntries> 

       </TableControl> 

     </View> 

   </ViewDefinitions> 

 </Configuration> 

Store this XML code in a file called  Win32_Processor.format.ps1xml.  Thhen, use  Update-FormatData to read it into the ETS:

 Update-FormatData  Win32_Processor.format.ps1xml

Now, the result will be much easier to understand when you output  Win32_Processor objects again:

 Get-WmiObject Win32_Processor

 Name  Description                    ID

 ----  -----------                    --

 CPU0  x64 Family 6 Model 15 Stepp... BFEBFBFF000006F6

However, in this particular instance a mishap occurred. When you acquire other WMI objects, these 

will now also be displayed in the format that you just defined:

 Get-WmiObject Win32_Share

Table of Contents | About PowerShell Plus

157

Sponsors | Resources | © BBS Technologies

 Name  Description    ID

 ----  -----------    --

       Remote Admin

       Default share

       Default share

       Remote IPC

       Default share

The reason has to do with special features of the WMI. It returns  all WMI objects in a 

 System.Management.ManagementObject type. 

 $object  =  Get-WmiObject Win32_Service |  Select-Object  -first 1

 $object.  GetType().  FullName

 System.Management.ManagementObject

So, the ETS didn't make a mistake. Instead, the culprit is the WMI as for WMI objects (and only for 

these), ETS enhancements must be more specific since the type name alone is not enough. That's 

why WMI objects are assigned to additional object types that you can find in the  PSTypeNames 

property:

 $object  =  Get-WmiObject Win32_Processor |  Select-Object  -first 1

 $object.  PSTypeNames

 System.Management.ManagementObject#root\cimv2\Win32_Processor

 System.Management.ManagementObject

 System.Management.ManagementBaseObject

 System.ComponentModel.Component

 System.MarshalByRefObject

 System.Object

The object name that is specific to  Win32_Processor objects is called 

System.Management.ManagementObject #root\cimv2\Win32_Processor. So, you would have to 

specify this object name in your ETS enhancement so that the enhancement applies only to 

 Win32_Processor WMI objects:

 <Configuration> 

   <ViewDefinitions> 

     <View> 

       <Name>CustomView</Name> 

       <ViewSelectedBy> 

         <TypeName> System.Management.ManagementObject#root

                   \cimv2\Win32_Processor</TypeName> 

       </ViewSelectedBy> 

       <TableControl> 

         <TableHeaders> 

           <TableColumnHeader> 

 (...)

Modify your enhancement accordingly, and read it again with  Update-FormatData. You can safely 

ignore the resulting error message. After updating, your enhancement will be valid only for 

 Win32_Process WMI objects. 

Table of Contents | About PowerShell Plus

158

Sponsors | Resources | © BBS Technologies

Summary

PowerShell uses a pipeline for all command entries, which feeds the results of the preceding 

command directly into the subsequent command. The pipeline is active even when you enter only a 

single command because PowerShell always automatically adds the  Out-Default cmdlet at the 

pipeline's end so that it always results in a two-member instruction chain. 

Single command results are passed as objects. The cmdlets shown in Table 5.1 can filter, sort, compare, measure, expand, and restrict pipeline elements. All cmdlets accomplish this on the basis 

of object properties. In the process, the pipeline distinguishes between sequential and streaming 

modes. In streaming mode, command results are each collected, and then passed in mass onto the 

next command. Which mode you use depends solely on the pipeline commands used. Output 

cmdlets dispose of output. If you specify none, PowerShell automatically uses  Out-Host to output the results in the console. However, you could just as well send results to a file or printer. 

All output cmdlets convert objects into readable text while formatting cmdlets are responsible for 

conversion. Normally, formatting cmdlets convert only the most important, but if requested, all 

objects into text. The Extended Type System (ETS) helps convert objects into text. The ETS uses 

internal records that specify the best way of converting a particular object type into text. If an object 

type isn't in an ETS internal record, the ETS resorts to a heuristic method, which is guided by, 

among other things, how many properties are contained in the unknown object. 

In addition to traditional output cmdlets, export cmdlets store objects either as comma-separated 

lists that can be opened in Excel or serialized in an XML format. Serialized objects can be 

comfortably converted back into objects at a later time. Because when exporting, in contrast to 

outputting, only plain object properties, without cosmetic formatting, are stored so that no 

formatting cmdlets are used. 

Table of Contents | About PowerShell Plus

159

Sponsors | Resources | © BBS Technologies

CHAPTER 6. 

 Using Objects

PowerShell always works with objects. Whenever you output objects into the PowerShell console, 

PowerShell automatically converts the rich objects into readable text. In this chapter, you will learn 

what objects are and how to get your hands on PowerShell objects before they get converted to 

simple text. 

Topics Covered:

•

O

  bjects = Properties + Methods  

•

C

  reating a New Object  

•

A

  dding Properties  

•

A

  dding Methods  

•

P

  roperties: What an Object "Is" 

•

P

  roperties Containing Objects  

•

R

  ead-Only and Read-Write Properties  

•

T

  able 6.1: Properties of the RawUI object  

•

P

  roperty Types  

•

L isting All Properties  

•

M

  ethods: What an Object "Can Do" 

•

E

  liminating "Internal" Methods  

•

G

  et_ and Set_ Methods  

•

S

  tandard Methods  

•

T

  able 6.2: Standard methods of a .NET object  

•

C

  alling a Method  

•

C

  all Methods with Arguments  

•

W

  hich Arguments are Required? 

•

L ow-Level Functions  

•

S

  everal Method "Signatures" 

•

P

  laying with PromptForChoice  

•

W

  orking with Real-Life Objects  

•

S

  toring Results in Variables  

•

U

  sing Object Properties  

•

P

  owerShell-Specific Properties  

•

T

  able 6.3: Different property types  

•

U

  sing Object Methods  

•

Di

  fferent Method Types  

•

T

  able 6.4: Different types of methods  

•

U

  sing Static Methods  

•

T

  able 6.5: Mathematical functions from the [Math] library  

•

F inding Interesting .NET Types  

•

C

  onverting Object Types  

•

U

  sing Static Type Members  

•

U

  sing Dynamic Object Instance Members  

•

L isting Assemblies  

•

E

  ndFinding Interesting Classes (Types)  

•

L ooking for Methods  

•

C

  reating New Objects  

•

C

  reating New Objects with New-Object  

Table of Contents | About PowerShell Plus

160

Sponsors | Resources | © BBS Technologies

•

U

  sing Constructors  

•

N

  ew Objects by Conversion  

•

L oading Additional Assemblies: Improved Internet Download  

•

U

  sing COM Objects  

•

W

  hich COM Objects Are Available? 

•

H

  ow Do You Use COM Objects? 

•

S

  ummary  

Objects = Properties + Methods

In real life, you probably already know what an object is: everything you can touch. Objects in 

PowerShell are actually quite similar. Let's turn a typical real-world object like a pocketknife into a 

PowerShell object. 

How would you describe this object to someone, let's say over a phone line? You would probably 

carefully examine the object and then describe what it  is and what it  can do: 

•

Properties: a pocketknife has particular properties, such as its color, manufacturer, size, or 

number of blades. The object  is red, weights 55 grams, has three blades, and is made by the 

firm Idera. So  properties describe what an object  is. 

•

Methods: in addition, you can do things with this object, such as cut, turn screws, or pull 

corks out of wine bottles. The object  can cut, screw, and remove corks. Everything that an 

object  can is called its  methods. 

In the computing world, an object is very similar: its nature is described by properties, and the 

actions it can perform are called its methods. Properties and methods are called  members. 

Creating a New Object

Let's turn our real-life pocketknife into a virtual pocketknife. Using  New-Object, PowerShell can 

generate new objects, even a virtual pocketknife. First you need a new and empty object:

 $pocketknife  =  New-Object Object

This new object is actually pretty useless right now. If you call it, PowerShell will literally return 

"nothing":

 $pocketknife

Adding Properties

Next, let's start describing what our object  is. To do that, add properties to the object. 

 # Adding a new property:

 Add-Member  -memberType NoteProperty  -name Color  -value Red  -inputObject $pocketknife

Table of Contents | About PowerShell Plus

161

Sponsors | Resources | © BBS Technologies

Use the  Add-Member cmdlet to add properties. Here, you added the property  Color with the value Red to the object  $pocketknife. If you call the object now, it suddenly has a first property telling the world that its color is red:

 $pocketknife

 Color

 -----

 Red

In the same way, you now add more properties to describe the object even better. Remember that 

you don't need to completely write out parameter names. It is enough to write only as much as to 

make the parameter name unambiguous:

 # Shorten parameter names:

 Add-Member  -Me NoteProperty  -In  $pocketknife  -Na Weight  -Value 55

In fact, you don't need to specify parameter names for some of the parameters at all because some 

of them are positional: provided you specify parameters in the right order, PowerShell can 

automatically assign your values to the correct parameter. Adding new properties to your object 

becomes even easier:

 # Specify arguments without parameter names by position data:

 Add-Member  -inputObject  $pocketknife NoteProperty Manufacturer Idera

Most PowerShell cmdlets can receive their input objects either by parameter (-inputObject) or via 

the pipeline, so you can add properties to your object in yet another way:

 # Specify "inputObject" through the pipeline:

 $pocketknife |  Add-Member NoteProperty Blades 3

By now, you've described the object in  $pocketknife with a total of four properties. If you output the object in  $pocketknife in the PowerShell console, PowerShell automatically converts the object into readable text:

 # Show all properties of the object all at once:

 $pocketknife

 Color       Weight        Manufacturer       Blades

 -----       ------        ------------       -------

 Red         55            Idera              3

Outputting an object to the console gets you a quick overview over its properties. To access the 

value of a specific property, add a dot and then the property name:

 # Display a particular property:

 $pocketknife.  manufacturer

 Idera

Table of Contents | About PowerShell Plus

162

Sponsors | Resources | © BBS Technologies

Adding Methods

With every new property you added to your object,  $pocketknife has been gradually taking shape, 

but it still really can't  do anything. Properties only describe what an object  is, not what it can  do. 

The actions your object can do are called its  methods. So let's teach your object a few useful 

methods:

 # Adding a new method:

 Add-Member  -memberType ScriptMethod  -In  $pocketknife `

 -name cut  -Value {  "I'm whittling now"  }

 # Specify arguments without parameter names by position data:

 Add-Member  -in  $pocketknife ScriptMethod screw {  "Phew...it's in!"  }

 # Specifying "InputObject" directly through the pipeline:

 $pocketknife |  Add-Member ScriptMethod corkscrew {  "Pop! Cheers!"  }

Again, you used the  Add-Member cmdlet, but this time you added a method instead of a property (in 

this case, a  ScriptMethod). The value is a scriptblock marked by braces, which contains the 

PowerShell instructions you want the method to perform. If you output your object, it will still look 

the same because PowerShell only visualizes object properties, not methods:

 $pocketknife

 Color       Weight       Manufacturer       Blades

 -----       ------       ------------       -------

 Red         55           Idera              3

To use any of the three newly added methods, add a dot and then the method name followed by two 

parentheses, which are what distinguish properties from methods. For example, if you'd like to 

remove a cork with your virtual pocketknife, enter this instruction:

 $pocketknife.  corkscrew()

 Pop! Cheers! 

Your object really does carry out the exact script commands you assigned to the  corkscrew() 

method. So, methods perform actions, while properties merely provide information. Always 

remember to add parentheses to method names. If you forget them, something interesting 

happens:

 # If you don't use parentheses, you'll retrieve information on a method:

 $pocketknife.  corkscrew

 Script              : "Pop! Cheers!" 

 OverloadDefinitions : {System.Object corkscrew();}

 MemberType          : ScriptMethod

 TypeNameOfValue     : System.Object

 Value               : System.Object corkscrew(); 

 Name                : corkscrew

 IsInstance          : True

Table of Contents | About PowerShell Plus

163

Sponsors | Resources | © BBS Technologies

You just received a method description. What's interesting about this is mainly the 

 OverloadDefinitions property. As you'll see later, it reveals the exact way to use a command for any method. In fact, the  OverloadDefinitions information is in an additional object. For PowerShell, 

absolutely everything is an object so you could store the object in a variable and then specifically 

ask the  OverloadDefinitions property for information:

 # Information about a method is returned in an object of its own:

 $info  =  $pocketknife.  corkscrew

 $info.  OverloadDefinitions

 System.Object corkscrew(); 

The "virtual pocketknife" example reveals that objects are containers that contain data (properties) and actions (methods). 

Our virtual pocketknife was a somewhat artificial object with no real use. Next, let's take a look at a 

more interesting object which PowerShell stores in the variable  $host. 

Properties: What an Object "Is" 

Properties describe an object. Object properties are automatically converted into text when you 

output the object to the console. That's enough to investigate any object. Check out the properties 

in  $host! 

 $host

 Name             : ConsoleHost

 Version          : 1.0.0.0

 InstanceId       : e32debaf-3d10-4c4c-9bc6-ea58f8f17a8f

 UI               : System.Management.Automation.Internal. 

                      Host.InternalHostUserInterface

 CurrentCulture   : en-US

 CurrentUICulture : en-US

 PrivateData      : Microsoft.PowerShell.ConsoleHost+ConsoleColorProxy

The object stored in the variable  $host apparently contains seven properties. The properties' names are listed in the first column. So, if you want to find out which PowerShell version you're using, you 

could access and return the  Version property:

 $host.  Version

 Major  Minor  Build  Revision

 -----  -----  -----  --------

 1      0      0      0

It works—the version is displayed. However, the version isn't displayed as a single number. Rather, 

PowerShell displays four columns:  Major,  Minor,  Build and  Revision. Whenever you see columns, you know these are the object properties that PowerShell has just converted into text. Let's check out 

the data type that the  Version property uses:

Table of Contents | About PowerShell Plus

164

Sponsors | Resources | © BBS Technologies

 $version  =  $host.  Version

 $version.  GetType().  FullName

 System.Version

The version is not stored as a  String object but as a  System.Version object. This object type is perfect for storing versions, allowing you to easily read all details about any given version:

 $host.  Version.Major

 1

 $host.  Version.Build

 0

Knowing an object type is very useful because once you know there is a type called  System.Version, you can use it for your own purposes as well. Try and convert a simple  string of your choice into a rich  version object! To do that, simply make sure the string consists of four numbers separated by dots (the typical format for versions), then make PowerShell convert the string into a 

System.Version type. You convert things by adding the target type in square brackets in front of the 

string:

[ System.Version] '12.55.3.28334' 

 Major  Minor  Build  Revision

 -----  -----  -----  --------

 12     55     3      28334

The  CurrentCulture property is just another example of the same concept. Read this property and 

find out its type:

 $host.  CurrentCulture

 LCID             Name             DisplayName

 ----             ----             -----------

 1033             en-US            English (United States)

 $host.  CurrentCulture.GetType().  FullName

 System.Globalization.CultureInfo

Country properties are again stored in a highly specialized type that describes a culture with the 

properties  LCID,  Name, and  DisplayName. If you wanted to know which international version of PowerShell you are using, read the  DisplayName property:

 $host.  CurrentCulture.DisplayName

 English (United States)

 $host.  CurrentCulture.DisplayName.GetType().  FullName

Table of Contents | About PowerShell Plus

165

Sponsors | Resources | © BBS Technologies

 System.String

Likewise, you could convert any suitable string into a  CultureInfo-object. So if you wanted to find out details about the 'de-DE' locale, do this:

[ System.Globalization.CultureInfo] 'de-DE' 

 LCID             Name             DisplayName

 ----             ----             -----------

 1031             de-DE            German (Germany)

You could also convert the LCID into a  CultureInfo object by converting a suitable number:

[ System.Globalization.CultureInfo]1033

 LCID             Name             DisplayName

 ----             ----             -----------

 1033             en-US            English (United States)

Properties Containing Objects

The properties of an object store data, and this data is, in turn, stored in various other objects. Two 

properties in  $host seem to be special:  UI and  PrivateData. When you output $host into the console, all other properties are converted into readable text - except for the properties UI and PrivateData:

 $host

 Name             : ConsoleHost

 Version          : 1.0.0.0

 InstanceId       : e32debaf-3d10-4c4c-9bc6-ea58f8f17a8f

 UI               : System.Management.Automation.Internal. 

                      Host.InternalHostUserInterface

 CurrentCulture   : en-US

 CurrentUICulture : en-US

 PrivateData      : Microsoft.PowerShell.ConsoleHost+ConsoleColorProxy

The reason is that both these properties contain an object that, as the only property, provides, in 

turn, an object. If you'd like to find out what is actually stored in the  UI property, read the property: $host.  UI

 RawUI

 -----

 System.Management.Automation.Internal. 

   Host.InternalHostRawUserInterface

You see that the property  UI contains only a single property called  RawUI, in which yet another object is stored. Let's see what sort of object is stored in the  RawUI property:

 $host.  ui.rawui

Table of Contents | About PowerShell Plus

166

Sponsors | Resources | © BBS Technologies

 ForegroundColor       : DarkYellow

 BackgroundColor       : DarkMagenta

 CursorPosition        : 0,136

 WindowPosition        : 0,87

 CursorSize            : 25

 BufferSize            : 120,3000

 WindowSize            : 120,50

 MaxWindowSize         : 120,62

 MaxPhysicalWindowSize : 140,62

 KeyAvailable          : False

 WindowTitle           : PowerShell

"RawUI" stands for "Raw User Interface" and exposes the raw user interface settings your PowerShell console uses. You can read all of these properties, but can you also change them? 

Read-Only and Read-Write Properties

Can you actually change properties, too? And if you can, what happens then? 

Properties need to accurately describe an object, so if you modify a property, the underlying object 

has to also be modified to reflect that change. If that is not possible, the property cannot be 

changed and is called "read-only." 

Console background and foreground colors are a great example of properties you can easily change. 

If you do, the console will change colors accordingly. Your property changes are reflected by the 

object, and the changed properties still accurately describe the object. 

 $host.  ui.rawui.BackgroundColor  =  "Green" 

 $host.  ui.rawui.ForegroundColor  =  "White" 

Type  cls so the entire console adopts this color scheme. 

Other properties cannot be changed. If you try anyway, you'll get an error message:

 $host.  ui.rawui.keyavailable  =  $true

 "KeyAvailable" is a ReadOnly-property. 

 At line:1 char:16

 + $host.ui.rawui.k <<<< eyavailable = $true

Whether the console receives key press input, or not, depends on whether you pressed a key or not. 

You cannot control that by changing a property, so this property refuses to be changed. You can 

only read it. 

Property

Description

ForegroundColor

Text color. Optional values are  Black,  DarkBlue, 

Table of Contents | About PowerShell Plus

167

Sponsors | Resources | © BBS Technologies

 DarkGreen,  DarkCyan,  DarkRed,  DarkMagenta, 

 DarkYellow,  Gray,  DarkGray,  Blue,  Green,  Cyan,  Red, Magenta,  Yellow, and  White. 

Background color. Optional values are  Black, 

BackgroundColor

 DarkBlue,  DarkGreen,  DarkCyan,  DarkRed, 

 DarkMagenta,  DarkYellow,  Gray,  DarkGray,  Blue, 

 Green,  Cyan,  Red,  Magenta,  Yellow, and  White. 

CursorPosition

Current position of the cursor

WindowPosition

Current position of the window

CursorSize

Size of the cursor

BufferSize

Size of the screen buffer

WindowSize

Size of the visible window

MaxWindowSize

Maximally permissible window size

MaxPhysicalWindowSiz

Maximum possible window size

e

KeyAvailable

Makes key press input available

WindowTitle

Text in the window title bar

Table 6.1: Properties of the RawUI object

Property Types

Some properties accept numeric values. For example, the size of a blinking cursor is specified as a 

number from  0 to  100 and corresponds to the fill percentage. The next line sets a cursor size of 75%. Values outside the 0-100 numeric range generate an error:

 # A value from 0 to 100 is permitted:

 $host.  ui.rawui.cursorsize  = 75

 # Values outside this range will generate an error:

 $host.  ui.rawui.cursorsize  = 1000

Table of Contents | About PowerShell Plus

168

Sponsors | Resources | © BBS Technologies



 Exception setting "CursorSize": "Cannot process "CursorSize" 

   because the cursor size specified is invalid. 

 Parameter name: value

 Actual value was 1000." 

 At line:1 char:16

 + $host.ui.rawui.c <<<< ursorsize = 1000

Other properties expect color settings. You cannot specify any color that comes to your mind, 

though. Instead, PowerShell expects a "valid" color, and if your color is unknown, you receive an error message listing the colors you can use:

 # Colors are specified as text (in quotation marks):

 $host.  ui.rawui.ForegroundColor  =  "yellow" 

 # Not all colors are allowed:

 $host.  ui.rawui.ForegroundColor  =  "pink" 

 Exception setting "ForegroundColor": "Cannot convert value "pink" to 

   type "System.ConsoleColor" due to invalid enumeration values. Specify 

   one of the following enumeration values and try again. The possible 

   enumeration values are "Black, DarkBlue, DarkGreen, DarkCyan, DarkRed, 

   DarkMagenta, DarkYellow, Gray, DarkGray, Blue, Green, Cyan, Red, 

   Magenta, Yellow, White." 

 At line:1 char:16

 + $host.ui.rawui.F <<<< oregroundColor = "pink" 

If you assign an invalid value to the property  ForegroundColor, the 

error message lists the possible values. If you assign an invalid value 

to the property  CursorSize, you get no hint. Why? 

Every property expects a certain object type. Some object types are more 

specific than others. Use  Get-Member to find out which object types a given 

property expects:

 $host.  ui.RawUI |  Get-Member  -memberType Property

 TypeName: System.Management.Automation.Internal.Host. 

              InternalHostRawUserInterface

 Name                  MemberType Definition

 ----                  ---------- ----------

 BackgroundColor       Property   System.ConsoleColor 

                                    BackgroundColor {get;set;}

 BufferSize            Property   System.Management.Automation. 

                                    Host.Size BufferSize 

                                    {get;set;}

 CursorPosition        Property   System.Management.Automation. 

                                    Host.Coordinates 

                                    CursorPosition {get;set;}

 CursorSize            Property   System.Int32 CursorSize 

 {get;set;}

 ForegroundColor       Property   System.ConsoleColor 

                                    ForegroundColor {get;set;}

Table of Contents | About PowerShell Plus

169

Sponsors | Resources | © BBS Technologies

 KeyAvailable          Property   System.Boolean 

                                    KeyAvailable {get;}

 MaxPhysicalWindowSize Property   System.Management.Automation. 

                                    Host.Size 

 MaxPhysicalWindowSize 

                                    {get;}

 MaxWindowSize         Property   System.Management.Automation. 

                                    Host.Size MaxWindowSize 

                                    {get;}

 WindowPosition        Property   System.Management.Automation. 

                                    Host.Coordinates 

                                    WindowPosition {get;set;}

 WindowSize            Property   System.Management.Automation. 

                                    Host.Size WindowSize 

                                    {get;set;}

 WindowTitle           Property   System.String WindowTitle 

                                    {get;set;}

As you see,  ForegroundColor expects a  System.ConsoleColor type. This type is 

a highly specialized type, a list of possible values, a so called enumeration:

[ system.ConsoleColor].  IsEnum

 True

Whenever a type is an enumeration, you can use a special .NET method called 

 GetNames() to list the possible values defined in that enumeration:

[ System.Enum]:: GetNames([ System.ConsoleColor])

 Black

 DarkBlue

 DarkGreen

 DarkCyan

 DarkRed

 DarkMagenta

 DarkYellow

 Gray

 DarkGray

 Blue

 Green

 Cyan

 Red

 Magenta

 Yellow

 White

If you specify anything not contained in the enumeration, the error message 

will simply return the enumeration's contents. 

Table of Contents | About PowerShell Plus

170

Sponsors | Resources | © BBS Technologies



 CursorSize stores its data in a  System.Int32 object, which is simply a 32bit 

number. So, if you try to set the cursor size to 1000, you are actually not 

violating the object boundaries because the value of 1000 can be stored in a 

 System.Int32 object. You get an error message anyway because of the 

validation code that the  CursorSize property executes internally. So, whether 

you get detailed error information really depends on the property's definition. 

In the case of  CursorSize, you would receive only an indication that your value 

is invalid, but not the reason why. 

Sometimes, a property expects a value wrapped in a specific object. For example, if you'd like to 

change the PowerShell window size, you could use the  WindowSize property. As it turns out, the 

property expects a new window size wrapped in an object of type 

 System.Management.Automation.Host.Size. Where can you get an object like that? 

 $host.  ui.rawui.WindowSize  = 100,100

 Exception setting "WindowSize": "Cannot convert "System.Object[]" 

   to "System.Management.Automation.Host.Size"." 

 At line:1 char:16

 + $host.ui.rawui.W <<<< indowSize = 100,100

There are a number of ways to provide specialized objects for 

properties. The easiest approach: read the existing value of a 

property (which will get you the object type you need), change the 

result, and then write back the changes. For example, here's how 

you would change the PowerShell window size to 80 x 30 

characters:

 $value  =  $host.  ui.rawui.WindowSize

 $value

      Width     Height

      -----     ------

        110         64

 $value.  Width  = 80

 $value.  Height  = 30

 $host.  ui.rawui.WindowSize  =  $value

Or, you can freshly create the object you need by using New-Object:

 $value  =  New-Object `

 System.Management.Automation.Host.Size(80,30)

 $host.  ui.rawui.WindowSize  =  $value

Or in a line:

Table of Contents | About PowerShell Plus

171

Sponsors | Resources | © BBS Technologies

 $host.  ui.rawui.WindowSize  =  New-Object `

 System.Management.Automation.Host.Size(80,30)

Listing All Properties

Because properties and methods are all members of an object,  Get-Member returns detailed 

information about them. Let's use  Get-Member to examine all properties defined in  $host. To limit Get-Member to only properties, use the  memberType parameter and specify "property": $host |  Get-Member  -memberType property

 Name             MemberType Definition

 ----             ---------- ----------

 CurrentCulture   Property   System.Globalization.CultureInfo 

                               CurrentCulture {get;}

 CurrentUICulture Property   System.Globalization.CultureInfo 

                               CurrentUICulture {get;}

 InstanceId       Property   System.Guid InstanceId {get;}

 Name             Property   System.String Name {get;}

 PrivateData      Property   System.Management.Automation.PSObject 

                               PrivateData {get;}

 UI               Property   System.Management.Automation.Host. 

                               PSHostUserInterface UI {get;}

 Version          Property   System.Version Version {get;}

In the column  Name, you now see all supported properties in  $host. In the column  Definition, the property object type is listed first. For example, you can see that the  Name property stores a text as System.String type. The  Version property uses the  System.Version type. 

At the end of each definition, braces report whether the property is read-only ({get;}) or can also be 

modified ({get;set;}). You can see at a glance that all properties of the  $host object are only 

readable. Now, take a look at the  $host.ui.rawui object:

 $host.  ui.rawui |  Get-Member  -memberType property

 BackgroundColor       Property   System.ConsoleColor BackgroundColor 

                                    {get;set;}

 BufferSize            Property   System.Management.Automation.Host. 

                                    Size BufferSize {get;set;}

 CursorPosition        Property   System.Management.Automation.Host. 

                                    Coordinates CursorPosition {get;set;}

 CursorSize            Property   System.Int32 CursorSize {get;set;}

 ForegroundColor       Property   System.ConsoleColor ForegroundColor {get;set;}

 KeyAvailable          Property   System.Boolean KeyAvailable {get;}

 MaxPhysicalWindowSize Property   System.Management.Automation.Host.Size 

                                    MaxPhysicalWindowSize {get;}

 MaxWindowSize         Property   System.Management.Automation.Host.Size 

Table of Contents | About PowerShell Plus

172

Sponsors | Resources | © BBS Technologies



                                    MaxWindowSize {get;}

 WindowPosition        Property   System.Management.Automation.Host. 

                                    Coordinates WindowPosition {get;set;}

 WindowSize            Property   System.Management.Automation.Host.Size 

                                    WindowSize {get;set;}

 WindowTitle           Property   System.String WindowTitle {get;set;}

This result is more differentiated. It shows you that some properties could be changed, while others 

could not. 

There are different "sorts" of properties. Most properties are of the 

 Property type, but PowerShell can add additional properties like 

 ScriptProperty. So if you really want to list all properties, use the 

 memberType parameter and assign it a value of  *Property. The 

wildcard in front of "property" will also select all specialized 

properties like "ScriptProperty". 

Methods: What an Object "Can Do" 

Methods are things that an object  can do. When you output an object to the console, only its 

properties are converted into readable text. Its methods remain invisible. To list the methods of an 

object, use  Get-Member and use the parameter "memberType" with the value "method": $host |  Get-Member  -memberType Method

 Name                   MemberType Definition

 ----                   ---------- ----------

 EnterNestedPrompt      Method     System.Void EnterNestedPrompt()

 Equals                 Method     System.Boolean Equals(Object obj)

 ExitNestedPrompt       Method     System.Void ExitNestedPrompt()

 GetHashCode            Method     System.Int32 GetHashCode()

 GetType                Method     System.Type GetType()

 get_CurrentCulture     Method     System.Globalization.CultureInfo 

                                     get_CurrentCulture()

 get_CurrentUICulture   Method     System.Globalization.CultureInfo 

                                     get_CurrentUICulture()

 get_InstanceId         Method     System.Guid get_InstanceId()

 get_Name               Method     System.String get_Name()

 get_PrivateData        Method     System.Management.Automation.PSObject 

                                     get_PrivateData()

 get_UI                 Method     System.Management.Automation.Host. 

                                     PSHostUserInterface get_UI()

 get_Version            Method     System.Version get_Version()

 NotifyBeginApplication Method     System.Void NotifyBeginApplication()

 NotifyEndApplication   Method     System.Void NotifyEndApplication()

 SetShouldExit          Method     System.Void SetShouldExit(Int32 

                                     exitCode)

Table of Contents | About PowerShell Plus

173

Sponsors | Resources | © BBS Technologies

 ToString               Method     System.String ToString()

Eliminating "Internal" Methods

 Get-Member lists all methods defined by an object. Not all of them are really useful to you. Let's check out why some of the listed methods are really only of limited use. 

Get_ and Set_ Methods

Any method that starts with "get_" is really a method to retrieve a property value. So the method 

"get_someInfo()" is getting you the very same information you could also have retrieved with the 

"someInfo" property. 

 # Query property:

 $host.  version

 Major  Minor  Build  Revision

 -----  -----  -----  --------

 1      0      0      0

 # Query property value using getter method:

 $host.  get_Version()

 Major  Minor  Build  Revision

 -----  -----  -----  --------

 1      0      0      0

The same is true for  Set_ methods: they change a property value and exist for properties that are 

read/writeable. Note in this example: all properties of the  $host object can only be read so there are no Set_ methods. There can be more internal methods like this, such as Add_ and Remove_ 

methods. Generally speaking, when a method name contains an underscore, it most likely is an 

internal method. 

Standard Methods

In addition, nearly every object contains a number of "inherited" methods that are also not specific to the object but perform general tasks for every object:

Method

Description

Equals

Verifies whether the object is identical to a comparison object

GetHashCode Retrieves an object's digital "fingerprint" 

Table of Contents | About PowerShell Plus

174

Sponsors | Resources | © BBS Technologies

GetType

Retrieves the underlying object type

ToString

Converts the object into readable text

Table 6.2: Standard methods of a .NET object

To sort out all methods that contain an underscore, you could use  Where-Object and the comparison 

operator -notlike:

 $host |  Get-Member  -memberType  * method | 

 Where-Object {  $_.  Name  -notlike  '*_*'   }

The  $host object really only contains these unique and useful methods:

 Name                   MemberType Definition

 ----                   ---------- ----------

 EnterNestedPrompt      Method     System.Void EnterNestedPrompt()

 ExitNestedPrompt       Method     System.Void ExitNestedPrompt()

 NotifyBeginApplication Method     System.Void NotifyBeginApplication()

 NotifyEndApplication   Method     System.Void NotifyEndApplication()

 SetShouldExit          Method     System.Void SetShouldExit(Int32

                                     exitCode)

Calling a Method

Watch out:  before you invoke a method: make sure you know what the method will do. Methods are 

commands that do something, and what a command does can be dangerous. To call a method, add 

a dot to the object and then the method name. Add an opened and closed parenthesis, like this:

 $host.  EnterNestedPrompt()

The PowerShell prompt changes to ">>". You have used  EnterNestedPrompt() to open a nested prompt. Nested prompts are not especially useful in a normal console, so exit it again using the  exit 

command or call  $host.ExitNestedPrompt(). 

Nested prompts are very useful in functions or scripts because they work like breakpoints and can 

temporarily stop a function or script so you can verify variable contents or make code changes, after 

which you continue the code by entering  exit. You'll learn more about this in Chapter 11. 

Call Methods with Arguments

There are a bunch of useful methods in the  UI object. Here's how you get a good overview:

 $host.  ui |  Get-Member  -memberType Method

Table of Contents | About PowerShell Plus

175

Sponsors | Resources | © BBS Technologies

 TypeName: System.Management.Automation.Internal.Host. 

             InternalHostUserInterface

 Name                   MemberType Definition

 ----                   ---------- ----------

 Equals                 Method     System.Boolean Equals(Object obj)

 GetHashCode            Method     System.Int32 GetHashCode()

 GetType                Method     System.Type GetType()

 get_RawUI              Method     System.Management.Automation.Host. 

                                     PSHostRawUserInterface get_RawUI()

 Prompt                 Method     System.Collections.Generic.Dictionary

                                     `2[[System.String, mscorlib, ... 

 PromptForChoice        Method     System.Int32 PromptForChoice(String 

                                     caption, String message, ... 

 PromptForCredential    Method     System.Management.Automation. 

                                     PSCredential PromptForCredential... 

 ReadLine               Method     System.String ReadLine()

 ReadLineAsSecureString Method     System.Security.SecureString 

                                     ReadLineAsSecureString()

 ToString               Method     System.String ToString()

 Write                  Method     System.Void Write(String value), 

                                     System.Void Write(ConsoleColor... 

 WriteDebugLine         Method     System.Void WriteDebugLine(String 

                                     message)

 WriteErrorLine         Method     System.Void WriteErrorLine(String 

                                     value)

 WriteLine              Method     System.Void WriteLine(), System.Void 

                                     WriteLine(String value)... 

 WriteProgress          Method     System.Void WriteProgress(Int64 

                                     sourceId, ProgressRecord record)

 WriteVerboseLine       Method     System.Void WriteVerboseLine(String 

                                     message)

 WriteWarningLine       Method     System.Void WriteWarningLine(String 

                                     message)

Most methods require additional arguments from you, which are listed in the  Definition column. 

Which Arguments are Required? 

Pick out a method from the list, and ask  Get-Member to get you more info. Let's pick 

 WriteDebugLine():

 # Ask for data on the WriteDebugLine method 

 # in $host.ui:

 $info  =  $host.  UI |  Get-Member WriteDebugLine

 # $info contains all the data on this method:

 $info

 TypeName: System.Management.Automation. 

   Internal.Host.InternalHostUserInterface

 Name           MemberType Definition

 ----           ---------- ----------

Table of Contents | About PowerShell Plus

176

Sponsors | Resources | © BBS Technologies

 WriteDebugLine Method     System.Void 

                           WriteDebugLine

                           (String message)

 # Definition shows which arguments are required 

 # and which result will be returned:

 $info.  Definition

 System.Void WriteDebugLine(String message)

The  Definition property tells you how to call the method. Every definition starts with the object type that a method returns. In this example it is  System.Void, a special object type because it represents 

"nothing": the method doesn't return anything at all. A method "returning"  System.Void is really a procedure, not a function. 

Next, a method's name follows, which is then followed by required arguments.  WriteDebugLine 

needs exactly one argument called  message, which is of  String type. Here is how you call 

 WriteDebugLine(): 

 $host.  ui.WriteDebugLine( "Hello!" )

 Hello! 

Low-Level Functions

 WriteDebugLine() really does nothing spectacular. In fact, most methods found in the  $host object are really only low-level commands used by the standard PowerShell cmdlets. For example, you 

could also have output the debug notification by using the following cmdlet: 

 Write-Debug  "Hello!" 

However, there are differences: No matter what— WriteDebugText() always writes out yellow debug 

messages. The high-level  Write-Debug cmdlet only outputs the debug message when the 

 $DebugPreference variable is set to anything other than "SilentlyContinue" (which is the default). 

The same applies to the  WriteErrorLine,  WriteVerboseLine, and  WriteWarningLine methods, which are the low-level functions for the  Write-Error,  Write-Verbose, and  Write-Warning cmdlets. 

So, if you'd like to output error or warning messages that are independent of the various preference 

settings in PowerShell, use the low-level commands in  $host.UI.RawUI instead of the cmdlets. 

Several Method "Signatures" 

Some methods accept different argument types or even different numbers of arguments. To find out 

which "signatures" a method supports, use  Get-Member again and look at the  Definition property: $info  =  $host.  UI |  Get-Member WriteLine

 $info.  Definition

Table of Contents | About PowerShell Plus

177

Sponsors | Resources | © BBS Technologies



 System.Void WriteLine(), 

 System.Void WriteLine(String value), 

 System.Void WriteLine(

   ConsoleColor foregroundColor, 

   ConsoleColor backgroundColor, 

   String value)

Unfortunately, the definition is hard to read at first. Make it more readable by using  Replace() to add line breaks. 

Remember the strange "backtick" character ("`"). It introduces 

special characters; "`n" stands for a line break. 

 $info.  Definition.Replace( "), " ,  ")`n" )

 System.Void WriteLine()

 System.Void WriteLine(String value)

 System.Void WriteLine(

   ConsoleColor foregroundColor, 

   ConsoleColor backgroundColor, 

   String value)

This definition tells you: You do not necessarily need to supply arguments:

 $host.  ui.WriteLine()

The result is an empty line. 

To output text, you specify one argument only, the text itself:

 $host.  ui.WriteLine( "Hello world!" )

 Hello world! 

The third variant adds support for foreground and background colors:

 $host.  ui.WriteLine( "Red" ,  "White" ,  "Alarm!" ) WriteLine() actually is the low-level function of the  Write-Host cmdlet:

 Write-Host

 Write-Host  "Hello World!" 

 Write-Host  -foregroundColor Red `

 -backgroundColor White Alarm! 

Table of Contents | About PowerShell Plus

178

Sponsors | Resources | © BBS Technologies



Playing with PromptForChoice

Most methods you examined so far turned out to be low-level commands for cmdlets. This is also 

true for the following methods:  Write() (corresponds to  Write-Host -noNewLine) or 

 ReadLine()/ ReadLineAsSecureString() ( Read-Host -asSecureString) or  PromptForCredential() ( Get-Credential). 

A new functionality is exposed by the method  PromptForChoice(). Let's first examine which 

arguments this method expects:

 $info  =  $host.  UI |  Get-Member PromptForChoice

 $info.  Definition

 System.Int32 PromptForChoice(String caption, 

   String message, Collection`1 choices, 

   Int32 defaultChoice)

You can get the same information if you call the method without 

parentheses:

 $host.  ui.PromptForChoice

 MemberType          : Method

 OverloadDefinitions : {System.Int32 PromptForChoice(

                         String caption, String message, 

                         Collection`1 choices, 

                         Int32 defaultChoice)}

 TypeNameOfValue     : System.Management.Automation.PSMethod

 Value               : System.Int32 PromptForChoice(

                         String caption, String message, 

                          Collection`1 choices, 

                          Int32 defaultChoice)

 Name                : PromptForChoice

 IsInstance          : True

The definition reveals that this method returns a numeric value ( System.Int32). It requires a 

heading and a message respectively as text ( String). The third argument is a bit strange: 

 Collection`1 choices. The fourth argument is a number ( Int32), the standard selection. You should have noticed by now the limitations of PowerShell's built-in description. 

This is how you could use  PromptForChoice() to create a simple menu:

 $yes  = ([ System.Management.Automation.Host.ChoiceDescription] "&yes" ) $no  = ([ System.Management.Automation.Host.ChoiceDescription] "&no" ) $selection  = [ System.Management.Automation.Host.ChoiceDescription[]] `

( $yes,  $no) 

 $answer  =  $host.  ui.PromptForChoice( 'Reboot' , 

 'May the system now be rebooted?' ,  $selection,1) 

Table of Contents | About PowerShell Plus

179

Sponsors | Resources | © BBS Technologies

 $selection[ $answer]

 if ( $selection  -eq 0) {

 "Reboot" 

}  else {

 "OK, then not" 

}

Working with Real-Life Objects

Every single PowerShell command returns objects, which is a good thing. However, it is not that 

easy to get your hands on objects because whenever objects hit the PowerShell console, they will be 

converted to text and lose a lot of their information. 

Storing Results in Variables

Do not output command results to the console to prevent PowerShell from converting objects into 

simple strings. The console is a hostile place for objects because anything output to the PowerShell 

console will end up as text. Instead, save the command result in a variable, which is a safe place for 

objects. 

 $listing  = Dir

However, variables are only safe places for objects until you dump their content to the console: the 

objects stored inside of your variable would again be converted to text. 

 $listing

 Directory: Microsoft.PowerShell.Core\FileSystem::

               C:\Users\Tobias Weltner

 Mode           LastWriteTime  Length Name

 ----           -------------  ------ ----

 d----   04.03.2009     11:37         Application Data

 d----   05.03.2009     11:03         Backup

 d-r--   13.02.2009     15:05         Contacts

 d----   28.01.2009     18:33         Debug

 (...)

So, to get in touch with the real objects, you can directly access them inside of a variable.  Dir has stored its directory listing in  $listing. Since the listing consists of more than one entry, it is wrapped in an array. Access an array element to get your hands on a real object:

 # Access first element in listing

 $object  =  $listing[0]

 # Object is converted into text when you output it in the console

 $object

 Directory: Microsoft.PowerShell.Core\FileSystem::

              C:\Users\Tobias Weltner

 Mode         LastWriteTime  Length Name

Table of Contents | About PowerShell Plus

180

Sponsors | Resources | © BBS Technologies

 ----         -------------  ------ ----

 d----  0.07.2007     11:37         Application Data

The object picked here happens to match the folder  Application Data; so it represents a directory. If you would prefer to directly pick a particular directory or file, you can do this:

 # Address a particular file:

 $object  = Dir c:\ autoexec.bat

 # Address the Windows directory:

 $object  =  Get-Item  $env:winDir

Using Object Properties

You can now use  Get-Member again to produce a list of all available properties:

 # $object is a fully functional object that 

 # describes the "Application Data" directory

 # First, list all object properties:

 $object |  Get-Member  -memberType  * property

 TypeName: System.IO.DirectoryInfo

 Name              MemberType     Definition

 ----              ----------     ----------

 PSChildName       NoteProperty   System.String PSChildName=

                                    Application Data

 PSDrive           NoteProperty   System.Management.Automation. 

                                    PSDriveInfo PSDrive=C

 PSIsContainer     NoteProperty   System.Boolean PSIsContainer=

                                    True

 PSParentPath      NoteProperty   System.String PSParentPath=

                                    Microsoft.PowerShell.Core\

                                    FileSystem::C:\Users... 

 PSPath            NoteProperty   System.String PSPath=Microsoft. 

                                    PowerShell.Core\FileSystem::

                                    C:\Users\Tobia... 

 PSProvider        NoteProperty   System.Management.Automation. 

                                    ProviderInfo PSProvider=

                                    Microsoft.PowerShell... 

 Attributes        Property       System.IO.FileAttributes 

                                    Attributes {get;set;}

 CreationTime      Property       System.DateTime CreationTime 

                                    {get;set;}

 CreationTimeUtc   Property       System.DateTime CreationTimeUtc 

                                    {get;set;}

 Exists            Property       System.Boolean Exists {get;}

 Extension         Property       System.String Extension {get;}

 FullName          Property       System.String FullName {get;}

 LastAccessTime    Property       System.DateTime LastAccessTime 

                                    {get;set;}

 LastAccessTimeUtc Property       System.DateTime LastAccessTimeUtc 

                                    {get;set;}

Table of Contents | About PowerShell Plus

181

Sponsors | Resources | © BBS Technologies

 LastWriteTime     Property       System.DateTime LastWriteTime 

                                    {get;set;}

 LastWriteTimeUtc  Property       System.DateTime LastWriteTimeUtc 

                                    {get;set;}

 Name              Property       System.String Name {get;}

 Parent            Property       System.IO.DirectoryInfo 

                                    Parent {get;}

 Root              Property       System.IO.DirectoryInfo 

                                    Root {get;}

 Mode              ScriptProperty System.Object Mode 

                                    {get=$catr = "";... 

Properties marked with { get;set; } in the column  Definition may also be modified:

 # Determine last access date:

 $object.  LastAccessTime

 Wednesday, January 14, 2009 11:37:39

 # Change Date:

 $object.  LastAccessTime  =  Get-Date

 # Change was accepted:

 $object.  LastAccessTime

 Saturday, March 7, 2009 15:31:41

PowerShell-Specific Properties

PowerShell can add additional properties to an object. Whenever that occurs,  Get-Member labels the property accordingly in the MemberType column. Native properties are just called "Property." 

Properties added by PowerShell use a prefix, such as "ScriptProperty" or "NoteProperty." 

A  NoteProperty like  PSChildName contains static data. PowerShell adds it to tag additional information to an object. A  ScriptProperty like  Mode executes PowerShell script code that calculates the property's value. 

If you want to see the script code being executed when you call the  ScriptProperty  Mode, ask  GetMember to list the property definition:

 $info  =  $object |  Get-Member Mode

 $info.  Definition

 System.Object Mode {get=$catr = ""; 

   if ( $this.Attributes -band 16 ) { $catr += "d" } 

     else { $catr += "z" }; 

   if ( $this.Attributes -band 32 ) { $catr += "a" } 

     else { $catr += "-" }; 

   if ( $this.Attributes -band 1 )  { $catr += "r" } 

     else { $catr += "-" }; 

   if ( $this.Attributes -band 2 )  { $catr += "h" } 

Table of Contents | About PowerShell Plus

182

Sponsors | Resources | © BBS Technologies

     else { $catr += "-" }; 

   if ( $this.Attributes -band 4 )  { $catr += "s" } 

     else { $catr += "-" }; 

   $catr;}

As it turns out,  Mode evaluates the native  Attributes property which is a bitmask. Binary bitmasks are hard to read so that is why the new Mode script property converts the binary information into a 

more user friendly format. 

MemberType

Description

AliasProperty

Alternative name for a property that already exists

CodeProperty

Static .NET method returns property contents

Property

Genuine property

NoteProperty

Subsequently added property with set data value

ScriptProperty

Subsequently added property whose value is calculated 

by a script

ParameterizedPropert Property requiring additional arguments

y

Table 6.3: Different property types

Using Object Methods

Use  Get-Member again to find out the methods that an object supports:

 # List all methods of the object:

 $object |  Get-Member  -memberType  * method

 TypeName: System.IO.DirectoryInfo

 Name                      MemberType Definition

 ----                      ---------- ----------

 Create                    Method     System.Void Create(), 

                                        System.Void Create(

                                        DirectorySecurity DirectoryS... 

 CreateObjRef              Method     System.Runtime.Remoting.ObjRef 

                                        CreateObjRef(Type requestedType)

 CreateSubDirectory        Method     System.IO.DirectoryInfo 

Table of Contents | About PowerShell Plus

183

Sponsors | Resources | © BBS Technologies

                                        CreateSubDirectory(String path), 

                                        System.IO.Di... 

 Delete                    Method     System.Void Delete(), System.Void 

                                        Delete(Boolean recursive)

 Equals                    Method     System.Boolean Equals(Object obj)

 GetAccessControl          Method     System.Security.AccessControl. 

                                        DirectorySecurity GetAccessCo... 

 GetDirectories            Method     System.IO.DirectoryInfo[] 

                                        GetDirectories(), System.IO. 

                                        DirectoryInfo[]... 

 GetFiles                  Method     System.IO.FileInfo[] GetFiles(

                                        String searchPattern), System.IO. 

                                        FileIn... 

 GetFileSystemInfos        Method     System.IO.FileSystemInfo[] 

                                        GetFileSystemInfos(String 

                                        searchPattern), ... 

 GetHashCode               Method     System.Int32 GetHashCode()

 GetLifetimeService        Method     System.Object GetLifetimeService()

 GetObjectData             Method     System.Void GetObjectData(

                                        SerializationInfo info, 

                                        StreamingContext co... 

 GetType                   Method     System.Type GetType()

 get_Attributes            Method     System.IO.FileAttributes 

                                        get_Attributes()

 get_CreationTime          Method     System.DateTime get_CreationTime()

 get_CreationTimeUtc       Method     System.DateTime get_CreationTimeUtc()

 get_Exists                Method     System.Boolean get_Exists()

 get_Extension             Method     System.String get_Extension()

 get_FullName              Method     System.String get_FullName()

 get_LastAccessTime        Method     System.DateTime get_LastAccessTime()

 get_LastAccessTimeUtc     Method     System.DateTime 

                                        get_LastAccessTimeUtc()

 get_LastWriteTime         Method     System.DateTime get_LastWriteTime()

 get_LastWriteTimeUtc      Method     System.DateTime 

                                        get_LastWriteTimeUtc()

 get_Name                  Method     System.String get_Name()

 get_Parent                Method     System.IO.DirectoryInfo get_Parent()

 get_Root                  Method     System.IO.DirectoryInfo get_Root()

 InitializeLifetimeService Method     System.Object 

                                        InitializeLifetimeService()

 MoveTo                    Method     System.Void MoveTo(String destDirName)

 Refresh                   Method     System.Void Refresh()

 SetAccessControl          Method     System.Void SetAccessControl(

                                        DirectorySecurity DirectorySecurity)

 set_Attributes            Method     System.Void set_Attributes(

                                        FileAttributes value)

 set_CreationTime          Method     System.Void set_CreationTime(

                                        DateTime value)

 set_CreationTimeUtc       Method     System.Void set_CreationTimeUtc(

                                        DateTime value)

 set_LastAccessTime        Method     System.Void set_LastAccessTime(

                                        DateTime value)

 set_LastAccessTimeUtc     Method     System.Void set_LastAccessTimeUtc(

Table of Contents | About PowerShell Plus

184

Sponsors | Resources | © BBS Technologies



                                        DateTime value)

 set_LastWriteTime         Method     System.Void set_LastWriteTime(

                                        DateTime value)

 set_LastWriteTimeUtc      Method     System.Void set_LastWriteTimeUtc(

                                        DateTime value)

 ToString                  Method     System.String ToString()

Again, standard methods are displayed in bold font so you can 

safely ignore them because they exist in every object or match 

properties. 

You can apply methods just like you did in the previous examples. For example, use the 

 CreateSubDirectory method if you'd like to create a new subdirectory. Find out first which arguments this method requires and what it returns:

 $info  =  $object |  Get-Member CreateSubDirectory

 $info.  Definition.Replace( "), " ,  ")`n" )

 System.IO.DirectoryInfo CreateSubDirectory(String path)

 System.IO.DirectoryInfo CreateSubDirectory(String path, 

   DirectorySecurity DirectorySecurity)

You can see that the method has two signatures. Use the first to create a subdirectory and the 

second to add access permissions. 

The next line creates a subdirectory called "My New Directory" without any special access privileges: $object.  CreateSubDirectory( "My New Directory" )

 Mode     LastWriteTime  Length Name

 ----     -------------  ------ ----

 d----  03.07.200915:49         My New Directory

Because the method returns a  DirectoryInfo object as result and you haven't caught and stored this object in a variable, the pipeline converts it into text and outputs it. You could just as well have 

stored the result of the method in a variable:

 $subdirectory  =  $object.  CreateSubDirectory( "Another subdirectory" ) $subdirectory.  CreationTime  =  "September 1, 1980" 

 $subdirectory.  CreationTime

 Monday, September 1, 1980 00:00:00

Different Method Types

Similarly to properties, PowerShell can also add additional methods to an object. 

Table of Contents | About PowerShell Plus

185

Sponsors | Resources | © BBS Technologies

MemberType

Description

CodeMethod

Method mapped to a static .NET method

Method

Genuine method

ScriptMethod

Method invokes PowerShell code

Table 6.4: Different types of methods

Using Static Methods

By now, you know that PowerShell stores information in objects, and objects always have a type. 

You know that simple text is stored in objects of type  System.String and that a date, for example, is stored in an object of type  System.DateTime. You also know by now that each .NET object has a 

 GetType() method with a FullName property which tells you the name of the type this object was 

derived from:

 $date  =  Get-Date

 $date.  GetType().  FullName

 System.DateTime

Every type can have its own set of private members called "static" members. Simply specify a type in square brackets, then pipe it to  Get-Member and use the  -static parameter to see the static members of a type. 

[ System.DateTime] |  Get-Member  -static  -memberType  * method

 TypeName: System.DateTime

 Name                  MemberType Definition

 ----                  ---------- ----------

 Compare               Method     static System.Int32 Compare(

                                    DateTime t1, DateTime t2)

 DaysInMonth           Method     static System.Int32 DaysInMonth(

                                    Int32 year, Int32 month)

 Equals                Method     static System.Boolean Equals(

                                    DateTime t1, DateTime t2), 

                                    static Sys... 

 FromBinary            Method     static System.DateTime FromBinary(

                                    Int64 dateData)

 FromFileTime          Method     static System.DateTime 

                                    FromFileTime(Int64 fileTime)

 FromFileTimeUtc       Method     static System.DateTime 

                                    FromFileTimeUtc(Int64 fileTime)

Table of Contents | About PowerShell Plus

186

Sponsors | Resources | © BBS Technologies

 FromOADate            Method     static System.DateTime FromOADate(

                                    Double d)

 get_Now               Method     static System.DateTime get_Now()

 get_Today             Method     static System.DateTime get_Today()

 get_UtcNow            Method     static System.DateTime get_UtcNow()

 IsLeapYear            Method     static System.Boolean IsLeapYear(

                                    Int32 year)

 op_Addition           Method     static System.DateTime 

                                    op_Addition(DateTime d, 

                                    TimeSpan t)

 op_Equality           Method     static System.Boolean 

                                    op_Equality(DateTime d1, 

                                    DateTime d2)

 op_GreaterThan        Method     static System.Boolean 

                                    op_GreaterThan(DateTime t1, 

                                    DateTime t2)

 op_GreaterThanOrEqual Method     static System.Boolean 

                                    op_GreaterThanOrEqual(DateTime t1, 

                                    DateTime t2)

 op_Inequality         Method     static System.Boolean 

                                    op_Inequality(DateTime d1, 

                                    DateTime d2)

 op_LessThan           Method     static System.Boolean 

                                    op_LessThan(DateTime t1, 

                                    DateTime t2)

 op_LessThanOrEqual    Method     static System.Boolean

                                    op_LessThanOrEqual(DateTime t1, 

                                    DateTime t2)

 op_Subtraction        Method     static System.DateTime 

                                    op_Subtraction(DateTime d, 

                                    TimeSpan t), sta... 

 Parse                 Method     static System.DateTime 

                                    Parse(String s), static System. 

                                    DateTime Par... 

 ParseExact            Method     static System.DateTime

                                    ParseExact(String s, String 

                                    format, IFormat... 

 ReferenceEquals       Method     static System.Boolean 

                                    ReferenceEquals(Object objA, 

                                    Object objB)

 SpecifyKind           Method     static System.DateTime 

                                    SpecifyKind(DateTime value, 

                                    DateTimeKind kind)

 TryParse              Method     static System.Boolean 

                                    TryParse(String s, DateTime& 

                                    result), static... 

 TryParseExact         Method     static System.Boolean 

                                    TryParseExact(String s, 

                                    String format, IFo... 

Table of Contents | About PowerShell Plus

187

Sponsors | Resources | © BBS Technologies



There are a lot of method names starting with "op_," with "op" 

standing for "operator." These are methods called internally 

whenever you use this data type with an operator. 

 op_GreaterThanOrEqual is the method that does the internal work 

when you use the PowerShell comparison operator "-ge" with date 

values. 

The  System.DateTime class supplies you with a bunch of important date and time methods. For 

example, to convert a date string into a real DateTime object and use the current locale, use 

 Parse():

[ System.DateTime]:: Parse( "March 12, 1999" )

 Friday, March 12, 1999 00:00:00

You could easily find out whether a certain year is a leap year:

[ System.DateTime]:: isLeapYear(2010)

 False

for ( $x= 2000;  $x  -lt 2010;  $x++) { 

 if( [ System.DateTime]:: isLeapYear( $x) )

{  "$x is a leap year!"  } }

 2000 is a leap year! 

 2004 is a leap year! 

 2008 is a leap year! 

Or you'd like to tell your children with absolute precision how much time will elapse before they get 

their Christmas gifts:

[ DateTime] "12/24/2007 18:00"   - [ DateTime]:: now

 Days              : 74

 Hours             : 6

 Minutes           : 28

 Seconds           : 49

 Milliseconds      : 215

 Ticks             : 64169292156000

 TotalDays         : 74.2700140694444

 TotalHours        : 1782,48033766667

 TotalMinutes      : 106948,82026

 TotalSeconds      : 6416929,2156

 TotalMilliseconds : 6416929215,6

Two dates are being subtracted from each other here so you now know what happened during this 

operation:

Table of Contents | About PowerShell Plus

188

Sponsors | Resources | © BBS Technologies

•

The first time indication is actually text. For it to become a  DateTime object, you must specify 

the desired object type in square brackets.  Important: Converting a String to a DateTime this 

 way always uses the US locale. To convert a String to a DateTime using your current locale, 

 use the Parse() method as shown a couple of moments ago!  

•

The second time comes from the  Now static property, which returns the current time as 

 DateTime object. This is the same as calling the  Get-Date cmdlet (which you'd then need to put in parenthesis because you wouldn't want to subtract the  Get-Date cmdlet but rather the 

 result of the  Get-Date cmdlet). 

•

The two timestamps are subtracted from each other using the subtraction operator ("-"). This 

was possible because the  DateTime class defined the  op_Subtraction() static method, which 

is needed for this operator. 

Of course, you could have called the static method yourself and received the same result:

[ DateTime]:: op_Subtraction( "12/24/2007 18:00" , [ DateTime]:: Now) Now it's your turn. In the  System.Math class, you'll find a lot of useful mathematical methods. Try to put some of these methods to work. 

Function

Description

Example

Returns the absolute value of a 

Abs

[Math]::Abs(-5)

specified number (without signs). 

Acos

Returns the angle whose cosine is the 

[Math]::Acos(0.6)

specified number. 

Returns the angle whose sine is the 

Asin

[Math]::Asin(0.6)

specified number. 

Atan

Returns the angle whose tangent is the  [Math]::Atan(90)

specified number. 

Returns the angle whose tangent is the  [Math]::Atan2(90, 

Atan2

quotient of two specified numbers. 

15)

BigMul

Calculates the complete product of two  [Math]::BigMul(1gb, 

32-bit numbers. 

6)

Returns the smallest integer greater 

Ceiling

[Math]::Ceiling(5.7)

than or equal to the specified number. 

Cos

Returns the cosine of the specified 

[Math]::Cos(90)

angle. 

Table of Contents | About PowerShell Plus

189

Sponsors | Resources | © BBS Technologies

Returns the hyperbolic cosine of the 

Cosh

[Math]::Cosh(90)

specified angle. 

Calculates the quotient of two numbers  $a = 0

[Math]::DivRem(10,3

DivRem

and returns the remainder in an output 

parameter. 

,[ref]$a)

$a

Returns the specified power of e 

Exp

[Math]::Exp(12)

(2.7182818). 

Floor

Returns the largest integer less than or  [Math]::Floor(5.7)

equal to the specified number. 

IEEERemainde Returns the remainder of division of 

[Math]::IEEERemaind

r

two specified numbers. 

er(5,2)

Log

Returns the natural logarithm of the 

[Math]::Log(1)

specified number. 

Returns the base 10 logarithm of the 

Log10

[Math]::Log10(6)

specified number. 

Max

Returns the larger of two specified 

[Math]::Max(-5, 12)

numbers. 

Returns the smaller of two specified 

Min

[Math]::Min(-5, 12)

numbers. 

Pow

Returns a specified number raised to 

[Math]::Pow(6,2)

the specified power. 

Rounds a value to the nearest integer 

Round

or to the specified number of decimal 

[Math]::Round(5.51)

places. 

Returns a value indicating the sign of a 

Sign

[Math]::Sign(-12)

number. 

Sin

Returns the sine of the specified angle. 

[Math]::Sin(90)

Sinh

Returns the hyperbolic sine of the 

[Math]::Sinh(90)

Table of Contents | About PowerShell Plus

190

Sponsors | Resources | © BBS Technologies

specified angle. 

Returns the square root of a specified 

Sqrt

[Math]::Sqrt(64)

number. 

Tan

Returns the tangent of the specified 

[Math]::Tan(45)

angle. 

Returns the hyperbolic tangent of the 

Tanh

[Math]::Tanh(45)

specified angle. 

Truncate

Calculates the integral part of a 

[Math]::Truncate(5.6

number. 

7)

Table 6.5: Mathematical functions from the [Math] library

Finding Interesting .NET Types

The .NET framework consists of thousands of types, and maybe you are getting hungry for more. 

Are there other interesting types? There are actually plenty! Here are the three things you can do 

with .NET types:

Converting Object Types

For example, use System.Net.IPAddress to work with IP addresses. This is an example of a .NET 

type conversion where a string is converted into a  System.Net.IPAddress type:

[ system.Net.IPAddress] '127.0.0.1' 

 IPAddressToString : 127.0.0.1

 Address           : 16777343

 AddressFamily     : InterNetwork

 ScopeId           :

 IsIPv6Multicast   : False

 IsIPv6LinkLocal   : False

 IsIPv6SiteLocal   : False

Using Static Type Members

Or use  System.Net.DNS to resolve host names. This is an example of accessing a static type method 

like  GetHostByAddress():

Table of Contents | About PowerShell Plus

191

Sponsors | Resources | © BBS Technologies

[ system.Net.Dns]:: GetHostByAddress( "127.0.0.1" )

 HostName   Aliases    AddressList

 --------   -------    -----------

 PCNEU01    {}         {127.0.0.1}

Using Dynamic Object Instance Members

Or you can derive an instance of a type and use its dynamic members. For example, to download a 

file from the Internet:

 # Download address of a file:

 $address  =  "http://powershell.com/cs/media/p/467/download.aspx" 

 # Save the file to this location:

 $target  =  "$home\chart_drive_space.V2.ps1" 

 # Carry out download:

 $object  =  New-Object  Net.WebClient

 $object.  DownloadFile( $address,  $target)

 "File was downloaded!" 

Listing Assemblies

The search for interesting types begins with assemblies as they contain the types. First, you need to 

get a list of all the assemblies that PowerShell has loaded. Use the AppDomain type to find out the 

loaded assemblies. Its  CurrentDomain() static method will give you access to the internal PowerShell 

.NET framework where you'll find the  GetAssemblies() dynamic method, which will enable you to get 

a list of the loaded assemblies:

[ AppDomain]:: CurrentDomain

 FriendlyName           : DefaultDomain

 Id                     : 1

 ApplicationDescription :

 BaseDirectory          : C:\WINDOWS\system32\WindowsPowerShell\v1.0\

 DynamicDirectory       :

 RelativeSearchPath     :

 SetupInformation       : System.AppDomainSetup

 ShadowCopyFiles        : False

 [AppDomain]::CurrentDomain.GetAssemblies()

 GAC    Version        Location

 ---    -------        --------

 True   v2.0.50727     C:\Windows\Microsoft.NET\Framework\

                         v2.0.50727\mscorlib.dll

 True   v2.0.50727     C:\Windows\assembly\GAC_MSIL\Microsoft. 

                         PowerShell.ConsoleHost\... 

 True   v2.0.50727     C:\Windows\assembly\GAC_MSIL\System\

                         2.0.0.0__b77a5c561934e089\... 

 True   v2.0.50727     C:\Windows\assembly\GAC_MSIL\System. 

                         Management.Automation\1.0.... 

Table of Contents | About PowerShell Plus

192

Sponsors | Resources | © BBS Technologies



 True   v2.0.50727     C:\Windows\assembly\GAC_MSIL\System. 

                         Configuration.Install\2.0.... 

 True   v2.0.50727     C:\Windows\assembly\GAC_MSIL\Microsoft. 

                         PowerShell.Commands.Man... 

 True   v2.0.50727     C:\Windows\assembly\GAC_MSIL\Microsoft. 

                         PowerShell.Security\1.0... 

 True   v2.0.50727     C:\Windows\assembly\GAC_MSIL\Microsoft. 

                         PowerShell.Commands.Uti... 

 True   v2.0           C:\Windows\assembly\GAC_MSIL\Microsoft. 

                         PowerShell.ConsoleHost.... 

 True   v2.0.50727     C:\Windows\assembly\GAC_32\System. 

                         Data\2.0.0.0__b77a5c561934e0... 

 True   v2.0.50727     C:\Windows\assembly\GAC_MSIL\System. 

                         Xml\2.0.0.0__b77a5c561934e... 

 True   v2.0.50727     C:\Windows\assembly\GAC_MSIL\System. 

                         DirectoryServices\2.0.0.0_... 

 True   v2.0.50727     C:\Windows\assembly\GAC_MSIL\System. 

                         Management\2.0.0.0__b03f5f... 

 True   v2.0           C:\Windows\assembly\GAC_MSIL\System. 

                         Management.Automation.reso... 

 True   v2.0.50727     C:\Windows\Microsoft.NET\Framework\

                         v2.0.50727\mscorlib.dll

 True   v2.0           C:\Windows\assembly\GAC_MSIL\Microsoft. 

                         PowerShell.Security.res... 

 True   v2.0           C:\Windows\assembly\GAC_MSIL\Microsoft. 

                         PowerShell.Commands.Uti... 

 True   v2.0.50727     C:\Windows\assembly\GAC_MSIL\System. 

                         Configuration\2.0.0.0__b03... 

You may see more assemblies than listed above. Any PowerShell 

snap-in loads its own assemblies, and the 

System.Reflection.Assembly type provides methods to manually 

load additional assemblies from .NET DLL files or the global 

assembly cache. 

Finding Interesting Classes (Types)

To find out which types are located in an assembly, use the  GetExportedTypes() method provided by 

an assembly. Since most assemblies contain way too many types you could search for a specific 

keyword. This code list all types that include the search word "environment":

 $searchtext  =  "*Environment*" 

[ AppDomain]:: CurrentDomain.GetAssemblies() | 

 ForEach-Object {  $_.  GetExportedTypes() } | 

 Where-Object {  $_  -like  $searchtext } | 

 ForEach-Object {  $_.  FullName }

 System.EnvironmentVariableTarget

Table of Contents | About PowerShell Plus

193

Sponsors | Resources | © BBS Technologies

 System.Environment

 System.Environment+SpecialFolder

 System.Runtime.InteropServices.RuntimeEnvironment

 System.Security.Permissions.EnvironmentPermissionAccess

 System.Security.Permissions.EnvironmentPermission

 System.Security.Permissions.EnvironmentPermissionAttribute

 System.ComponentModel.Design.Data.IDataEnvironment

 Microsoft.PowerShell.Commands.EnvironmentProvider

 System.Web.Configuration.HostingEnvironmentSection

 System.Web.Hosting.HostingEnvironment

One of the types that show up is the type System.Environment. The  System.Environment type can 

do very useful things. Let's list its static members:

[ System.Environment] |  Get-Member  -static 

 TypeName: System.Environment

 Name                       MemberType Definition

 ----                       ---------- ----------

 Exit                       Method     static System.Void 

                                         Exit(Int32 exitCode)

 ExpandEnvironmentVariables Method     static System.String 

                                         ExpandEnvironmentVariables... 

 FailFast                   Method     static System.Void 

                                         FailFast(String message)

 GetCommandLineArgs         Method     static System.String[] 

                                         GetCommandLineArgs()

 GetEnvironmentVariable     Method     static System.String 

                                         GetEnvironmentVariable(... 

 GetEnvironmentVariables    Method     static System.Collections. 

                                         IDictionary GetEnvironmentV... 

 GetFolderPath              Method     static System.String 

                                         GetFolderPath(SpecialFolder... 

 GetLogicalDrives           Method     static System.String[]

                                         GetLogicalDrives()

 SetEnvironmentVariable     Method     static System.Void 

                                         SetEnvironmentVariable(... 

 CommandLine                Property   static System.String 

                                         CommandLine {get;}

 CurrentDirectory           Property   static System.String 

                                         CurrentDirectory {get;set;}

 ExitCode                   Property   static System.Int32 ExitCode 

                                         {get;set;}

 HasShutdownStarted         Property   static System.Boolean 

                                         HasShutdownStarted {get;}

 MachineName                Property   static System.String 

                                         MachineName {get;}

 NewLine                    Property   static System.String 

                                         NewLine {get;}

 OSVersion                  Property   static System. 

                                         OperatingSystem OSVersion 

                                         {get;}

Table of Contents | About PowerShell Plus

194

Sponsors | Resources | © BBS Technologies

 ProcessorCount             Property   static System.Int32 

                                         ProcessorCount {get;}

 StackTrace                 Property   static System.String 

                                         StackTrace {get;}

 SystemDirectory            Property   static System.String 

                                         SystemDirectory {get;}

 TickCount                  Property   static System.Int32 

                                         TickCount {get;}

 UserDomainName             Property   static System.String 

                                         UserDomainName {get;}

 UserInteractive            Property   static System.Boolean 

                                         UserInteractive {get;}

 UserName                   Property   static System.String 

                                         UserName {get;}

 Version                    Property   static System.Version 

                                         Version {get;}

 WorkingSet                 Property   static System.Int64 

                                         WorkingSet {get;}

For example, the static methods of the  System.Environment class will show you which user has 

executed the script on which machine:

[ system.Environment]:: UserDomainName  + 

 "\"   + [ System.Environment]:: UserName  + 

 " on "   + [ System.Environment]:: MachineName

 Idera\Tobias Weltner on PC12

Using  GetFolderPath(), the class will also reveal the paths to all important Windows folders. To find out the proper values for an argument, specify an invalid argument, and the error message will list 

all valid argument values: 

[ System.Environment]:: GetFolderPath( "HH" )

 Cannot convert argument "0", with value: "HH", for 

 "GetFolderPath" to type "System.Environment+SpecialFolder": 

 "Cannot convert value "HH" to type "System.Environment+

 SpecialFolder" due to invalid enumeration values. Specify 

 one of the following enumeration values and try again. 

 The possible enumeration values are "Desktop, Programs, 

 Personal, MyDocuments, Favorites, Startup, Recent, SendTo, 

 StartMenu, MyMusic, DesktopDirectory, MyComputer,Templates, 

 ApplicationData, LocalApplicationData, InternetCache, 

 Cookies, History, CommonApplicationData, System, 

 ProgramFiles, MyPictures, CommonProgramFiles"." 

So, if you'd like to know where the picture folder is on your computer, use  MyPictures. 

[ System.Environment]:: GetFolderPath( "MyPictures" )

 C:\Users\Tobias Weltner\Pictures

Table of Contents | About PowerShell Plus

195

Sponsors | Resources | © BBS Technologies

Looking for Methods

Next, let's search for some interesting methods. Here's a way for you to find the  GetFolderPath() 

method of the previous example:

 $searchtext  =  "*getfolder*" 

[ AppDomain]:: CurrentDomain.GetAssemblies() | 

 ForEach-Object {  $_.  GetExportedTypes() } | 

 ForEach-Object {  $_.  getmembers() } | 

 Where-Object {  $_.  isStatic} | 

 Where-Object {  $_  -like  $searchtext } | 

 ForEach-Object {  "[{0}]::{1} --> {2}"   -f `

 $_.  declaringtype,  $_.  toString().  SubString( `

 $_.  toString().  IndexOf( " " ) + 1),  $_.  ReturnType }

 [System.Environment]::GetFolderPath(SpecialFolder)

    --> System.String

The search can easily take a few minutes because PowerShell examines every single method in 

every type exposed by every loaded assembly. 

Creating New Objects

You have seen that many .NET types contain useful static methods. In addition, you can create new 

objects (instances) that are derived from a specific type. To create new instances, you can either 

convert an existing object to a new type, or you can create a new instance using  New-Object. In 

addition, you may be able to call some cmdlet or method that happens to return the object type you 

are after:

 $datetime  = [ System.DateTime]  '1.1.2000' 

 $datetime.  GetType().  Fullname

 System.DateTime

 $datetime  =  New-Object  System.DateTime

 $datetime.  GetType().  Fullname

 System.DateTime

 $datetime  =  Get-Date

 $datetime.  GetType().  Fullname

 System.DateTime

 $datetime  = [ System.DateTime]:: Parse( '1.1.2000' )

 $datetime.  GetType().  Fullname

 System.DateTime

Table of Contents | About PowerShell Plus

196

Sponsors | Resources | © BBS Technologies

Creating New Objects with New-Object

You can create a .NET object with  New-Object, which gives you full access to all type "constructors." 

These are invisible methods that create the new object. To create a new instance of a type, the type 

needs to have at least one constructor. If it has none, you cannot create instances of this type. 

The DateTime type has one constructor that takes no argument. If you create a new instance of a 

DateTime object, you get back a date set to the very first date a DateTime type can represent which 

happens to be January 1, 0001:

 New-Object  System.DateTime

 Monday, January 01, 0001 12:00:00 AM

To create a specific date, you would use a different constructor. There is one that takes three 

numbers for year, month, and day:

 New-Object  System.DateTime(2000,5,1)

 Monday, May 01, 2000 12:00:00 AM

If you simply add a number, yet another constructor is used which interprets the number as ticks, 

the smallest time unit a computer can process:

 New-Object  System.DateTime(568687676789080999)

 Monday, February 07, 1803 7:54:38 AM

Using Constructors

When you create a new object using  New-Object, you can submit additional arguments by adding 

argument values as a comma separated list enclosed in parentheses.  New-Object in fact is calling a method called  ctor which is the type constructor. Like any other method, it can support different 

argument signatures. 

Let's check out how you can discover the different constructors a type supports. The next line 

creates a new instance of a System.String and uses a constructor that accepts a character and a 

number:

 New-Object System.  String( "." , 100)

 .................................................. 

 .................................................. 

To list the available constructors for a type, use the GetConstructors() method available in each 

type. For example, you could find out which constructors are offered by the  System.String type to 

produce  System.String objects:

[System.  String].  GetConstructors() | 

Table of Contents | About PowerShell Plus

197

Sponsors | Resources | © BBS Technologies

   ForEach-Object {  $_.  toString() }

 Void .ctor(Char*)

 Void .ctor(Char*, Int32, Int32)

 Void .ctor(SByte*)

 Void .ctor(SByte*, Int32, Int32)

 Void .ctor(SByte*, Int32, Int32, 

   System.Text.Encoding)

 Void .ctor(Char[], Int32, Int32)

 Void .ctor(Char[])

 Void .ctor(Char, Int32)

In fact, there are eight different signatures to create a new object of the  System.String type. You just used the last variant: the first argument is the character, and the second a number that 

specifies how often the character is to be repeated. PowerShell itself uses the next to last 

constructor so if you specify text in quotation marks, it will interpret text in quotation marks as a 

field with nothing but characters ( Char[]). 

New Objects by Conversion

Objects can often be created without  New-Object by using type casting instead. You've already seen how it's done for variables in Chapter 3:

 # PowerShell normally wraps text as a System.String:

 $date  =  "November 1, 2007" 

 $date.  GetType().  FullName

 System.String

 $date

 November 1, 2007

 # Use strong typing to set the object type of $date:

[ System.DateTime] $date  =  "November 1, 2007" 

 $date.  GetType().  FullName

 System.DateTime

 $date

 Thursday, November 1, 2007 00:00:00

So, if you enclose the desired .NET type in square brackets and put it in front of a variable name, 

PowerShell will require you to use precisely the specified object type for this variable. If you assign a 

value to the variable, PowerShell automatically converts it to that type. That process is sometimes 

called "implicit type conversion." Explicit type conversion works a little different. Here, the desired type is put in square brackets again but placed on the right side of the assignment operator:

 $value  = [ DateTime] "November 1, 2007" 

Table of Contents | About PowerShell Plus

198

Sponsors | Resources | © BBS Technologies

 $value

 Thursday, November 1, 2007 00:00:00

PowerShell would first convert the text into a date because of the type specification and then assign 

it to the variable  $value, which itself remains a regular variable without type specification. Because $value is not limited to DateTime types, you can assign other data types to the variable later on. 

 $value  =  "McGuffin" 

Using the type casting, you can also create entirely new objects without  New-Object. First, create an object using  New-Object:

 New-Object  system.diagnostics.eventlog( "System" )

 Max(K) Retain OverflowAction        Entries Name

 ------ ------ --------------        ------- ----

 20,480      0 OverwriteAsNeeded      64,230 System

You could have accomplished the same thing without  New-Object:

[ System.Diagnostics.EventLog] "System" 

 Max(K) Retain OverflowAction        Entries Name

 ------ ------ --------------        ------- ----

 20,480      0 OverwriteAsNeeded      64,230 System

In the second example, the string System was converted into the  System.Diagnostics.Eventlog type: 

The result is an  EventLog object representing the  System event log. 

So, when should you use  New-Object and when type conversion? It is largely a matter of taste, but 

whenever a type has more than one constructor and you want to select the constructor, use  New-

 Object and specify the arguments for the constructor of your choice. Type conversion automatically chooses one constructor, and you have no control over which constructor is picked. 

 # Using New-Object, you can select the 

 # constructor you wish of the type yourself:

 New-Object System.  String( "." , 100)

 .................................................. 

 .................................................. 

 # When casting types, PowerShell selects the 

 # constructor automatically. For the System.String 

 # type, a constructor will be chosen that requires 

 # no arguments. Your arguments will then be 

 # interpreted as a PowerShell subexpression in 

 # which an array will be created. PowerShell will 

 # change this array into a System.String type. 

 # PowerShell changes arrays into text by separating 

 # elements from each other with whitespace:

Table of Contents | About PowerShell Plus

199

Sponsors | Resources | © BBS Technologies



[system.  string]( "." ,100)

 . 100

 # If your arguments are not in round brackets, 

 # they will be interpreted as an array and the first 

 # array element cast in the System.String type:

[system.  string] "." , 100

 . 

 100

Type conversion can also include type arrays (identified by "[]") 

and can be a multi-step process where you convert from one type 

over another type to a final type. This is how you would convert 

string text into a character array:

[ char[]] "Hello!" 

 H

 e

 l

 l

 o

 ! 

You could then convert each character into integers to get the character 

codes:

[ Int[]][ Char[]] "Hello World!" 

 72

 97

 108

 108

 111

 32

 87

 101

 108

 116

 33

Conversely, you could make a numeric list out of a numeric array, and turn 

that into a string:

[ string][ char[]](65..90)

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Table of Contents | About PowerShell Plus

200

Sponsors | Resources | © BBS Technologies

 $OFS  =  "," 

[ string][ char[]](65..90)

 A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z

Just remember: if arrays are converted into a string, PowerShell uses the 

separator in the  $OFS automatic variable as a separator between the array 

elements. 

Loading Additional Assemblies: Improved Internet Download

To get access to even more functionality, you can load additional assemblies with more types and 

members. If you have ever written VBScript scripts, you may want to get back some of your beloved 

VisualBasic methods such as MsgBox() or InputBox(). Simply load the Microsoft.VisualBasic 

assembly, which is located in the global assembly cache:

 # Load required assembly:

[ void][ reflection.assembly]::`

LoadWithPartialName( "Microsoft.VisualBasic" )

Once you did that, you have access to a whole bunch of new types:

[ Microsoft.VisualBasic.Interaction] |  Get-Member  -static

 TypeName: Microsoft.VisualBasic.Interaction

 Name            MemberType Definition

 ----            ---------- ----------

 AppActivate     Method     static System.Void 

                              AppActivate(Int32 Proces... 

 Beep            Method     static System.Void 

                              Beep()

 CallByName      Method     static System.Object 

                              CallByName(Object Obje... 

 Choose          Method     static System.Object 

                              Choose(Double Index, P... 

 Command         Method     static System.String 

                              Command()

 CreateObject    Method     static System.Object 

                              CreateObject(String Pr... 

 DeleteSetting   Method     static System.Void 

                              DeleteSetting(String App... 

 Environ         Method     static System.String 

                              Environ(Int32 Expressi... 

 Equals          Method     static System.Boolean 

                              Equals(Object objA, O... 

 GetAllSettings  Method     static System.String[,] 

                              GetAllSettings(Stri... 

Table of Contents | About PowerShell Plus

201

Sponsors | Resources | © BBS Technologies

 GetObject       Method     static System.Object 

                              GetObject(String PathN... 

 GetSetting      Method     static System.String 

                              GetSetting(String AppN... 

 IIf             Method     static System.Object 

                              IIf(Boolean Expression... 

 InputBox        Method     static System.String 

                              InputBox(String Prompt... 

 MsgBox          Method     static Microsoft.VisualBasic. 

                              MsgBoxResult M... 

 Partition       Method     static System.String 

                              Partition(Int64 Number... 

 ReferenceEquals Method     static System.Boolean 

                              ReferenceEquals(Objec... 

 SaveSetting     Method     static System.Void 

                              SaveSetting(String AppNa... 

 Shell           Method     static System.Int32 

                              Shell(String PathName, ... 

 Switch          Method     static System.Object 

                              Switch(Params Object[]... 

[ microsoft.VisualBasic.Interaction]::ÌnputBox( "Enter Name" ,  "Name" ,  "$env:username" ) Tobias

Or, you could use a much-improved download method, which shows a progress bar while 

downloading files from the Internet:

 # Reload required assembly:

[ void][ reflection.assembly]::`

LoadWithPartialName( "Microsoft.VisualBasic" )

 # Download address of a file:

 $address  =  "http://powershell.com/cs/"   +

 "media/p/467/download.aspx" 

 # This is where the file should be saved:

 $target  =  "$home\chart_drive_space.V2.ps1" 

 # Download will be carried out:

 $object  =  New-Object `

 Microsoft.VisualBasic.Devices.Network

 $object.  DownloadFile(

 $address,  $target,  "" ,  "" , 

 $true, 500,  $true,  "DoNothing" )

Using COM Objects

In addition to .NET, PowerShell can also load and access COM objects which work similar to .NET 

types and objects but use an older technology. 

Table of Contents | About PowerShell Plus

202

Sponsors | Resources | © BBS Technologies

Which COM Objects Are Available? 

COM objects each have a unique name known as  ProgID or  Programmatic Identifier, which is stored in the registry. So, if you want to look up COM objects available on your computer, visit the registry:

Dir REGISTRY:: HKEY_CLASSES_ROOT\CLSID `

 -include PROGID  -recurse | 

 foreach { $_.  GetValue( "" )}

How Do You Use COM Objects? 

Once you know the  ProgID of a COM component, use  New-Object to put it to work in PowerShell. 

Just specify the additional parameter  -comObject:

 $object  =  New-Object  -comObject  WScript.Shell

You'll get an object which behaves very similar to .NET objects. It will contain properties with data 

and methods that you can execute. And, as always,  Get-Member finds all object members for you. 

Let's look at its methods:

 # Make the methods of the COM objects visible:

 $object |  Get-Member  -memberType  * method

 TypeName: System.__ComObject#{41904400-be18-

   11d3-a28b-00104bd35090}

 Name           MemberType Definition

 ----           ---------- ----------

 AppActivate    Method     bool AppActivate (Variant, Variant)

 CreateShortcut Method     IDispatch CreateShortcut (string)

 Exec           Method     IWshExec Exec (string)

 ExpandEnviron  Method     string ExpandEnvironmentStrings 

   mentStrings               (string)

 LogEvent       Method     bool LogEvent (Variant, string, 

                             string)

 Popup          Method     int Popup (string, Variant, 

                             Variant, Variant)

 RegDelete      Method     void RegDelete (string)

 RegRead        Method     Variant RegRead (string)

 RegWrite       Method     void RegWrite (string, Variant, 

                             Variant)

 Run            Method     int Run (string, Variant, Variant)

 SendKeys       Method     void SendKeys (string, Variant)

The information required to understand how to use a method can be inadequate. Only the expected 

object types are given, but not why the arguments exist. If you want to know more about a COM 

command, the Internet can help you. Go to a search site of your choice and enter two keywords: the 

 ProgID of the COM components (in this case, it will be  WScript.Shell) and the name of the method that you want to use. 

Table of Contents | About PowerShell Plus

203

Sponsors | Resources | © BBS Technologies

Some of the commonly used COM objects are WScript.Shell, WScript.Network, 

Scripting.FileSystemObject, InternetExplorer.Application, Word.Application, and Shell.Application. 

Let's create a shortcut to powershell.exe using WScript.Shell Com object and its method 

CreateShorcut():

 # Create an object:

 $wshell  =  New-Object  -comObject  WScript.Shell

 # Assign a path to Desktop to the variable $path

 $path  = [ system.Environment]:: GetFolderPath( 'Desktop' )

 # Create a link object

 $link  =  $wshell.  CreateShortcut( "$path\PowerShell.lnk" )

 # $link is an object and has the properties and methods

 $link |  Get-Member

 TypeName: System.__ComObject#{f935dc23-1cf0-11d0-adb9-00c04fd58a0b}

 Name             MemberType   Definition

 ----             ----------   ----------

 Load             Method       void Load (string)

 Save             Method       void Save ()

 Arguments        Property     string Arguments () {get} {set}

 Description      Property     string Description () {get} {set}

 FullName         Property     string FullName () {get}

 Hotkey           Property     string Hotkey () {get} {set}

 IconLocation     Property     string IconLocation () {get} {set}

 RelativePath     Property      {get} {set}

 TargetPath       Property     string TargetPath () {get} {set}

 WindowStyle      Property     int WindowStyle () {get} {set}

 WorkingDirectory Property     string WorkingDirectory () {get} {set}

 # We can populate some of the properties

 $link.  TargetPath  =  'powershell.exe' 

 $link.  Description  =  'Launch Windows PowerShell console' 

 $link.  WorkingDirectory  =  $profile

 $link.  IconLocation  =  'powershell.exe' 

 # And save the changes using Save() method

 $link.  Save()

Summary

Everything in PowerShell is represented by objects that have exactly two aspects: properties and 

methods, which both form the members of the object. While properties store data, methods are 

executable commands. 

Objects are the result of all PowerShell commands and are not converted to readable text until you 

output the objects to the console. However if you save a command's result in a variable, you will get 

a handle on the original objects and be able to evaluate their properties or call their commands. If 

you would like to see all of an object's properties, then pass the object to  Format-List and type an asterisk after it. In this way, all—and not only the most important—properties will be output as text. 

Table of Contents | About PowerShell Plus

204

Sponsors | Resources | © BBS Technologies

The  Get-Member cmdlet retrieves even more data, enabling you to output detailed information on the properties and methods of any object. 

All the objects with which you work in PowerShell originate from .NET framework, on which 

PowerShell is layered. Aside from the objects that PowerShell commands provide you as results, you 

can also invoke objects directly from the .NET framework and gain access to a powerful arsenal of 

new commands. Along with the dynamic methods furnished by objects, there are also static 

methods, which are provided directly by the class from which objects are also derived. 

If you cannot perform a task either with the cmdlets, regular console commands, or methods of 

the .NET framework, you can resort to the unmanaged world outside the .NET framework. Either 

directly access the low-level API functions, the foundation of the .NET framework, or use COM 

components. 

Table of Contents | About PowerShell Plus

205

Sponsors | Resources | © BBS Technologies

CHAPTER 7. 

 Conditions

You'll need a condition first to compose intelligent PowerShell code capable of making decisions. 

That's why you'll learn in the first part of this Chapter how to formulate questions as conditions. 

In the second part, you'll employ conditions to execute PowerShell instructions only if a particular 

condition is actually met. 

Topics Covered:

•

F ormulating Conditions  

•

T

  able 7.1: Comparison operators  

•

C

  arrying Out a Comparison  

•

" Reversing" Comparisons  

•

C

  ombining Comparisons  

•

T

  able 7.2: Logical operators  

•

C

  omparisons with Arrays and Collections  

•

V

  erifying Whether an Array Contains a Particular Element  

•

W

  here-Object  

•

F iltering Results in the Pipeline  

•

F ormulating a Condition  

•

U

  sing Alias  

•

If

  -ElseIf-Else  

•

S

  witch  

•

T

  esting Range of Values  

•

N

  o Applicable Condition  

•

S

  everal Applicable Conditions  

•

U

  sing String Comparisons  

•

C

  ase Sensitivity  

•

W

  ildcard Characters  

•

R

  egular Expressions  

•

P

  rocessing Several Values Simultaneously  

•

S

  ummary  

Formulating Conditions

A condition is nothing more than a question that can be answered clearly in the positive ( true) or in the negative ( false). Nearly all questions are phrased with the help of comparisons. The following PowerShell comparison operators allow you to compare values:

Operator

Conventional Description

Example

Result

-eq, -ceq, -ieq =

equals

10 -eq 15

$false

Table of Contents | About PowerShell Plus

206

Sponsors | Resources | © BBS Technologies



-ne, -cne, -ine <> 

not equal

10 -ne 15

$true

-gt, -cgt, -igt

> 

greater than

10 -gt 15

$false

greater than or 

-ge, -cge, -ige >=

10 -ge 15

$false

equal to

-lt, -clt, -ilt

< 

less than

10 -lt 15

$true

-le, -cle, -ile

<=

less than or equal 

10 -le 15

$true

to

-contains, 

-ccontains, 

contains

1,2,3 -contains 1

$true

-icontains

-notcontains, 

1,2,3 -notcontains 

-cnotcontains, 

does not contain

1

$false

-inotcontains

Table 7.1: Comparison operators

PowerShell doesn't use the traditional comparison operators that 

you may know from other programming languages. In particular, 

the "=" operator is purely an assignment operator in PowerShell, 

while ">" and "<" operators are used for redirection. 

There are three variants of all comparison operators. The basic variant is case-insensitive when 

making comparisons. If you'd like to explicitly specify whether case sensitivity should be taken into 

account, use variants that begin with "c" (case-sensitive) or "i" (case-insensitive). 

Carrying Out a Comparison

You can carry out comparisons immediately and directly in the PowerShell console. First, enter a 

value, then a comparison operator, and then the second value that you want to compare with the 

first. As soon as you hit (enter), the comparison will be performed. The result should always be  True 

(condition is correct) or  False (condition is incorrect). 

4  -eq 10

Table of Contents | About PowerShell Plus

207

Sponsors | Resources | © BBS Technologies

 False

 "secret"   -ieq  "SECRET" 

 True

As long as you compare only numbers or only strings, comparisons are very easy to grasp and 

return exactly the result that you expect:

123  -lt 123.5

 True

However, you can also compare different data types. These results are not always as logical as the 

previous one:

12  -eq  "Hello" 

 False

12  -eq  "000012" 

 True

 "12"   -eq 12

 True

 "12"   -eq 012

 True

 "012"   -eq 012

 False

123 -lt 123.4

 True

123 -lt  "123.4" 

 False

123 -lt  "123.5" 

 True

Table of Contents | About PowerShell Plus

208

Sponsors | Resources | © BBS Technologies



Would you have expected these results? Some comparisons return peculiar results. That's precisely 

what happens when you compare  different data types, and the reason is that PowerShell actually 

cannot compare different data types at all. PowerShell tries to convert the data types into a common 

data type that can be compared. However, this automatic conversion doesn't always return the 

result that you would intuitively expect, so you should avoid comparisons of differing data types. 

"Reversing" Comparisons

A comparison always returns a result that is either  true or  false, and you've seen that there are complementary comparison operators for most comparisons:  -eq and  -ne (equal and not equal) or  -

 gt and  -lt (greater than and less than). 

In addition, with the logical operator -not you have the option of "reversing" the result of a 

comparison. It expects an expression on the right side that is either  true or  false, and it turns this around. Instead of -not, you may also use the abbreviated "!":

 $a  = 10 

 $a  -gt 5 

 True

 -not ( $a  -gt 5) 

 False

 # Shorthand: instead of -not "!" can also be used:

 ! ( $a  -gt 5)

 False

Make generous use of parentheses if you're working with logical 

operators like  -not. Logical operators are always interested in the 

result of a comparison, but not in the comparison itself. That's why 

the comparison should always be in parentheses. 

Combining Comparisons

Because every comparison returns either  True or  False, you can combine several comparisons with logical operators. The following conditional statement would evaluate to true only if both 

comparisons evaluate to  true:

( ( $age  -ge 18)  -and ( $sex  -eq  "m" ) )

Put separate comparisons in parentheses because you only want to link the results of these 

comparisons, certainly not the comparisons themselves. 

Table of Contents | About PowerShell Plus

209

Sponsors | Resources | © BBS Technologies

Right 

Operator Description

Left Value

Result

Value

True

False

False

False

True

False

-and

Both conditions must be met

False

False

False

True

True

True

True

False

True

-or

At least one of the two conditions 

False

True

True

must be met

False

False

False

True

True

True

True

True

False

One or the other condition must be  False

False

False

-xor

met, but not both

False

True

True

True

False

True

(not 

True

False

-not

Reverses the result

applicable)

False

True

Table 7.2: Logical operators

Comparisons with Arrays and Collections

Up to now, you've only used the comparison operators in Table 7.1 to compare single values. In 

Chapter 4,  you've already become familiar with arrays. The question is: how do comparison operators react to arrays? To which element of an array is the comparison applied? The simple 

answer: to all of them. 

But the result is not a long list of  True and  False. In this case, comparison operators return an array in which precisely those elements of the initial array reappear in the matched comparison—

resembling a sort of filter. In the simplest case, use the comparison operator  -eq ( equal) to find all elements in an array equal to the specified value:

1,2,3,4,3,2,1  -eq 3

 3

 3

Two elements having the value of 3 are in the initial array. Only these two elements were returned. 

It works conversely, too: if you'd like to see only the elements of an array that don't match the 

comparison value, use  -ne ( not equal) operator:

1,2,3,4,3,2,1  -ne 3

Table of Contents | About PowerShell Plus

210

Sponsors | Resources | © BBS Technologies

 1

 2

 4

 2

 1

Verifying Whether an Array Contains a Particular Element

How can you find out whether an array contains a particular element? As you have seen, -eq 

provides no answer to this question. That's why there are the comparison operators  -contains and 

 -notcontains. They verify whether a certain value exists in an array. 

 # -eq returns only those elements matching the criterion:

1,2,3 -eq 5 

 # -contains answers the question of whether the sought element is included in the 

 array:

1,2,3  -contains 5 

 False

1,2,3  -notcontains 5 

 True

Where-Object

Let's now apply conditions in real life. The first area of application is the PowerShell pipeline, which 

you became acquainted with in Chapter 5.  In the pipeline, the results of a command are forwarded directly to the next one, and the  Where-Object cmdlet works like a filter, allowing only those objects through the pipeline that meet a certain condition. To make this work, specify your condition to 

 Where-Object. 

Filtering Results in the Pipeline

The cmdlet  Get-Process, will return all running processes. However, you are not likely to be 

interested in all processes, but instead you want an answer to a specific problem. For instance, you 

would like to find out currently running instances of the Notepad. First, get an initial overview of 

which properties the processes contain by using  Get-Process. That's important, because you'll use 

these properties afterwards as the basis for your condition. This is how you can find the available 

properties:

 Get-Process |  Select-Object  -first 1 |  Format-List  *

 __NounName                 : Process

 Name                       : agrsmsvc

 Handles                    : 36

Table of Contents | About PowerShell Plus

211

Sponsors | Resources | © BBS Technologies

 VM                         : 21884928

 WS                         : 57344

 PM                         : 716800

 NPM                        : 1768

 Path                       :

 Company                    :

 CPU                        :

 FileVersion                :

 ProductVersion             :

 Description                :

 Product                    :

 Id                         : 1316

 PriorityClass              :

 HandleCount                : 36

 WorkingSet                 : 57344

 PagedMemorySize            : 716800

 PrivateMemorySize          : 716800

 VirtualMemorySize          : 21884928

 TotalProcessorTime         :

 BasePriority               : 8

 ExitCode                   :

 HasExited                  :

 ExitTime                   :

 Handle                     :

 MachineName                : . 

 MainWindowHandle           : 0

 MainWindowTitle            :

 MainModule                 :

 MaxWorkingSet              :

 MinWorkingSet              :

 Modules                    :

 NonpagedSystemMemorySize   : 1768

 NonpagedSystemMemorySize64 : 1768

 PagedMemorySize64          : 716800

 PagedSystemMemorySize      : 24860

 PagedSystemMemorySize64    : 24860

 PeakPagedMemorySize        : 716800

 PeakPagedMemorySize64      : 716800

 PeakWorkingSet             : 2387968

 PeakWorkingSet64           : 2387968

 PeakVirtualMemorySize      : 21884928

 PeakVirtualMemorySize64    : 21884928

 PriorityBoostEnabled       :

 PrivateMemorySize64        : 716800

 PrivilegedProcessorTime    :

 ProcessName                : agrsmsvc

 ProcessorAffinity          :

 Responding                 : True

 SessionId                  : 0

 StartInfo                  : System.Diagnostics.ProcessStartInfo

 StartTime                  :

 SynchronizingObject        :

 Threads                    : {1964, 1000}

Table of Contents | About PowerShell Plus

212

Sponsors | Resources | © BBS Technologies

 UserProcessorTime          :

 VirtualMemorySize64        : 21884928

 EnableRaisingEvents        : False

 StandardInput              :

 StandardOutput             :

 StandardError              :

 WorkingSet64               : 57344

 Site                       :

 Container                  :

Formulating a Condition

The name of a process can be found in the  Name property. If you're just looking for the processes of the Notepad, your condition should be  name -eq 'notepad' . Now, supply this condition to  Where-Object:

 Get-Process |  Where-Object {  $_.  name  -eq  'notepad'  }

 Handles NPM(K) PM(K) WS(K) VM(M) CPU(s)   Id ProcessName

 ------- ------ ----- ----- ----- ------   -- -----------

      68      4  1636  8744    62   0,14 7732 notepad

      68      4  1632  8764    62   0,05 7812 notepad

The pipeline now returns only those processes that meet your condition. If you're not currently 

running the Notepad, nothing will be returned. If you take a closer look at  Where-Object, you'll see that your condition is specified in braces after the cmdlet. The  $_ variable contains the current 

pipeline object. 

 The next one-liner would retrieve all processes whose company name begins with "Micro" and 

 output for each process its name, description, and company name: 

 Get-Process |  Where-Object {  $_.  company  -like  'micro*'  } | 

 Format-Table name, description, company

 Name           Description                 Company

 ----           -----------                 -------

 conime         Console IME                 Microsoft Corporation

 dwm            Desktopwindow-Manager       Microsoft Corporation

 ehmsas         Media Center Media Statu... Microsoft Corporation

 ehtray         Media Center Tray Applet    Microsoft Corporation

 EXCEL          Microsoft Office Excel      Microsoft Corporation

 explorer       Windows-Explorer            Microsoft Corporation

 GrooveMonitor  GrooveMonitor Utility       Microsoft Corporation

 ieuser         Internet Explorer           Microsoft Corporation

 iexplore       Internet Explorer           Microsoft Corporation

 msnmsgr        Messenger                   Microsoft Corporation

 notepad        Editor                      Microsoft Corporation

 notepad        Editor                      Microsoft Corporation

 sidebar        Windows-Sidebar             Microsoft Corporation

 taskeng        Task Scheduler Engine       Microsoft Corporation

 WINWORD        Microsoft Office Word       Microsoft Corporation

Table of Contents | About PowerShell Plus

213

Sponsors | Resources | © BBS Technologies



 wmpnscfg       Windows Media Player Net... Microsoft Corporation

 wpcumi         Windows Parental Control... Microsoft Corporation

In Chapter 6 you learned that every single process in this list is 

actually an object that not only has the properties that you just 

made visible in the previous example, but also has methods. That 

means you could go on to process the result of your condition 

object by object and, in doing so, invoke methods for every object. 

To do so, you need loops, which will be explained in more detail in the next 

Chapter.  However, for the time being, here's a little preview: the next line ends all Notepad processes. Watch out: the processes will be ended 

immediately and without request for confirmation. All data that you haven't 

saved will be lost:

 # Attention: all instances of Notepad will be terminated

 # immediately and without further notification:

 Get-Process |  Where-Object {  $_.  name  -eq  'notepad'  } | 

 Foreach-Object {  $_.  Kill() }

Using Alias

Because you often need conditions in the pipeline, an alias exists for  Where-Object: "?". So, instead of  Where-Object, you may also use "?'". 

 # The two following instructions return the same result: 

 # all running services

 Get-Service |  ForEach-Object { $_.  Status  -eq  'Running'  }

 Get-Service | ? { $_.  Status  -eq  'Running'  }

If-ElseIf-Else

 Where-object works splendidly in the pipeline, but it is inappropriate if you want to make longer 

code segments dependent on meeting a condition. Here, the  If..ElseIf..Else statement works much 

better. In the simplest case, the statement looks like this:

 If (condition) {

 # If the condition applies, 

 # this code will be executed

}

The condition must be enclosed in parentheses and follow the keyword  If. If the condition is met, the code in the braces after it will be executed, otherwise not. Try it out:

If ($a -gt 10) { "$a is larger than 10" } 

Table of Contents | About PowerShell Plus

214

Sponsors | Resources | © BBS Technologies

It's likely, though, that you won't (yet) see a result. The condition was not met, and so the code in the braces wasn't executed. To get an answer, make sure that the condition is met:

 $a  = 11 

 If ( $a  -gt 10) {  "$a is larger than 10"  } 

 11 is larger than 10

Now the comparison is correct, and the  If statement ensures that the code in the braces returns a 

result. As it is, that clearly shows that the simplest  If statement usually doesn't suffice in itself, because you would like to  always get a result, even when the condition isn't met. To accomplish 

that, expand the  If statement with  Else:

 If ( $a  -gt 10) 

{

 "$a is larger than 10" 

} 

 Else

{

 "$a is less than or equal to 10" 

}

Now the code in the braces after  If is executed if the condition is met; if the preceding condition isn't true, the code in the braces after  Else is executed. If you have several conditions you may insert as many  ElseIf blocks between  If and  Else as you like:

 If ( $a  -gt 10) 

{

 "$a is larger than 10" 

} 

 ElseIf ( $a  -eq 10) 

{

 "$a is exactly 10" 

} 

 Else 

{

 "$a is less than 10" 

}

The  If statement here always executes the code in the braces after the condition that is met. The 

code after  Else will be executed when none of the preceding conditions are true. What happens if 

several conditions are true? Then the code after the first applicable condition will be executed and all 

other applicable conditions will be ignored. 

 If ( $a  -gt 10) 

{

 "$a is larger than 10" 

} 

 ElseIf ( $a  -eq 10) 

{

 "$a is exactly 10" 

} 

Table of Contents | About PowerShell Plus

215

Sponsors | Resources | © BBS Technologies



 ElseIf ( $a -ge 10) 

{

 "$a is larger than or equal to 10" 

} 

 Else 

{

 "$a is smaller than 10" 

}

The fact is that the  If statement doesn't care at all about the condition that 

you state. All that the  If statement evaluates is  $true or  $false. If condition 

evaluates  $true, the code in the braces after it will be executed, otherwise 

not. Conditions are only a way to return one of the requested values  $true 

or  $false. But the value could come from another function or from a 

variable:

 # Returns True from 14:00 on, otherwise False:

 Function isAfternoon { ( Get-Date).  Hour  -gt 13 }

isAfternoon

 True

 # Result of the function determines which code the If statement 

 executes:

 If (isAfternoon) {  "Time for break!"  }  Else {  "It's still early."  }

 Time for break! 

The example shows that the condition after  If must always be in parentheses, but it 

can also come from any source as long as it is  $true or  $false. In addition, you may 

also write the  If statement in a single line. If you'd like to execute more than one 

command in the braces without having to use new lines, separate the commands with 

a semicolon ";". 

Switch

If you'd like to test a value against many comparison values, the  If statement could quickly become confusing. The  Switch statement is much clearer and quicker:

 # Test a value against several comparison values (with If statement):

 $value  = 1

 If ( $value  -eq 1)

{

 " Number 1" 

}

 ElseIf ( $value  -eq 2)

{

Table of Contents | About PowerShell Plus

216

Sponsors | Resources | © BBS Technologies

   " Number 2" 

}

 ElseIf ( $value  -eq 3)

{

 " Number 3" 

}

 Number 1

 # Test a value against several comparison values (with Switch statement):

 $value  = 1

 Switch ( $value)

{

1  {  "Number 1"  }

2  {  "Number 2"  }

3  {  "Number 3"  }

}

 Number 1

This is how to use the  Switch statement: the value to switch on is in the parentheses after the 

 Switch keyword. That value is matched with each of the conditions case by case. If a match is found, the action associated with that condition is performed. Default comparison operator is the  -eq 

operator to verify equality. 

Testing Range of Values

The default comparison operator is  -eq operator, but you could also compare a value with your own 

conditions. Formulate your own condition and put it in braces. Condition must result in either  true or false:

 $value  = 8

 Switch ( $value)

{

 # Instead of a standard value, a code block is used 

 # that results in True for numbers smaller than 5:

{ $__-le 5}  {  "Number from 1 to 5"  }

 # A value is used here; Switch checks whether this 

 # value matches $value:

6  {  "Number 6"  }

 # Complex conditions are allowed as they are here, 

 # where -and is used to combine two comparisons:

{(( $__-gt 6)  -and ( $__-le 10))} {  "Number from 7 to 10"  }

}

 Number from 7 to 10

•

The code block  {$_ -le 5} includes all numbers less than or equal to 5. 

Table of Contents | About PowerShell Plus

217

Sponsors | Resources | © BBS Technologies

•

The code block  {(($_ -gt 6) -and ($_ -le 10))} combines two conditions and results in  true if the number is either larger than 6 or less than-equal to 10. Consequently, you may combine 

any PowerShell statements in the code block and also use the logical operators listed in Table 

7.2.  

Here, you used the initial value stored in  $_ for your conditions, but because  $_ is generally available anywhere in the  Switch block, you could just as well have put it to work in the result code: $value  = 8

 Switch ( $value)

{

 # The initial value (here it is in $value) 

 # is available in the variable $_:

{ $_  -le 5}  {  "$_ is a number from 1 to 5"  }

6  {  "Number 6"  }

{(( $_  -gt 6)  -and ( $_  -le 10))}  

{  "$_ is a number from 7 to 10"  }

}

 8 is a number from 7 to 10

No Applicable Condition

In a similar manner as an  If statement, the  Switch statement executes code only if at least one of the specified conditions is met. The keyword, which for the  If statement is called  Else, is called default for  Switch statement. When no other condition matches, the default clause is run. 

 $value  = 50

 Switch ( $value)

{

{ $_  -le 5}  {  "$_is a number from 1 to 5"  }

6  {  "Number 6"  }

{(( $_  -gt 6)  -and ( $_  -le 10))}  

{  "$_ is a number from 7 to 10"  }

 # The code after the next statement will be 

 # executed if no other condition has been met:

default { "$_ is a number outside the range from 1 to 10"  }

}

 50 is a number outside the range from 1 to 10

Several Applicable Conditions

If more than one condition applies, then  Switch will behave differently than  If. For  If, only the first applicable condition was executed. For  Switch, all applicable conditions are executed:

 $value  = 50

 Switch ( $value)

{

Table of Contents | About PowerShell Plus

218

Sponsors | Resources | © BBS Technologies



50  {  "the number 50"  }

{ $_  -gt 10}  { "larger than 10" }

{ $_  -is [ int]}  { "Integer number" }

}

 The Number 50

 Larger than 10

 Integer number

Consequently, all applicable conditions ensure that the following code is executed, and so in some 

circumstances you may get more than one result. 

Try out that example, but assign 50.0 to  $value. In this case, you'll 

get just two results instead of three. Do you have any idea why? 

That's right: the third condition is no longer fulfilled because the 

number in  $value is no longer an integer number. The other two 

conditions, however, remain fulfilled. 

If you'd like to receive only one result, while consequently making sure that only the first applicable 

condition is performed, then append the  break statement to the code. 

 $value  = 50

 Switch ( $value)

{

50  {  "the number 50" ;  break }

{ $_  -gt 10}  { "larger than 10" ;  break}

{ $_  -is [ int]}  { "Integer number" ;  break}

}

 The number 50

In fact, now you get only the first applicable result. The keyword  break indicates that no more 

processing will occur and the  Switch statement will exit. 

Using String Comparisons

The previous examples have always compared numbers. You could also naturally compare strings 

since you now know that behind the scenes  Switch uses only the normal  -eq comparison operator and that there string comparisons are also permitted. The following code could be the basic structure 

of a command evaluation. A different action will be performed, depending on the specified 

command:

 $action  =  "sAVe" 

 Switch ( $action)

{

 "save"   {  "I save..."  }

 "open"   {  "I open..."  }

Table of Contents | About PowerShell Plus

219

Sponsors | Resources | © BBS Technologies

   "print"   {  "I print..."  }

Default  {  "Unknown command"  }

}

 I save... 

Case Sensitivity

Since the  -eq comparison operator doesn't distinguish between lower and upper case, case 

sensitivity doesn't play any role in comparisons. If you want to distinguish between them, then use 

the  -case option. Working behind the scene, it will replace the  -eq comparison operator with  -ceq, after which case sensitivity will suddenly become crucial:

 $action  =  "sAVe" 

 Switch  -case ( $action)

{

 "save"   {  "I save..."  }

 "open"   {  "I open..."  }

 "print"   {  "I print..."  }

Default  {  "Unknown command"  }

}

 Unknown command

Wildcard Characters

In fact, you can also exchange a standard comparison operator for  -like and  -match operators and then carry out wildcard comparisons. Using the  -wildcard option, activate the  -like operator, which is conversant, among others, with the "*" wildcard character:

 $text  =  "IP address: 10.10.10.10" 

 Switch  -wildcard ( $text)

{

 "IP*"   {  "The text begins with IP: $_"  }

 "*.*.*.*"   {  "The text contains an IP "   +

 "address string pattern: $_"  }

 "*dress*"   {  "The text contains the string "   +

 "'dress' in arbitrary locations: $_"  }

}

 The text begins with IP: IP address: 10.10.10.10 

 The text contains an IP address string pattern: 

   IP address: 10.10.10.10

 The text contains the string 'dress' in arbitrary 

   locations: IP address: 10.10.10.10

Table of Contents | About PowerShell Plus

220

Sponsors | Resources | © BBS Technologies



Regular Expressions

Simple wildcard characters can't always be used for recognizing patterns. Regular expressions are 

much more efficient. But they assume much more basic knowledge, a reason for you to now take a 

peek ahead at Chapter 13,  which discusses regular expression in greater detail. 

With the  -regex option, you can ensure that  Switch uses the  -match comparison operator instead of 

 -eq, and thus employs regular expressions. Using regular expressions, you can identify a pattern 

much more precisely than by using simple wildcard characters. But that's not all: as was the case 

with the  -match operator, you will usually get back the text that matches the pattern in the 

 $matches variable. This way, you could even parse information out of the text:

 $text  =  "IP address: 10.10.10.10" 

 Switch  -regex ( $text)

{

 "^IP"   {  "The text begins with IP: "   +

 "$($matches[0])"  }

 "\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}"  { 

 "The text contains an IP address "   +

 "string pattern: $($matches[0])"  }

 "\b.*?dress.*?\b"   {  " The text "   +

 "contains the string 'dress' in "   +

 "arbitrary locations: $($matches[0])"  }

}

 The text begins with IP: IP

 The text contains an IP address string 

   pattern: 10.10.10.10

 The text contains the string 'dress' in 

   arbitrary locations: IP address

The result of the  -match comparison with the regular expression is 

returned in  $matches, a hash table with each result, because 

regular expressions can, depending on their form, return several 

results. In the example, only the first result should interest you, 

the one you got by using  $matches[0]. To ensure that this result 

appears in the output text, the entire expression is embedded in  $(...). 

Processing Several Values Simultaneously

Until now, you have always passed to  Switch just one value for evaluation. But  Switch can also process several values at the same time. To do so, pass to  Switch the values in an array or a 

collection. In the following example,  Switch is passed an array containing five elements.  Switch automatically takes all the elements one at a time from the array and compares each of them, one 

by one:

 $array  = 1..5

Table of Contents | About PowerShell Plus

221

Sponsors | Resources | © BBS Technologies

 Switch ( $array)

{

{ $_  % 2} {  "$_ is odd." }

Default {  "$_ is even." }

}

 1 is odd. 

 2 is even. 

 3 is odd. 

 4 is even. 

 5 is odd. 

There you have it:  Switch accepts not only single values but also entire arrays and collections. As such,  Switch would actually be an ideal candidate for evaluating results on the PowerShell pipeline because the pipeline character ("|") is used to forward results as arrays or collections from one command to the next. 

The next line queries  Get-Process for all running processes and pipes the result to a script block ( & 

 {...}). In the script block,  Switch evaluates the result of the pipeline, which is available in  $input. If the  WS property of a process is larger than one megabyte, this process is output  Switch will filter all the processes whose WS property is less than or equal to one megabyte:

 Get-Process |  &  {  Switch( $input) { { $_.  WS  -gt 1MB} {  $_ }}}

However, this line is extremely hard to read and seems complicated. By using  Where-Object, you 

can formulate the condition in a much clearer way:

 Get-Process |  Where-Object {  $_.  WS  -gt 1MB }

This variant is also quicker because  Switch had to wait until the pipeline had collected the entire results of the preceding command in  $input. In  Where-Object, it processes the results of the preceding command precisely when the results are ready. This difference is especially striking for 

elaborate commands:

 # Switch returns all files beginning with "a":

Dir |  &  {  Switch( $input) { 

{ $_.  name.StartsWith( "a" )} {  $_ } }}

 # But it doesn't do so until Dir has retrieved 

 # all data, and that can take a long time:

Dir  -Recurse |  &  {  Switch( $input) { 

{ $_.  name.StartsWith( "a" )} {  $_ } }}

 # Where-Object processes the incoming results 

 # immediately:

Dir  -recurse |  Where-Object { 

 $_.  name.StartsWith( "a" ) }

 # The alias of Where-Object ("?") works 

 # exactly the same way:

Dir  -recurse | ? {  $_.  name.StartsWith( "a" ) }

Table of Contents | About PowerShell Plus

222

Sponsors | Resources | © BBS Technologies

Summary

Intelligent decisions are based on conditions, which in the simplest form can be reduced to plain  Yes 

or  No answers. Using the comparison operators listed in Table 7.1,  you can formulate such conditions and can even combine these with the logical operators listed in Table 7.2 to form complex queries. 

The simple Yes/No answers of your conditions determine whether particular PowerShell instructions 

should be carried out or not. In the simplest form, you can use the Where-Object cmdlet in the 

pipeline. It functions there like a filter, allowing only those results through the pipeline that 

correspond to your condition. 

If you would like more control, or would like to execute larger code segments independently of 

conditions, use the  If statement, which evaluates as many different conditions as you wish and, 

depending on the result, executes the allocated code. This is the typical "If-Then" scenario:  if certain conditions are met,  then certain code segments will be executed. 

An alternative to the  If statement is the  Switch statement: using it, you can compare a fixed initial value with various possibilities.  Switch is the right choice when you want to check a particular 

variable against many different possible values. 

Table of Contents | About PowerShell Plus

223

Sponsors | Resources | © BBS Technologies

CHAPTER 8. 

 Loops

Loops are a good example that iterations do not have to be boring. They repeat particular 

PowerShell statements with the pipeline being one of the areas where you can benefit from loops. 

Most PowerShell commands wrap their results in arrays, and you'll need a loop when you want to 

examine single elements in an array more closely. 

Topics Covered:

•

F orEach-Object  

•

E

  valuating Pipeline Objects Separately  

•

In

  tegrating Conditions  

•

In

  voking Methods  

•

F oreach  

•

Do

   and While  

•

C

  ontinuation and Abort Conditions  

•

U

  sing Variables as Continuation Criteria  

•

E

  ndless Loops without Continuation Criteria  

•

F or  

•

F or Loops: Just Special Types of the While Loop  

•

U

  nusual Uses for the For Loop  

•

S

  witch  

•

P

  rocessing File Contents Line by Line  

•

E

  xiting Loops Early  

•

C

  ontinue: Skipping Loop Cycles  

•

N

  ested Loops and Labels  

•

S

  ummary  

ForEach-Object

The PowerShell pipeline works like an assembly line. Each command is tied to the next and hands 

over its result to the following command, pretty much like assembly line robots. So, the results from 

the initial command will be processed by all other commands in real time. If you'd like to look more 

closely at these objects, you'll need the  ForEach-Object cmdlet. It executes the code that you specify after it for every object that is guided through the pipeline. This is one of the most important ways 

to acquire native PowerShell objects. At the same time, it's the simplest form of a loop. 

Evaluating Pipeline Objects Separately

If you use  Get-WmiObject to retrieve all information about all running services,  Get-WmiObject will acquire the services as objects and direct them through the pipeline. Normally, PowerShell converts 

these objects into text when they reach the end of the pipeline; at most, you could format the 

output by using the formatting cmdlets described in Chapter 5:

 Get-WmiObject Win32_Service | 

Table of Contents | About PowerShell Plus

224

Sponsors | Resources | © BBS Technologies

   Format-Table Name, StartMode, PathName

 Name                       StartMode PathName

 ----                       --------- --------

 AeLookupSvc                Auto      C:\Windows\system32\

                                        svchost.ex... 

 AgereModemAudio            Auto      C:\Windows\system32\

                                        agrsmsvc.exe

 ALG                        Manual    C:\Windows\System32\

                                        alg.exe

 Appinfo                    Manual    C:\Windows\system32\

                                        svchost.ex... 

 AppMgmt                    Manual    C:\Windows\system32\

                                        svchost.ex... 

 Ati External Event Utility Auto      C:\Windows\system32\

                                        Ati2evxx.exe

 AudioEndpointBuilder       Auto      C:\Windows\System32\

                                        svchost.ex... 

 Audiosrv                   Auto      C:\Windows\System32\

                                        svchost.ex... 

 Automatic LiveUpdate...    Auto      "C:\Program Files\

                                        Symantec\Liv... 

 (...)

 ForEach-Object gives you more options. It enables you to access all the properties and methods of 

each object. The ForEach-Object cmdlet executes a block of statements for every single object in a 

pipeline. Automatic variable $_ contains the current pipeline object. 

 Get-WmiObject Win32_Service | 

 ForEach-Object {  "{0} ({1}): Path: {2}"  `

 -f  $_.  Name,  $_.  StartMode,  $_.  PathName }

 AeLookupSvc (Auto): Path: C:\Windows\system32\svchost.exe -k netsvcs

 AgereModemAudio (Auto): Path: C:\Windows\system32\agrsmsvc.exe

 ALG (Manual): Path: C:\Windows\System32\alg.exe

 Appinfo (Manual): Path: C:\Windows\system32\svchost.exe -k netsvcs

 AppMgmt (Manual): Path: C:\Windows\system32\svchost.exe -k netsvcs

 (...)

Integrating Conditions

In the script block after  ForEach-Object, all PowerShell commands and statements are permitted, so you could output only running services along with their descriptions:

 Get-WmiObject Win32_Service | 

 ForEach-Object { 

 if ( $_.  Started) { 

 "{0}({1}) = {2}"   -f  $_.  Caption,  $_.  Name,  $_.  Description 

}

}

Table of Contents | About PowerShell Plus

225

Sponsors | Resources | © BBS Technologies



 Windows Audio Endpoint Builder = Manages audio devices 

 for the Windows Audio service. If this service is stopped, 

 audio devices and effects will not function properly. If 

 this service is disabled, any services that explicitly 

 depend on it will no longer start. 

 Windows-Audio(Audiosrv) = Manages audio devices for 

 Windows-based programs. If this service is stopped, audio 

 devices and effects will not function properly. If this 

 service is disabled, any services that explicitly depend 

 on it will fail to start. 

 Base Filtering Engine (BFE) = The Base Filtering Engine 

 is a service that manages firewall and Internet Protocol 

 security (Ipsec) policies and implements user mode 

 filtering.  Stopping or disabling the BFE service will 

 significantly reduce the security of the system. It will 

 also result in unpredictable behavior in IPsec management 

 and firewall applications. 

Remember the building-block principle of the pipeline and keep it 

simple and modular! Although it is permitted to specify conditions 

and complex instructions in the script block after  ForEach-Object, 

the pipeline will be easier to read and more flexible if you sub-

divide each task into separate steps and use the  Where-Object 

cmdlet described in Chapter 7 as a condition:

 Get-WmiObject Win32_Service |

 Where-Object {  $_.  Started  -eq  $true } | 

 ForEach-Object { "{0}({1}) = {2}"   -f `

 $_.  Caption,  $_.  Name,  $_.  Description}

Don't forget the conditions covered in Chapter 7: they must result in  $true or $false—that's the only requirement. If a variable already contains  $true or 

 $false, its result can be used immediately. So, it doesn't matter at all 

whether you formulate  $_.Started -eq $true as a condition or the shorter 

 $_.Started, because in either case, the result will be either  $true or  $false. 

Because the  Where-Object and  ForEach-Object building blocks are often used in practice, you can use aliases: "?" stands for  Where-Object and "%" stands for  ForEach-Object. This won't make the lines more readable, but they'll be shorter and easier to enter:

 Get-WmiObject Win32_Service | ? {  $_.  Started } |  % { 

 "{0}({1}) = {2}"-f  $_.  Caption,  $_.  Name,  $_.  Description }

Table of Contents | About PowerShell Plus

226

Sponsors | Resources | © BBS Technologies

Invoking Methods

Because  ForEach-Object gives you access to each object in a pipeline, you can invoke the methods 

of these objects. In Chapter 7,  you already learned how to take advantage of this to close all instances of the Notepad. 

 Get-Process notepad |  ForEach-Object {  $_.  Kill() }

However, this instruction closes all processes called  notepad, even the Notepads that you had 

opened much earlier. Because PowerShell always works with objects, and because you have access 

to all object properties and methods within the scope of the  ForEach-Object cmdlet, you could select just some of them. For example, you could stop only those Notepad processes that haven't been 

running for longer than three minutes. How can you find out how long a process has already been 

running? 

Notepad 

 $process  = @( Get-Process notepad)[0]

 $process.  StartTime

 Sunday, March 8, 2009 08:17:27

The time difference between the current and the start time is calculated by the  New-TimeSpan 

cmdlet:

 New-TimeSpan  $process.  StartTime ( Get-Date)

 Days              : 0

 Hours             : 0

 Minutes           : 3

 Seconds           : 7

 Milliseconds      : 766

 Ticks             : 1877660000

 TotalDays         : 0,00217321759259259

 TotalHours        : 0,0521572222222222

 TotalMinutes      : 3,12943333333333

 TotalSeconds      : 187,766

 TotalMilliseconds : 187766

And that's how the command line could look that ends all processes called Notepad that have not 

been running for longer than three minutes:

 Get-Process notepad |  ForEach-Object { 

 $time  = ( New-TimeSpan  $_.  StartTime ( Get-Date)).  TotalSeconds; if ( $time  -lt 180) { 

 "Stop process $($_.id) after $time seconds..." ; 

 $_.  Kill()

} 

 else { 

 "Process $($_.id) has been running for "   +

 "$time seconds and have not be stopped." 

} 

Table of Contents | About PowerShell Plus

227

Sponsors | Resources | © BBS Technologies

}

These lines function extremely well, but are somewhat unclear. The  ForEach-Object loop contains a 

condition. That's actually where  Where-Object can come in:

 Get-Process notepad | 

 Where-Object { 

 $time  = ( New-TimeSpan  $_.  StartTime ( Get-Date)).  TotalSeconds; ( $time  -lt 180)

} | 

 ForEach-Object { 

 "Stop process $($_.id) after $time seconds..." ; 

 $_.  Kill()

}

This works, too. Now, while you have separated condition and loop, you have been confronted with a 

disadvantage of  Where-Object: this cmdlet allows only those objects to pass that match your 

condition. All the others will quietly vanish. That's why this approach doesn't have any option to 

output a notification about processes that have already been running for a longer period of time and 

have not been stopped. Perhaps you still remember from Chapter 7 that  Switch combines the features of a loop and a condition. If you need both,  Switch can be a useful solution:

 Switch ( Get-Process notepad) { 

{ 

 $time  = ( New-TimeSpan  $_.  StartTime ( Get-Date)).  TotalSeconds; $time  -le 180 

}

{ 

 "Stop process $($_.id) after $time seconds..." ; 

 $_.  Kill() 

}

default { "Process $($_.id) has been running for some time and will not be 

 stopped." }

}

Foreach

Aside from  ForEach-Object, PowerShell also comes with the  Foreach statement. At first glance, both appear to work nearly identically. While  ForEach-Object obtains its entries from the pipeline, the Foreach statement iterates over a collection of objects:

 # ForEach-Object lists each element in a pipeline:

Dir C:\ |  ForEach-Object {  $_.  name }

 # Foreach loop lists each element in a colection:

 Foreach ( $element  in Dir C:\) {  $element.  name }

Table of Contents | About PowerShell Plus

228

Sponsors | Resources | © BBS Technologies



And here is precisely the basic difference between them.  ForEach-Object works best in a pipeline, 

where each result is returned by the preceding command in real time.  Foreach can only process 

objects that are already completely available.  Foreach blocks PowerShell until all results are 

available; for complex commands that can take a very long time.  Foreach processes the objects only after Dir has retrieved them:

 # Foreach loop lists each element in a collection:

 Foreach ( $element  in Dir C:\  -recurse) {  $element.  name }

Now you won't see anything at all for a long time—at most a few strange error messages. The 

reason is that you have assigned  Dir the task of recursively retrieving the directory listing for the entire C:\ drive, and that can take some time. The error messages that may appear come from 

directories for which you have no read rights. The  Foreach loop cannot go into action until the  Dir result is completely available. 

The PowerShell pipeline does a better job. In it,  Dir gets its results one at a time so that  ForEach-Object can already work through them while  Dir is still performing its task. This means that there's no delay, and everything proceeds in real time. In other words,  ForEach-Object processes the results of  Dir while Dir returns them:

 # ForEach-Object lists each element in a pipeline:

Dir C:\  -recurse |  ForEach-Object {  $_.  name }

What are the special strengths of  Foreach? It is the better choice whenever the results that you want to evaluate are already completely available, such as in a variable, because it is considerably 

quicker. 

Let's read all elements of an array using a Foreach loop. 

 # Create your own array:

 $array  = 3,6,  "Hello" ,12

 # Read out this array element by element:

 Foreach ( $element  in  $array) { "Current element: $element" }

 Current element: 3

 Current element: 6

 Current element: Hello

 Current element: 12

 ForEach-Object and the pipeline could also iterate through an 

array:

 $array  = 3,6,  "Hello" ,12

 $array |  ForEach-Object {  "Current element: $_"  }

But Foreach is significantly quicker. You can find out how dramatic the time 

advantage is by using Measure-Command cmdlet:

( Measure-Command {

 $array |  ForEach-Object {  "Current element: $_"  }

Table of Contents | About PowerShell Plus

229

Sponsors | Resources | © BBS Technologies



}).  totalmilliseconds

 2.8

( Measure-Command {

 Foreach ( $element  in  $array) { "Current element: $element" }

}).  totalmilliseconds

 0.2

If the objects are already in a variable, it's more than 10 times faster to use 

 Foreach to evaluate them directly than to drive them through the pipeline. 

The following rules can be deduced:

•

ForEach-Object: If you have to acquire the results first, and if this acquisition lasts longer 

than a few milliseconds, then use  ForEach-Object and the pipeline so that you won't have to 

wait for long periods of time and the results are processed immediately where they are 

available. 

•

Foreach: If you have the results already available in a variable or if their acquisition is very 

fast, then use  Foreach because of its speed advantage. 

 Foreach functions in principle with any kind of collection. For example, you could use  Dir to obtain a directory listing and then use  Foreach to further process each file and directory:

 # Process all files and subdirectories in a directory separately:

 Foreach ( $entry  in dir c:\) {

 # Either embed the data as subexpressions in a text:

 "File $($entry.name) is $($entry.length) bytes large" 

 # Or use wildcards and the -f formatting operator:

 "File {0} is {1} bytes large"   -f  $entry.  name,  $entry.  length

}

 File autoexec.bat is 24 bytes large

 File autoexec.bat is 24 bytes large

 File BOOTSECT.BAK is 8192 bytes large

 File BOOTSECT.BAK is 8192 bytes large

 (...)

The  Foreach loop can also handle empty collections and even 

objects that aren't even collections. If  Dir doesn't retrieve any files 

at all, the loop won't run a single time. If  Dir returns just one file, 

then  Foreach will automatically recognize that this is one single 

object, and it will run the loop exactly one time. 

Table of Contents | About PowerShell Plus

230

Sponsors | Resources | © BBS Technologies

You could just as well have used the  Get-WmiObject cmdlet to look for instances of a WMI class and had it retrieve all running services on your system.  Foreach would then examine each of the services and generate a list with the general service names, as well as the localized service names:

 # Use WMI to query all services of the system:

 $services  =  Get-WmiObject Win32_Service

 # Output the Name and Caption properties for every service:

 Foreach ( $service  in  $services) {  $service.  Name  + 

 " = "   +  $service.  Caption }

 AeLookupSvc = Application Experience Lookup

 AgereModemAudio = Agere Modem Call Progress Audio

 ALG = Application Layer Gateway Service

 Appinfo = Application Information

 (...)

That, however, pushes things to the limit because  Get-WmiObject may require several seconds in 

some circumstances. It would probably be better for you to use  ForEach-Object. 

In principle,  Foreach requires only a collection of objects. Such collections, when you look closely, are widely distributed. The  Resolve-Path cmdlet uses wildcards to change a path specification to an array with all actual paths matching the wildcard characters. The next example lists all the text files 

in your user profile:

 Resolve-Path  -Path  "$home\*.txt" 

 Path

 ----

 C:\Users\Tobias Weltner\output.txt

 C:\Users\Tobias Weltner\cmdlet.txt

 C:\Users\Tobias Weltner\error.txt

 C:\Users\Tobias Weltner\list.txt

 C:\Users\Tobias Weltner\snapshot.txt

The  Foreach loop could now go through the result of  Resolve-Path and open every single file it found in the Notepad:

 function  open-editor ([ string] $path="$home\*.txt" ) {

 $list  =  Resolve-Path  -Path  $path

 Foreach ( $file  in  $list) {

 "Open File $file..." 

notepad  $file

}

}

This line would then open all log files in your Windows subdirectory in the Notepad:

 open-editor  $env:windir\ *.  log

Now and then, commands like  Dir (or  Get-Childitem) retrieve several different object types,  FileInfo objects for files and  DirectoryInfo objects for directories. That doesn't matter to  Foreach: every time a loop cycle is completed,  Foreach will get an object until all objects are processed. However, it 

Table of Contents | About PowerShell Plus

231

Sponsors | Resources | © BBS Technologies

should matter a little to you, and so you could use a condition to test whether the retrieved object matches the desired type. The following loop gets different objects depending on whether it is a 

directory or a file:

 # Process all files and subdirectories in a directory one by one:

 Foreach ( $entry  in dir c:\) {

 # Is it a FileInfo object? 

 if ( $entry -is [ System.IO.FileInfo]) {

 # If yes, output name and size:

 "File {0} is {1} bytes large"   -f  $entry.  name,  $entry.  length

}

 # Or is it perhaps a DirectoryInfo object? 

 elseif ( $entry -is [ System.IO.DirectoryInfo]) {

 # If yes, output name and creation time:

 "Subdirectory {0} was created on {1:}"  -f  $entry.  name, 

 $entry.  CreationTime

}

}

 Documents and Settings subdirectory was created on 

   08.28.2006 19:15:14

 Program Files subdirectory was created on 11.02.2006 12:18:33

 Programs subdirectory was created on 08.28.2006 19:15:47

 Users subdirectory was created on 11.02.2006 12:18:33

 Windows subdirectory was created on 11.02.2006 12:18:34

 autoexec.bat file is 24 bytes large

 BOOTSECT.BAK file is 8192 bytes large

 config.sys file is 10 bytes large

Do and While

 Do and  While generate endless loops. Endless loops are practical if you don't know exactly how long the loop should iterate. To prevent an endless loop to really run endlessly, you must set additional 

abort conditions. The loop will end when the conditions are met. 

Continuation and Abort Conditions

A typical example of an endless loop is a user query that you want to iterate until the user gives a 

valid answer. How long that lasts and how often the query will iterate depends on the user and his 

ability to grasp what you want. 

 Do {

 $input  =  Read-Host  "Your homepage" 

}  While ( ! ( $input  -like  "www.*.*" ))

Table of Contents | About PowerShell Plus

232

Sponsors | Resources | © BBS Technologies

This loop asks the user for his home page Web address. At the end of the loop after  While is the criteria that has to be  met so that the loop can be iterated once again. In the example,  -like is used to verify whether the input matches the www.*.* pattern. While that's only an approximate 

verification, usually it suffices. To refine your verification you could also use regular expressions. 

Both procedures will be explained in detail in Chapter 13. 

This loop is supposed to iterate only if the input is  false. That's why "!" is used to simply invert the result of the condition. The loop will then be iterated until the input does  not match a Web address. 

In this type of endless loop, verification of the loop criteria doesn't take place until the end. The loop will go through its iteration at least once, because before you can check the criteria, you have to 

query the user at least once. 

However, there are also cases in which the criteria is supposed to be verified at the beginning and 

not at the end of the loop, namely whenever there are certain conditions when the loop must not go 

through any iteration. An example could be a text file that you want to read one line at a time. The 

file could be empty and the loop should check before its first iteration whether there's anything at all 

to read. To accomplish this, just put the  While statement and its criteria at the beginning of the loop (and leave out  Do, which is no longer of any use):

 # Open a file for reading:

 $file  = [ system.io.file]:: OpenText( "C:\autoexec.bat" )

 # Continue loop until the end of the file has been reached:

 While ( ! ( $file.  EndOfStream)) { 

 # Read and output current line from the file:

 $file.  ReadLine() 

}

 # Close file again:

 $file.  close

Using Variables as Continuation Criteria

The fact is that the continuation criteria after  While works like a simple switch. If the expression is $true, then the loop will be iterated; if it is  $false, then it won't. Conditions are therefore not obligatory, but just simply provide the required  $true or  $false. You could just as well have presented the loop with a variable as criteria as long as the variable contained  $true or  $false. 

In such a way, you could have verified the criteria in the loop as well and stored the result in a 

variable. Then you could have used the verification result in the loop and output an explanatory text 

when the user gave false input so that he would know why he was being queried a second time:

 Do {

 $input  =  Read-Host  "Your Homepage" 

 if ( $input -like  "www.*.*" ) {

 # Input correct, no further query:

 $furtherquery  =  $false

}  else {

 # Input incorrect, give explanation and query again:

 Write-Host -Fore  "Red"   "Please give a valid web address." 

 $furtherquery  =  $true

}

Table of Contents | About PowerShell Plus

233

Sponsors | Resources | © BBS Technologies

}  While ( $furtherquery) 

 Your Homepage: hjkh 

 Please give a valid web address. 

 Your Homepage: www.powershell.com 

Endless Loops without Continuation Criteria

In extreme cases, you should not use any continuation criteria at all but simply type the fixed value 

 $true after  While. The loop will then become a genuinely endless loop, which from then on will no longer stop on its own. Of course, that makes sense only if you exit the loop in some other way. The 

 break statement makes that possible:

 While ( $true) {

 $input  =  Read-Host  "Your homepage" 

 if ( $input -like  "www.*.*" ) {

 # Input correct, no further query:

 break

}  else {

 # Input incorrect, give explanation and ask again:

 Write-Host -Fore  "Red"   "Please give a valid web address." 

}

}

 Your homepage: hjkh

 Please give a valid web address. 

 Your homepage: www.powershell.com

For

If you know exactly how often you want to iterate a particular code segment, then use the  For loop. 

 For loops are counting loops, and when the loop is iterated often enough, it will end its iterations automatically. To define the number of iterations, specify the number at which the loop begins and 

at which number it will end, as well as which increments will be used for counting. The following loop 

will retrieve exactly seven lottery numbers for you. It begins counting at 0, counts until the value is 

less than seven, and increases the value by one with every new iteration. 

 # Create random number generator 

 $random  =  New-Object  system.random 

 # Output seven random numbers from 1 to 49

For ( $i= 0;  $i  -lt 7;  $i++) {

 $random.  next(1,49)

} 

 32

 29

 44

 43

 6

Table of Contents | About PowerShell Plus

234

Sponsors | Resources | © BBS Technologies

 38

 9

For Loops: Just Special Types of the While Loop

If you take a closer look at the  For loop, you'll quickly notice that it is actually only a specialized form of the  While loop. The  For loop, in contrast to the While loop, evaluates not only one but three expressions:

•

Initialization: The first expression is evaluated when the loop begins. 

•

Continuation criteria: The second expression is evaluated before every iteration. It 

basically corresponds to the continuation criteria of the  While loop. If this expression is  $true, the loop will iterate. 

•

Increment: The third expression is likewise re-evaluated with every looping, but it is not 

responsible for iterating. Be careful: this expression cannot generate output. 

These three expressions are used to initialize a control variable, to verify whether a final value is 

achieved, and to change a control variable with a particular increment at every iteration of the loop. 

Of course, it is entirely up to you whether you want to use the  For loop solely for this purpose. 

A  For loop can become a  While loop if you ignore the first and the third expression and only use the second expression, the continuation criteria:

 # First expression: simple While loop:

 $i  = 0 

 While ( $i  -lt 5) {

 $i++

 $i

} 

 1

 2

 3

 4

 5

 # Second expression: the For loop behaves like the While loop:

 $i  = 0 

For (;  $i  -lt 5;) {

 $i++

 $i

} 

 1

 2

 3

 4

 5

Table of Contents | About PowerShell Plus

235

Sponsors | Resources | © BBS Technologies



Unusual Uses for the For Loop

Of course, it might have been preferable in this case to use the  While loop right from the beginning. 

It certainly makes more sense not to ignore the other two expressions of the  For loop, but to use 

them for other purposes. The first expression of the  For loop can be used in general for initialization tasks. The third expression could set the increment of a control variable as well as perform different 

tasks in the loop. You could also use it, in fact, in the user query example we just had:

For ( $input="" ;  ! ( $input  -like  "www.*.*" ); 

 $input  =  Read-Host  "Your homepage" ) {

 Write-Host  -fore  "Red"   " Please give a valid web address." 

}

In the first expression, the  $input variable is set to an empty string. The second expression checks whether a valid Web address is in  $input, and if it is, it uses "!" to invert the result so that it is  $true if an invalid Web address is in  $input. In this case, the loop is iterated. In the third expression, the user is queried for a Web address. Really nothing more needs to be in the loop. In the example, an 

explanatory text is output. 

In addition, the line-by-line reading of a text file can be implemented by a  For loop with less code: For ( $file  = [ system.io.file]:: OpenText( "C:\autoexec.bat" ); 

 ! ( $file.  EndOfStream);  $line  =  $file.  ReadLine()) 

{

 # Output read line:

 $line

} 

 $file.  close()

 REM Dummy file for NTVDM 

In this example, the first expression of the loop opened the file so it could be read. In the second 

expression, a check is made whether the end of the file has been reached. The "!" operator inverts the result again so that it returns  $true if the end of the file hasn't been reached yet so that the loop will iterate in this case. The third expression reads a line from the file. The read line is then output in the loop. 

The third expression of the  For loop is executed before every loop 

cycle. In the example, the current line from the text file is read. 

This third expression is always executed invisibly; that means you 

can't use it to output any text. So, the contents of the line are 

output within the loop. 

Table of Contents | About PowerShell Plus

236

Sponsors | Resources | © BBS Technologies

Switch

Do you still remember the  Switch statement discussed in Chapter 7?   Switch is not only a condition but also functions like a loop. That makes  Switch one of the most powerful statements in 

PowerShell.  Switch works almost exactly like the  Foreach loop. Moreover, it can evaluate conditions. 

For a demonstration, take a look at the following simple  Foreach loop:

 $array  = 1..5 

 Foreach ( $element  in  $array)

{

 "Current element: $element" 

} 

 Current element: 1

 Current element: 2

 Current element: 3

 Current element: 4

 Current element: 5

If you used  Switch, this loop would look like this:

 $array  = 1..5 

 Switch ( $array)

{

Default {  "Current element: $_"  }

} 

 Current element: 1

 Current element: 2

 Current element: 3

 Current element: 4

 Current element: 5

The control variable that returns the current element of the array for every loop cycle cannot be 

named for  Switch, as it can for  Foreach, but is always called  $_. The external part of the loop functions in exactly the same way. Inside the loop, there's an additional difference: while  Foreach 

always executes the same code every time the loop cycles,  Switch can utilize conditions to execute optionally different code for every loop. In the simplest case, the  Switch loop contains only the 

 default statement. The code that is to be executed follows it in braces. 

That means  Foreach is the right choice if you want to execute exactly the same statements for every loop cycle anyway. On the other hand, if you'd like to process each element of an array according to 

its contents, it would be preferable to use  Switch:

 $array  = 1..5 

 Switch ( $array)

{

1  {  "The number 1"  }

{ $_  -lt 3}  {  "$_ is less than 3"  }

{ $_  % 2}  {  "$_ is odd"  }

Default {  "$_ is even"  }

Table of Contents | About PowerShell Plus

237

Sponsors | Resources | © BBS Technologies

} 

 The number 1

 1 is less than 3

 1 is odd

 2 is less than 3

 3 is odd

 4 is even

 5 is odd

If you're wondering why  Switch returned this result, take a look at Chapter 7 where you'll find an explanation of how  Switch evaluates conditions. What's important here is the other, loop-like aspect of  Switch. 

Processing File Contents Line by Line

If you need conditions in your loop,  Switch is a clever alternative to  Foreach. The same thing is true when you want to process text files, because if you wish  Switch will treat a text file like an array and the lines it contains like elements in the array. This means that you don't have to worry about how 

to open files for reading; you can just leave that up to  Switch. 

For example, an interesting text file is windowsupdate.log in the Windows subdirectory because it 

records all updates of the operating system. Because the system often has exclusive access to this 

file, the following code copies the file and then uses  Switch to output its contents line by line. 

Afterwards, the copy is deleted:

 Copy-Item  $env:windir\ windowsupdate.log  example.log 

 Switch  -file  example.log

{

Default  {  "read: $_"  }

} 

 Remove-Item  example.log 

 Switch is really too sophisticated a tool for just opening a text file and outputting its contents line by line. If all you were interested in was the entire text content of the file, you could have output it 

more easily:

 Get-Content  $env:windir\ windowsupdate.log 

The strength of  Switch lies in its ability to evaluate single lines of a text file and then output only particular data. Because this is really a case for regular expressions, you'll find numerous examples 

in Chapter 13. 

Exiting Loops Early

You can exit all loops by using the  Break statement, which gives you the additional option of defining additional stop criteria in the loop. The following is a little example that asks for a password and 

then uses  Break to exit the loop as soon as the password "secret" is entered. 

Table of Contents | About PowerShell Plus

238

Sponsors | Resources | © BBS Technologies



 While ( $true) 

{

 $password  =  Read-Host  "Enter password" 

 If ( $password  -eq  "secret" ) { break}

}

The  Break statement is actually unnecessary in this loop because you could have also stopped the 

loop by using the usual continuation criteria. You just have to consider here whether the iteration 

criteria should be verified at the beginning (and then you'd use  While) or at the end (and then 

 Do...While) of the loop:

 Do 

{

 $password  =  Read-Host  "Enter password" 

}  While ( $password  -ne  "secret" )

It would make more sense to use  Break in  For loops, because in  For loops you can optimally combine the unscheduled  Break with the scheduled iteration criteria of the loop. Perhaps you'd like to give users just three tries at entering a correct password. The following loop asks for a password 

a maximum three times, but can, thanks to  Break, be exited earlier when the correct password is 

entered:

For ( $i= 0;  $i  -lt 3;  $i++) 

{

 $password  =  Read-Host  "Enter password ($i. try)" 

 If ( $password  -eq  "secret" ) { break}

}

But the  For loop would not only give up after a maximum three tries, but would also grant you 

access even without the right password. To prevent that from happening, after the third 

unsuccessful try, you should trigger an error:

For ( $i= 1;  $i  -lt 4;  $i++) 

{

 $password  =  Read-Host  "Enter password ($i. try)" 

 If ( $password  -eq  "secret" ) { break}

 If ( $i  -ge 3) { Throw  "The entered password was incorrect."  }

}

What you see here is only a very simple password query showing 

the password in plain text. Secure password queries that have 

encrypted input will be covered in Chapter 13 in connection with 

the feature called  SecureStrings. 

Table of Contents | About PowerShell Plus

239

Sponsors | Resources | © BBS Technologies

Continue: Skipping Loop Cycles

The  Continue statement operates somewhat more mildly than  Break, because  Continue won't force you to exit the entire loop right away but will only skip the current loop cycle. Let's look at the 

 Foreach loop that cycles through all elements of a collection. In this case,  Dir will supply the collection and the collection will hold the contents of a directory. These contents can consist of files 

and subdirectories; and, as you should know by now, files are represented by a  FileInfo and sub-

directories by a  DirectoryInfo object. 

So, when you want to process just files and not directories in the  Foreach loop, then you should 

initially verify the type of the respective object. If the type doesn't match the  FileInfo object, provide the  Continue statement: the loop will then stop its current cycle immediately and continue with the next element:

 Foreach ( $entry  in Dir  $env:windir) 

{

 # If the current element matches the desired type, 

 # continue immediately with the next element:

 If ( ! ( $entry  -is [ System.IO.FileInfo])) {  Continue }

 "File {0} is {1} bytes large."   -f  $entry.  name,  $entry.  length

}

Of course, you could have also achieved the same thing if you had used a condition to sub-divide the 

entire contents of the loop, though usually that is substantially less clear:

 Foreach ( $entry  in Dir  $env:windir) 

{

 If ( $entry  -is [ System.IO.FileInfo]) {

 "File {0} is {1} bytes large."   -f  $entry.  name,  $entry.  length

}

}

Nested Loops and Labels

Loops may be nested within each other. However, if you do nest loops, the question arises of how 

their  Break and  Continue statements will behave. Of course, they will behave for the time being the way you expect them to and will always have an effect on the current loop in which they were 

invoked. 

The next example nests two  Foreach loops. The first (outer) loop cycles through a field with three WMI class names. The second (inner) loop runs through all instances of the respective WMI class. In 

this way, you could output all instances of all three WMI classes. The inner loop checks whether the 

name of the current instance begins with "a"; if not, the inner loop invokes  Continue and so skips all instances not beginning with "a." The result is a list of all services, user accounts, and running processes that begin with "a": 

 Foreach ( $wmiclass  in  "Win32_Service" ,  "Win32_UserAccount" ,  "Win32_Process" ) 

{

 Foreach ( $instance  in  Get-WmiObject  $wmiclass) {

 If ( ! (( $instance.  name.toLower()).  StartsWith( "a" ))) { continue}

Table of Contents | About PowerShell Plus

240

Sponsors | Resources | © BBS Technologies

     "{0}: {1}"  -f  $instance.__CLASS,  $instance.  name

}

}

 Win32_Service: AeLookupSvc

 Win32_Service: AgereModemAudio

 Win32_Service: ALG

 Win32_Service: Appinfo

 Win32_Service: AppMgmt

 Win32_Service: Ati External Event Utility

 Win32_Service: AudioEndpointBuilder

 Win32_Service: Audiosrv

 Win32_Service: Automatic LiveUpdate - Scheduler

 Win32_UserAccount: Administrator

 Win32_Process: Ati2evxx.exe

 Win32_Process: audiodg.exe

 Win32_Process: Ati2evxx.exe

 Win32_Process: AppSvc32.exe

 Win32_Process: agrsmsvc.exe

 Win32_Process: ATSwpNav.exe

As expected, the  Continue statement in the inner loop had an effect on the inner loop in which the statement was contained. But how should you proceed if you'd like to see only the first respective 

element of all services, user accounts, and processes that begins with "a"? Actually, nearly the exact same way, only in this case  Continue would have to have an effect on the outer loop. As soon as an element is found that begins with "a," the outer loop should jump to the next WMI class. 

So that statements like  Continue or  Break know which loop they are supposed to relate to, you should give loops unambiguous names and then specify these names after  Continue or  Break:

:WMIClasses  Foreach ( $wmiclass  in 

 "Win32_Service" ,  "Win32_UserAccount" ,  "Win32_Process" ) {

:ExamineClasses  Foreach ( $instance  in 

 Get-WmiObject  $wmiclass) {

 If (( $instance.  name.toLower()).  StartsWith( "a" )) {

 "{0}: {1}"  -f  $instance.__CLASS,  $instance.  name

 continue WMIClasses

}

}

}

 Win32_Service: AeLookupSvc

 Win32_UserAccount: Administrator

 Win32_Process: Ati2evxx.exe

Table of Contents | About PowerShell Plus

241

Sponsors | Resources | © BBS Technologies

Summary

The cmdlet  ForEach-Object gives you the option of processing single objects of the PowerShell 

pipeline, such as to output the data contained in object properties as text or to invoke methods of 

the object.  Foreach is a similar type of loop whose contents do not come from the pipeline, but from an array or a collection. 

In addition, there are endless loops that iterate a code block until a particular condition is met. The 

simplest type of such loops is  While, in which continuation criteria are checked at the beginning of the loop. If you want to do the checking at the end of the loop, choose  Do...While. The  For loop is an extended  While loop, because it can count loop cycles and automatically terminate the loop after a designated number of iterations. 

This means that  For is suited mainly for loops in which counts are to be made or which must 

complete a set number of iterations.  Do...While and  While, on the other hand, are suited for loops that have to be iterated as long as the respective situation and running time conditions require it. 

Finally,  Switch is a combined  Foreach loop with integrated conditions so that you can immediately implement different actions independently of the read element. Moreover,  Switch can step through 

the contents of text files line by line and evaluate even log files of substantial size. 

All loops can exit ahead of schedule with the help of  Break and skip the current loop cycle with the help of  Continue. In the case of nested loops, you can assign an unambiguous name to the loops 

and then use this name to apply  Break or  Continue to nested loops. 

Table of Contents | About PowerShell Plus

242

Sponsors | Resources | © BBS Technologies

CHAPTER 9. 

 Functions

PowerShell has the purpose of solving problems, and the smallest tool it comes equipped with for 

this is commands. By now you should be able to appreciate the great diversity of the PowerShell 

command repertoire: in the first two chapters, you already learned how to use the built-in 

PowerShell commands called cmdlets, as well as innumerable external commands, such as  ping or 

 ipconfig. In Chapter 6,  the objects of the .NET framework, and COM objects were added, providing you with a powerful arsenal of commands. 

In Chapters 3,  4,  and 5,  command chains forged out of these countless single commands combined statements either by using variables or the PowerShell pipeline. 

The next highest level of automation is functions, which are self-defined commands that internally 

use all of the PowerShell mechanisms you already know, including the loops and conditions covered 

in the last two chapters. 

Topics Covered:

•

C

  reating New Functions  

•

F irst Example: Shorthand Functions  

•

S

  econd Example: Combining Several Steps  

•

C

  omfortably Entering Functions of Several Lines  

•

R

  educing a Function to a Single Line  

•

U

  sing Text Editors  

•

U

  nderstanding NextFreeDrive  

•

P

  rocessing and Modifying Functions  

•

R

  emoving Functions  

•

P

  assing Arguments to Functions  

•

$

  args: Arbitrary Arguments  

•

U

  sing the Argument Parser of $args  

•

S

  etting Parameters  

•

A

  rguments Having Predefined Default Values  

•

U

  sing Strongly Typed Arguments  

•

O

  nly Numbers Allowed  

•

Dat

 

e Required  

•

" Switch" Parameter Is Like a Switch  

•

S

  pecifying Return Values of a Function  

•

O

  ne or More Return Values? 

•

T

  he Return Statement  

•

A

  ccessing Return Values  

•

E

  xcluding Output from the Function Result  

•

E

  xcluding Text Output from the Result  

•

U

  sing Debugging Reports  

•

S

  uppressing Error Messages  

•

In

  specting Available Functions  

•

T

  able 9.1: Predefined PowerShell functions  

•

P

  rompt: A Better Prompt  

•

O

  utputting Information Text at Any Location  

Table of Contents | About PowerShell Plus

243

Sponsors | Resources | © BBS Technologies

•

U

  sing the Windows Title Bar  

•

A

  dministrator Warning  

•

C

  lear-Host: Deleting the Screen Buffer  

•

P

  redefined Functions Once Again: A:, B:, C:  

•

F unctions, Filters and the Pipeline  

•

T

  he Slow Sequential Mode: $input  

•

F ilter: Rapid Streaming Mode  

•

De

  veloping Genuine Pipeline Functions  

•

S

  ummary  

Creating New Functions

Functions are self-defined new commands consisting of general PowerShell building blocks. They 

have in principle three tasks:

•

Shorthand: very simple shorthand for commands and immediately give the commands 

arguments to take along 

•

Combining: functions can make your work easier by combining several steps 

•

Encapsulating and extending: small but highly complex programs consisting of many 

hundreds of statements and providing entirely new functionalities 

The basic structure of a function is the same in all three instances: after the  Function statement follows the name of the function, and after that the PowerShell code in braces. Let's take a look at 

couple of examples:

First Example: Shorthand Functions

Perhaps you'd simply like to create comfortable shorthand for the customary console commands you 

already know. If PowerShell doesn't accept the "  Cd.."  entry because the mandatory blank character isn't interposed between command and argument, then create the appropriate shorthand function on 

the spot—and the problem will be solved right away:

 Function Cd.. { Cd .. }

Cd.. 

Whenever you enter the  Cd..  command afterwards, you won't get any error messages because 

PowerShell will invoke your function. 

When you find yourself still repeatedly entering the same lengthy commands, functions may be the 

remedy. For example, if you're frequently using ping.exe with certain parameters, like  ping.exe -w 

 100 -n 1 10.10.10.10, then this function will save you time:

 Function myPing {  ping.exe  -w 100  -n 1 10.10.10.10 }

myPing

 Pinging 10.10.10.10 with 32 bytes of data:

 Reply from 88.70.64.1: destination host unreachable. 

Table of Contents | About PowerShell Plus

244

Sponsors | Resources | © BBS Technologies

However, this function would be inflexible in practice; it would ping the same network address again and again. That's why most functions use arguments. Everything the caller specifies after the 

function name is in the  $args variable. Let's modify our  myPing function to ping any address. 

 Function myPing {  ping.exe  -w 100  -n 1  $args }

myPing  www.microsoft.com

 Pinging lb1.www.ms.akadns.net [207.46.193.254] with 32 bytes of data:

 Request timed out. 

 Ping statistics for 207.46.193.254:

     Packets: Sent = 1, Received = 0, Lost = 1 (100% Loss), 

As you see, you only need to type the function again in order to overwrite the old version. 

Second Example: Combining Several Steps

You might often need the nearest unallocated drive letter. The  NextFreeDrive function can locate it. 

But before you try out the function and think about how to make it work, you should first answer the 

question of how to enter such a lengthy function. 

 Function NextFreeDrive

{

For ( $x= 67;  $x  -le 90;  $x++)

{

 $driveletter  = [ char] $x  +  ":" 

 If ( ! ( Test-Path  $driveletter))

{

 $driveletter

 break

}

}

}

Comfortably Entering Functions of Several Lines

Typing short functions is no problem but when a function consists of more than one line, PowerShell 

immediately activates its multiline mode, alerting you by the prompt symbol ">>":

 Function NextFreeDrive

>> {

>>  For ( $x= 67;  $x  -le 90;  $x++)

(...)

Once the multiline mode is turned on, you have to type the entire function to the end. The prompt 

symbol ">>" will appear a last time, but when you press (Enter), the function will be operational. 

This kind of typing is not very user friendly, and when you make a typing mistake somewhere and 

forget a brace or quotation mark, you won't even be able to exit the multiline mode. Then it's time 

to cancel the multiline mode by hitting (Ctrl)+(C) and to begin all over again or to think about other 

options. 

Table of Contents | About PowerShell Plus

245

Sponsors | Resources | © BBS Technologies

Reducing a Function to a Single Line

You could enter the function in just a single line, but it's not necessarily wise because then the 

function will hardly be understandable. If you want to reduce functions to a single line, then add a 

semi-colon after every command:

 Function NextFreeDrive{For( $x= 67;  $x  -le 90;  $x++){ $driveletter=[ char] $x+":" ; If( ! ( Test-Path  $driveletter)){ $driveletter;  break}}}

Using Text Editors

Functions can be written more easily in text editors. Even the Notepad is adequate. Start the 

Notepad with the  Notepad command, type the function and when it's done, mark the entire text and 

copy it to the Clipboard. Afterwards, switch to the PowerShell console and right-click in it. If 

 QuickEdit mode is active (see Chapter 1), the function code will be immediately inserted; if not, select  Paste from the context menu. Special PowerShell editors like  PowerShellPlus by  Idera offer even more help. 

Understanding NextFreeDrive

 NextFreeDrive is an example of a function that doesn't require any arguments but supplies a return value:

NextFreeDrive

 D:

 $lw  = NextFreeDrive

 $lw

 D:

So, let's take a look at how  NextFreeDrive finds the next free drive letter and then reports back on it with a return value. The core of the function is a  For loop (see Chapter 8) that counts from  67 to  90: For ( $x= 67;  $x  -le 90;  $x++)

{  $x }

 67

 68

 69

 (...)

 89

 90

The function needs drive letters and it makes use of the fact that every letter is layered over ANSI 

code and the letters from "C" to "Z" have the ANSI codes from 67 to 90. To turn these numbers into letters, the function uses the type conversion we saw in Chapter 6 and converts the number into a character:

Table of Contents | About PowerShell Plus

246

Sponsors | Resources | © BBS Technologies



For ( $x= 67;  $x  -le 90;  $x++)

{ [ char] $x }

 C

 D

 E

 F

 (...)

 X

 Y

 Z

So, the loop returns letters, and the function in  $driveletter changes them to drive letters by 

appending a colon.  Test-Path cmdlet can verify whether this path already exists. If yes, the letter is already allocated. The function must return the first letter that is not allocated, so the result of that 

test has to be inverted by "!". 

So, if  Test-Path returns  False, the drive letter is still unallocated. By using "!",  If gets  True, the condition is met, and the code in the braces after  If is executed. It defines the return value of the function by outputting the contents of  $driveletter. Because the drive letter has been located, the For loop can now be interrupted by  break. 

Processing and Modifying Functions

If you'd like to make a change to an existing function, the usual advice is to just enter the function 

again. New version automatically overwrites old version. If you haven't stored the code of your 

function in an external editor, it's no fun to type it all over again, especially for really long functions. 

You can also convert functions into a script, an external file that has the ".psl" file extension. 

 # The next two commands both store the content of the tabexpansion function in a 

 file:

 $function:tabexpansion |  Out-File  myscript.ps1

 $function:tabexpansion >  myscript.ps1

 # Notepad opens the file:

notepad  $$

The last line used to open the file in the Notepad is a little unusual. You can specify the name of the 

file after  notepad, but  $$ is shorter and easier. This special variable always contains the last token of the last pipeline. In this case, the last token was the name of the file. 

Does it really matter whether you use  Out-File or the redirection character to write the code of the function to a file? If you have to take care of  encoding, use the  Out-File cmdlet. It allows you to use the  -encoding parameter to define encoding yourself. 

Do you still remember how you write-protected variables in Chapter 3 or 

declared them as constants? This always works for functions as you can 

create write-protected functions that can't be modified:

Table of Contents | About PowerShell Plus

247

Sponsors | Resources | © BBS Technologies

 Set-Item  function:test {

 "This function can neither be deleted nor modified." }  -option 

constant

test

Try to use  Del function:test to delete the function or  function test { "Hello" } to overwrite it—both will fail. The function will not be deleted until PowerShell exits. If 

you create the function right away when PowerShell starts as part of a self-starting 

profile script (see the next chapter), nobody will be able to make any more changes to the function. 

Removing Functions

Normally, you don't need to remove functions yourself. That's taken care of when you exit 

PowerShell. However, if you'd like to delete a function immediately, here is how you'd accomplish it:

 # Remove the function called "test":

Del  function:test

 # The "test" function is deleted and can no longer be found:

test

 The term "test" is not recognized as a cmdlet, function, operable 

 program, or script file. Verify the term and try again. 

 At line:1 char:4

 + test <<<< 

Passing Arguments to Functions

It's true that functions can work completely autonomously, executing exactly the same commands 

whenever they're called. But usually that doesn't make sense. It's more often the case that you want 

functions to process given data or to control them to a certain extent. You can accomplish that by 

using arguments, which is additional information that you pass when calling a function. How you 

pass these arguments to your function is a matter of personal preference:

•

Arbitrary arguments: the  $args variable contains all the arguments that are passed to a 

function. This is a good solution to implementing optional (voluntary) arguments. 

•

Named arguments: a function can also assign a fixed name to arguments, ensuring that 

these arguments are mandatory. In addition, users can use parameters to name named 

arguments so that they won't have to be specified in a set sequence. 

•

Predefined arguments: arguments may include default values. If the caller doesn't specify 

any of his own arguments to the function, the appropriate default value will be used. 

•

Typed arguments: arguments can be defined for particular data types to make sure that the 

arguments correspond to a certain data type. This works in principle exactly like the typed 

variables covered in Chapter 3.  

Table of Contents | About PowerShell Plus

248

Sponsors | Resources | © BBS Technologies

•

Special argument types: aside from conventional data types, arguments can also act like a 

switch: if a switch (i.e., the name of the argument) is specified, the argument has the  $true 

value. 

$args: Arbitrary Arguments

The simplest way to pass arguments to a function is to use the  $args variable. It contains the 

arguments specified when a function is called, and then it is entirely up to the function itself to 

decide what to do with the contents of  $args. 

Because a function has no mandatory requirement for arguments, none have to be given. 

Arguments are voluntary or optional. Moreover, because  $args can hold any number of arguments, a 

function isn't restricted to a limited number of arguments either. Here's a test function that will give 

you your first overview of how  $args works:

 function Howdy {

 If ( $args  -ne  $null) {

 "You specified: $args" 

 "Argument number: $($args.count)" 

 $args |  ForEach-Object {  $i++;  "$i. Argument: $_"  }

}  Else {

 "You haven't specified any arguments!" 

}

}

When you call this function without any arguments, it will detect that  $args is empty and will output the relevant text. Now, try how the function behaves with various arguments:

 # The function notices when you haven't specified any arguments:

Howdy

 You haven't specified any arguments! 

 # Arguments are specified directly after the function name:

Howdy Tobias

 You specified: Tobias

 Argument number: 1

 1. Argument: Tobias

 # Several arguments are separated by blank characters:

Howdy Tobias Weltner

 You specified: Tobias Weltner

 Argument number: 2

 1. Argument: Tobias

 2. Argument: Weltner

 # Text in quotation marks is evaluated as a single argument:

Howdy  "Tobias Weltner" 

Table of Contents | About PowerShell Plus

249

Sponsors | Resources | © BBS Technologies

 You specified: Tobias Weltner

 Argument number: 1

 1. Argument: Tobias Weltner

 # When used in PowerShell, the comma generally creates an array

Howdy Tobias, Weltner

 You specified: System.Object[]

 Argument number: 1

 1. Argument: Tobias Weltner

The most important insight is that arguments are separated by blank characters, and if there's any 

white space in a text, the text has to be placed within quotation marks. This isn't a new rule. It 

applies to everything in PowerShell, including to cmdlets and their parameters. You'll find individual 

arguments as elements in the  $args array. The first argument will be in  $args[0], the second in $args[1], and so on. 

In contrast, if you use commas to separate arguments, you'll be generating an array (see Chapter 

4). The entire array can be found as a single argument in  $args. Just take a look: function test {

 Foreach ( $element  in  $args) {

 $i++

 If ( $element  -is [ array]) {

 "$i. Argument is an array: $element" 

}  Else {

 "$i. Argument is not an array: $element" 

}

}

}

test Hello test

 1. Argument is not an array: Hello

 2. Argument is not an array: test

test Hello,test value1 value2

 1. Argument is an array: Hello test

 2. Argument is not an array: value1

 3. Argument is not an array: value2

It's important to realize that if you'd like to assign more than one value to an argument, then you 

should make a list of comma-separated values and pass an array to this argument. This works the 

same way for cmdlets and is a very important basic PowerShell principle. For example, the following 

line would list the directory contents of  C:\ and  C:\Users as well as all DLL files beginning with "p" in the Windows system directory:

Dir c:\, c:\users,  $env:windir\system32\p *.  dll

This is possible because  Dir in this case contains only one single argument of yours, but it is an array that includes three elements. If you wanted to enable your own functions to accept arrays as 

arguments as well, you could try this:

Table of Contents | About PowerShell Plus

250

Sponsors | Resources | © BBS Technologies

 function SaySomething {

 # No argument was given:

 If ( $args  -eq  $null)

{

 "No arguments" 

 # An array was specified as the first argument, 

 # so the function calls itself again

 # for every argument in the array:

}

 ElseIf ( $args[0]  -is [ array])

{

 Foreach ( $element  in  $args[0])

{

SaySomething  $element

}

 # The first argument is not an array; the actual task was not completed:

}

 Else

{

 "Howdy, $args" 

}

}

If you pass a comma-separated list to the function, it will recognize that the first argument 

( $args[0]) is an array. The function then picks out the array elements separately in a  Foreach loop and invokes itself again with each separate element. Now your function is just as flexible as most 

cmdlets and can process an individual argument as well as a comma-separated list:

SaySomething Tobias

 Howdy, Tobias

SaySomething Tobias, Martina, Cof

 Howdy, Tobias

 Howdy, Martina

 Howdy, Cof

If you'd like to refer to certain arguments, just remember again that  $args is an array. That means you can refer to each argument as you would with an array, by using an index, beginning at position 

0. So, you'll find the first argument in  $args[0]. Knowing this, you can make your own little function that adds two numbers together:

Add  function{  $args[0]  +  $args[1]}

Add 1 2

 3

Because  $args is an array and you can find out at any time which elements are in this array, you 

could reformulate the function so that it would add as many numbers  as you wish:

Add  function

Table of Contents | About PowerShell Plus

251

Sponsors | Resources | © BBS Technologies

{

 Foreach ( $number  in  $args)

{

 $result  +=  $number

}

 "Total: $result" 

}

Add 1 4 5 12 436

 Total: 458

Setting Parameters

While  $args contains all the arguments that you pass to a function, that really isn't so useful. 

Because  $args is an array, you're continually forced to access unreadable array elements. It would be easier if the passed arguments were available with their own names in separate variables. That is 

possible without too much effort by using a trick. In Chapter 3,  you learned that you can assign variables not only separate values but also fill several variables with different values in one fell 

swoop. 

The trick here is arrays. If you specify on the left side of an assignment operator a comma-

separated variable list, then the contents of an array on the right side will be assigned to it.  $args is an array, and that's why you could use this method of assigning to sub-divide the contents of  $args 

into separate variables that are easier to handle:

 function Add {

 $Value1,  $Value2  =  $args

$Value1  +  $Value2

}

Add 1 6

 7

You no longer need to access the elements in  $args within the function, but can use the named 

variables into which you sub-divided the contents of  $args. However, the arguments used in this 

approach are still always optional. You can also specify fewer or more than two arguments, which 

becomes a problem as soon as you specify more than two arguments:

Add 1 2 3

 "System.Object[]" cannot be converted to "System.Int32". 

 At line:3 char:9

 + $value1 +  <<<< $value2

To understand why, take a look at the following example. The user had specified three arguments as 

 $args contained three elements. The function distributed these three elements between two 

variables. The first variable got the first element and the second variable got  all the others:

 $value1,  $value2  = 1,2,3

 $value1

Table of Contents | About PowerShell Plus

252

Sponsors | Resources | © BBS Technologies



 1

 $value2

 2

 3

Despite all of PowerShell's capabilities, it cannot add a number with an array so you get an error. 

The reason is that the function accepts any number of arguments. If you want to specify a fixed 

number of arguments instead of any number of arguments, then lock in the expected arguments in 

the function description by defining the parameters:

 Function subtract( $Value1,  $Value2) {

 $value1  -  $value2

}

Subtract 5 2

 3

Subtract 5

 5

By the way, arguments and parameters, while not the same, at 

least have a friendly relationship. What the user passes to a 

function in the way of additional information are arguments. They 

originate from whatever invokes the function. The function itself 

can define parameters. The user's arguments are then assigned to 

the parameters. 

However, both parameters are not really mandatory. They only make sure that the user's arguments 

won't end up any more in the  $args general container, but are clearly assigned to particular 

parameters: parameter binding. If the user doesn't specify an argument that you required, the 

parameter will automatically be assigned an empty value ( $null) instead of generating an error. 

You'll read a little later about how you can ensure that the arguments you require really do get 

specified. 

A great advantage of parameters is that arguments no longer need to be given in a fixed order. If 

you want to specify the argument for the  Value2 parameter first and only afterwards the argument 

for the  Value1 parameter, then type the parameter name before every argument for which it is 

meant. Writing it this way is nothing new: all cmdlets also work according to this principle:

 # Named arguments can be assigned using parameters; 

 # a fixed sequence isn't necessary:

Subtract  -Value1 12 2

 10

Table of Contents | About PowerShell Plus

253

Sponsors | Resources | © BBS Technologies

Subtract  -Value2 12 2

 -10

At first, PowerShell "binds" the arguments that you have locked in to a parameter in the above way. 

Subsequently, all the other arguments not yet assigned to a parameter will be bound in the specified 

order to the parameters yet to be taken care of. So, if you bind the first argument to the  Value2 

parameter, the second argument, the number 2, remains. It can now be assigned to the first 

parameter that hasn't been looked after yet,  Value1. 

A second advantage is that your function will now be immune to additionally specified arguments. If 

the user gives more arguments than you asked for, nothing bad will happen. His additional 

statement will simply be ignored. 

 # Unnecessary arguments will be ignored:

Subtract 5 2 3

 3

However, they won't really be ignored. All the arguments that you didn't assign to unnamed 

arguments will end up in  $args again. As a result, you can check or query any number of additional voluntary statements to see whether additional arguments have been specified, and then use  Throw 

to generate an appropriate error message:

 # This function won't accept any optional arguments:

Subtract  function( $Value1,  $Value2)

{

 # Verify whether there are additional inputs; 

 # if yes, generate an error message:

 If ( $args.  Count  -ne 0) { 

Throw  "I don't need any more than just two arguments."  }

 $value1  -  $value2

}

Subtract 1 2

 -1

 # If there are more than the two required arguments, 

 # the function will generate an error message:

Subtract 1 2 3

 I don't need any more than just two arguments. 

 At line:2 char:31

 + If ($args.Count -ne 0) { Throw  <<<< 

 "I don't need any more than just two arguments."}

Table of Contents | About PowerShell Plus

254

Sponsors | Resources | © BBS Technologies

Arguments Having Predefined Default Values

You have just seen that functions with fixed parameters will not output errors if  fewer arguments are given than what are asked for. Instead, parameters that haven't been taken care of yet will just 

simply be left empty. However, they don't have to remain empty, because by using default values 

you can determine which value a parameter is supposed to have if a user omits the argument. 

 # This function uses fixed default values for its parameters:

 function subtract( $Value1= 10,  $Value2= 20)

{

 $value1  -  $value2

}

 # If no argument is given, the function 

 # will use the supplied default value:

Subtract

 -10

 # If arguments are incomplete, the function will use the 

 # following defaults for the missing arguments:

Subtract  -Value1 30

 10

Subtract  -Value2 100

 -90

Can you require that the user  must give the requested arguments? That will also work because fixed values are not only allowed as default values: sub-expressions are, too. Do you remember? Subexpressions are always enclosed in parentheses and evaluated separately. The result of the sub-

expression will be reported subsequently if you put a "$" before it. Take advantage of that if you want to make it mandatory for an argument to be specified for a parameter: as default value, assign 

to the parameter for which you make an argument obligatory a sub-expression that output an error 

message. 

If the function is invoked without the mandatory argument, the function will try to use the default 

value and evaluate the sub-expression. The error message it contains will be output. This sounds 

much more complicated than it really is, as the next example shows:

 # This function will report an error if the 

 # argument for "Value1" is not specified:

Subtract  function( $Value1=$(Throw  "Value1 wasn't specified!" ),  $Value2= 20)

{

 $value1  -  $value2

}

 # The second argument may be omitted; the default value will be used:

Subtract 10

 -10

Table of Contents | About PowerShell Plus

255

Sponsors | Resources | © BBS Technologies

 # The first argument may not be omitted because 

 # the default value is an error message:

Subtract

 Value1 wasn't specified! 

 At line:1 char:36

 + Subtract function($Value1=$(Throw  <<<< "Value1 

   wasn't specified!"), $Value2=20) {

The fact that you may use complete sub-expressions as default values for parameters is useful in 

other situations as well. You can adjust parameters to current daily requirements, such as date, 

logon names, or any other information that has default value at the moment in which the function is 

invoked:

 function Weekday ( $date=$( Get-Date))

{

 $date.  DayOfWeek

}

If you invoke your  Weekday function without an argument, it will output the current day of the 

week. The standard value of the  $date parameter is reset by the sub-expression, with the help of 

 Get-Date,  every time the function is invoked. If you specify another date after your function, you will, theoretically, find out on what day of the week the date falls. In practice, nothing at all 

happens. To find out why the function (still) doesn't work using its own arguments, read the next 

section. 

Using Strongly Typed Arguments

You've just seen that things can get really muddled when the user's arguments are assigned to 

function parameters. The culprit is the argument parser, which takes the user's unprocessed 

arguments and distributes them among the function parameters. 

The argument parser of functions is usually an arrogant guy who is completely indifferent to what 

information you give as argument. The argument parser is only interested in neatly splitting the raw 

data specified after the function into separate arguments and then passing these to the function 

parameters. 

Of course, the function "sees" that quite differently because it must solve a very specific problem with the passed arguments and it doesn't care at all about what sort of arguments they are. That 

leads to trouble when the function expects arguments of a particular data type. This problem was 

already evident in the preceding examples, and you'll learn how to solve it in this section. 

Only Numbers Allowed

 Subtract function instantly throws an error if you pass string to it instead of numbers because it's impossible to "count" string:

Subtract Hello world

Table of Contents | About PowerShell Plus

256

Sponsors | Resources | © BBS Technologies

 Method invocation failed because [System.String] 

 doesn't contain a method named "op_Subtraction". 

 At line:3 char:9

 + $value1 -  <<<< $value2

Errors caused by mismatching data types are difficult to locate and remove because the resulting 

error message sounds confusing and the error is reported in a completely wrong location where the 

process is trying to get something done with an inappropriate data type. 

It would make much more sense if the argument parser of the function hadn't accepted the 

mismatching arguments in the first place, which brings us to the solution: you can tell the argument 

parser which data types the parameters of your function can use. If the user specifies the wrong 

data types as an argument anyway, the argument parser will refuse to accept it and report the 

mistake with a much more explicit error message:

 # This function accepts nothing but numbers as an argument:

 function Subtract([ int] $Value1, [ int] $Value2)

{  $value1  -  $value2 }

Subtract 5 2

 3

 # As long as the argument can be converted 

 # to a number, the function is satisfied:

Subtract  "5"  2

 3

 # The function will accept no inputs that cannot 

 # be converted to numbers

Subtract Hello world

 subtract : cannot convert value "Hello" to type "System.Int32". 

 Error: "input string was not in a correct format." 

 At line:1 char:12

 + Subtract  <<<< Hello world

To get the argument parser to accept nothing but very specific data types, you should use the strong 

type specification that you learned about in Chapter 3.  For that purpose, jot down the desired data type in brackets in front of the parameter. Effective immediately, the parameter will accept only 

numbers or information that can be changed to numbers. If the user specifies the wrong data type, 

an error will be generated that will now describe the cause with much greater clarity. 

But watch out when you choose the data type for your arguments. Do you have any idea why your 

function returns the following results? 

Subtract 8.2 0.2

 8

Subtract 8.2 1.4

Table of Contents | About PowerShell Plus

257

Sponsors | Resources | © BBS Technologies

 7

Subtract 8.2 1.9

 6

Because your function expects the  Integer data type for arguments, the specified floating point 

numbers are changed automatically to whole numbers and rounded off. To a certain extent, the 

same thing happens here:

[ int]1.4

 1

[ int]1.9

 2

So, if you'd like your function to handle floating point numbers properly, then you may not set the 

data type of the argument to  Integer( [int]). Instead, use the  ([double]) floating point data type and the computational results will be correct:

 function Subtract ([ double] $Value1, [ double] $Value2)

{

 $value1  -  $value2

}

Subtract 8.2 0.2

 8

Subtract 8.2 1.4

 6.8

Subtract 8.2 1.9

 6.3

You can find an overview of the most used data types in Chapter 3. 

Date Required

However, strong type specification is not only useful for rejecting mismatching data types. It can 

also be put to work to convert data types into a better format. You must surely remember the 

mysterious  Weekday function, which would output the day of the week for the current date but not 

for the date that you specified. Without strong type specification, PowerShell automatically 

transformed your argument into the presumably matching data type, namely a string. 

Table of Contents | About PowerShell Plus

258

Sponsors | Resources | © BBS Technologies

The function uses the  DayOfWeek method to determine the weekday and because the  String data type doesn't contain this method, the function consequently didn't return a result. You should know 

the solution by now: require the argument to be of the  DateTime type. Then, the argument parser 

will, if possible, convert the input automatically into this type. If it isn't possible for it to convert the argument, an error will be generated:

 function Weekday([ datetime] $date=$( Get-Date))

{  $date.  DayOfWeek }

Weekday 1.1.1980

 Tuesday

Weekday 1.2.1980

 Friday

Weekday sometime

 Weekday : Cannot convert value "sometime" to type 

 "System.DateTime". Error: "The string was not 

 recognized as a valid DateTime. There is an unknown 

 word starting at index 0." 

 At line:1 char:10

 + Weekday  <<<< sometime

"Switch" Parameter Is Like a Switch

The simplest conceivable parameter of a function contains just a binary yes/no value. This simple 

feature can (as an exception) even be represented entirely without an argument: if the parameter 

exists, then it will contain  $true(for "yes"), otherwise  $false(for "no"). If your function can utilize such yes/no decisions, then it can employ the simplified "switch" parameters, which are used most frequently to select special options. The following function,  WriteText, writes text in the console. If you specify the  -inverse switch, then the text will be output inversely:

 Function WriteText([ Switch] $inverse,  $text)

{

 If ( $inverse) {

 Write-Host  -ForegroundColor  "Black"  `

 -BackgroundColor  "White"   $text

}  Else {

 $text

}

}

If  -inverse is specified as an argument, nothing new will happen: the argument parser will recognize that it is a parameter name. Normally, the parser would now assign the argument after  -inverse to 

the parameter  $inverse. However, because this parameter is of the  [Switch] type, the argument parser "knows" that it is a simple parameter that can contain only  $true or  $false, and assigns it the $true value. On the other hand, if you don't specify  -inverse, then the automatic default value of the parameter is  $false. 

Table of Contents | About PowerShell Plus

259

Sponsors | Resources | © BBS Technologies

Specifying Return Values of a Function

A function should ultimately return a result to whatever invoked the function. The examples of 

functions in this chapter have done their best to show that already. But exactly how functions return 

results is a highly interesting matter because functions work completely differently in PowerShell 

than in all other programming languages. That's reason enough to take a closer look at this aspect 

of functions. 

One or More Return Values? 

In fact, PowerShell functions don't return a single particular value. They simply return everything 

that they output at one juncture or another, while a function does its work. In the simplest case, 

that's just a single value, like the one in the following example. If you invoke the function 

interactively, the result will be output in the console. But you could just as well store the result of 

the function in a variable and process it further:

 Function VAT([ double] $amount= 0)

{

 $amount  * 0.19

}

 # An interactively invoked function 

 # output results in the console:

VAT 130.67

 24.8273

 # But the result of the function can 

 # also be assign to a variable:

 $result  = VAT 130.67

 $result

 24.8273

 # The result is a single number value 

 # of the "double" type:

 $result.  GetType().  Name

 Double

In this example, the function returned a single number value. But what would happen if the function 

returned more than one result? To test that, we only need a function that output more than one 

result:

 Function VAT([ double] $amount= 0)

{

 $factor  = 0.19

 $total  =  $amount  *  $factor

 "Value added tax {0:C}"   -f  $total

 "Value added tax rate: {0:P}"   -f  $factor

}

Table of Contents | About PowerShell Plus

260

Sponsors | Resources | © BBS Technologies

 # The function returns two results:

VAT 130.67

 Value added tax $24.83

 Value added tax rate: 19.00%

 # All results are stored in a single variable:

 $result  = VAT 130.67

 $result

 Value added tax $24.83

 Value added tax rate: 19.00%

 # Several results are automatically stored in an array:

 $result.  GetType().  Name

 Object[]

 # You can get each separate result of the 

 # function by using the index number:

 $result[0]

 Value added tax $24.83

 # The data type of the respective array element 

 # corresponds to the included data:

 $result[0].  GetType().  Name

 String

To summarize, if a function outputs only one value, then this value will be returned immediately. In 

this respect, functions behave very much like functions in other programming languages. On the 

other hand, if a function returns more than one value, then all the values will be wrapped in an 

array. However, often you won't even notice because PowerShell cleverly converted each of the 

elements in the array into string and output them one below the other when you output the array. 

As a result, at first sight it looks like all the output of the function had merged together to form a 

joint text. 

That's not the case, as shown by the preceding example. Each result of the function is neatly 

segregated as a separate result so that you could pick a specific result out of the array and output it. 

The Return Statement

You now know that functions basically return as a result everything that you output somewhere in 

the function. How to understand the special  return statement that you see in the next example? 

Might it influence what a function returns as a result or does it even determine the result? 

 Function Add([ double] $Value1, [ double] $Value2)

{

 return  $Value1  +  $Value2

Table of Contents | About PowerShell Plus

261

Sponsors | Resources | © BBS Technologies

}

 # The function returns the value that comes after "return":

Add 1 6

 7

It seems so—at least at first. In fact,  return works quite differently. The function still returns as a result everything that is output in the function. But in addition (and not instead of this), a result is 

returned of what follows  return. So, you could just as well have omitted  return. That raises the question of why  return was even invented. 

•

First,  return exists for stylistic reasons because in many other programming languages it is 

customary to expressly specify values a function returns by using a statement like  return. 

Unfortunately,  return causes more confusion than it helps since it conceals the fact that all 

the other output of the function was returned, as well and not just what follows  return. 

•

Second, to some extent  return also acts like a break statement. All further statements after 

 return are ignored. Therefore, you could immediately leave the function in a loop or a 

condition, provided that some particular interrupt criterion is met. 

 Function Add([ double] $value1, [ double] $value2)

{

 # This time the function returns a whole 

 # series of oddly assorted results:

 "Here the result follows:" 

1

2

3

 # Return also returns a further result:

 return  $value1  +  $value2

 # This statement will no longer be executed 

 # because the function will exit when return is used:

 "Another text" 

}

Add 1 6

 Here the result follows:

 1

 2

 3

 7

 $result  = Add 1 6

 $result

 Here the result follows:

 1

 2

 3

 7

Table of Contents | About PowerShell Plus

262

Sponsors | Resources | © BBS Technologies

Accessing Return Values

Whether a function returns one or several results is something you can verify with the returned data 

type. If it is an array, then several results were returned, otherwise only one. To examine this more 

closely, we will need a function that returns, depending on the situation, either one or several 

results. We could use the lottery number generator in the following example, which outputs random 

lottery numbers from 1 to 49. You can use the  $number parameter to determine how many lottery 

numbers are returned. If you don't specify anything, exactly one lottery number will be generated. 

Your task now is to find out whether a function will retrieve exactly one or several results. 

 Function lottery([ int] $number= 1)

{

 $rand  =  New-Object  system.random

For ( $i= 1;  $i  -le  $number;  $i++) {

 $rand.  next(1,50)

}

}

 # If a lottery number is queried, the result is not an array:

 $result  = lottery

 $result  -is [ array]

 False

 # If there are several lottery numbers, the result is an array:

 $result  = lottery 10

 $result  -is [ array]

 True

Why should you be interested in whether the outcome of a function is one or several results? Among 

other things, you would like to find out exactly how many elements a result returns. In the case of 

our lottery number generator, of course, it makes less sense, because you can specify how many 

numbers it's supposed to generate. However, for other functions and cmdlets, the question can be 

decisive. Take the example of the  Dir command, which lists the contents of a directory. If you want to know how many files are actually in a directory, then it's inevitable that you concern yourself with 

the question of whether  Dir found none, exactly one, or many files. 

If the directory holds more than one file,  Dir will return an array, and you can ascertain the number of the elements (files) in the array by using  Count:

(Dir c:\).  Count

 25

Here, in the parentheses again is a sub-expression which must be evaluated first. You could just as 

well have written:

 $list  = Dir c:\

 $list.  count

 25

Table of Contents | About PowerShell Plus

263

Sponsors | Resources | © BBS Technologies

Things get thorny when  Dir finds only one or no file at all, because then it doesn't return anymore arrays, and you can't use  Count. An error will not be reported, just nothing at all:

(Dir  *.  MacGuffin).  Count

You could now, as shown above, verify whether  Dir returns an array or not, and if what it returns is not an array, see whether one file or none at all was found. There's a far more elegant method for 

doing this, though. The result of a function (or of a cmdlet) can always be wrapped in an array, even 

if there is only one result or none. Use the  @(...) construction that you already know from Chapter 

4.  You can usually use this construction to create new array. The result is wrapped in an array. If the result is an array anyway, naturally it will remain an array, but if the result is not an array, after this it will be one. 

@(Dir c:\).  count

 25

@(Dir  *.  MacGuffin).  count

 0

Excluding Output from the Function Result

Now the result that the function is supposed to return just needs to be output somewhere in the 

function, which is convenient. But you'll still have to watch out that you don't mistakenly output 

anything that isn't part of the function result. 

Excluding Text Output from the Result

During development, many script authors insert a little text output in the code so that they have a 

better grasp of whether a function is really doing what it should be doing. But you know now that 

this text output also ends up in the function result, causing considerable confusion. Take a look:

 Function Test

{

 "Calculation will be performed" 

 $a  = 12  * 10

 "Result will be emitted" 

 "Result is: $a" 

 "Done" 

}

Test

 Calculation will be performed

 Result will be emitted

 Result is: 120

 Done

Table of Contents | About PowerShell Plus

264

Sponsors | Resources | © BBS Technologies

At first everything looks absolutely impeccable: the function documents its internal sequence of operations by additional text output. But as soon as you fail to use the function interactively, storing 

the result in a variable instead, things change quite suddenly because your text comments will now 

no longer be output when the function runs but end up in the result:

 # Your debugging report will not be emitted:

 $result  = Test

 # In fact some debugging reports as well as all other output are in the result:

 $result

 Calculation will be performed

 Result will be emitted

 Result is: 120

 Done

So, if you want to output text that is supposed to appear immediately and not flow into the function 

result, then this output must be sent directly to the console, which can be accomplished by using the 

 Write-Host cmdlet:

 Function Test

{

 Write-Host  "Calculation will be performed" 

 $a  = 12  * 10

 Write-Host  "Result will be emitted" 

 "Result is: $a" 

 Write-Host  "Done" 

}

 # This time your debugging reports will already 

 # be output when the function is executed:

 $result  = test

 Calculation will be performed

 Result will be emitted

 Done

 # The result will no long include your debugging reports:

 $result

 Result is: 120

Using Debugging Reports

You would have to go to some trouble to remove these temporary messages when the function is 

ready and can be used in a production environment. You can save yourself the trouble by using the 

 Write-Debug cmdlet for temporary text output. 

 Function Test

{

 Write-Debug  "Calculation will be performed" 

 $a  = 12  * 10

 Write-Debug  "Result will be emitted" 

Table of Contents | About PowerShell Plus

265

Sponsors | Resources | © BBS Technologies

   "Result is: $a" 

 Write-Debug  "Done" 

}

 # Debugging reports will remain completely 

 # invisible in the production environment:

 $result  = Test

 # If you would like to debug your function, 

 # turn on reporting:

 $DebugPreference  =  "Continue" 

 # Your debugging reports will now be output 

 # with the "DEBUG:" prefix and output in yellow:

 $result  = Test

 DEBUG: Calculation will be performed

 DEBUG: Result will be emitted

 DEBUG: Done

 # They are not contained in the result:

 $result

 Result is: 120

 # Everything is running the way you wish; 

 # turn off debugging:

 $DebugPreference  =  "SilentlyContinue" 

 $result  = Test

 Write-Debug has a number of advantages. First, your debugging reports will be clearly marked and 

output in another color. Second, these reports will appear only if you expressly turn on the 

debugging mode. If your function is being used in a normal production environment, PowerShell will 

simply ignore the  Write-Debug instruction. As a result, you won't have to take the trouble to remove your debugging output when the script is done. 

Suppressing Error Messages

Errors cropping up inside your function normally cause error messages, and these error message will 

always be output immediately. So unlike normal output, error messages will not become part of the 

result of your function. 

 Function Test

{

 Stop-Process  -name  "Unavailableprocess" 

}

 # Normally error messages are always output immediately:

 $result  = Test

 Stop-Process : Cannot find a process with the name 

 "Unavailableprocess". Verify the process name and call 

 the cmdlet again. 

 At line:2 char:13

 + Stop-Process  <<<< -name "Unavailableprocess" 

Table of Contents | About PowerShell Plus

266

Sponsors | Resources | © BBS Technologies

Obviously, this is very sensible because errors are not supposed to crop up, and if they do nevertheless, you should be alerted to their presence immediately. However, if you want to 

expressly make the error message "vanish" because you find it unimportant, turn off the error 

message output inside your function. But remember that from then on all error messages inside the 

function will no longer be generated:

 Function Test

{

 # Suppress all error messages from now on:

 $ErrorActionPreference  =  "SilentlyContinue" 

 Stop-Process  -name  "Unavailableprocess" 

}

 # All error messages inside the function are suppressed:

 $result  = Test

Of course, this is only wise if you're absolutely sure that you can afford to ignore the error. Even 

then, you shouldn't in general suppress errors inside your function, but only where it is really 

necessary so that you won't overlook other (and perhaps completely unexpected) errors:

 Function Test

{

 # Suppress all error messages from now on:

 $ErrorActionPreference  =  "SilentlyContinue" 

 Stop-Process  -name  "Unavailableprocess" 

 # Immediately begin outputting all error messages again:

 $ErrorActionPreference  =  "Continue" 

1 /$null

}

 # Error messages will be suppressed in certain 

 # areas but not in others:

 $result  = Test

 Attempted to divide by zero. 

 At line:5 char:3

 + 1/$ <<<< zero

It would be far better for you not to ignore errors in general. Instead, you should take note and 

respond to them. You'll learn more about this in Chapter 11. 

Inspecting Available Functions

PowerShell already contains some predefined functions that you can access through  function: 

PSDrive. If you would like to see all available functions use  Dir:

Dir  function:

 CommandType   Name          Definition

 -----------   ----          ----------

 Function      prompt        'PS ' + $(Get-Location) + $(If ($nested... 

 Function      TabExpansion  param($line, $lastWord) &amp;{... 

Table of Contents | About PowerShell Plus

267

Sponsors | Resources | © BBS Technologies

 Function      Clear-Host    $spaceType = [System.Management.Automat... 

 Function      more          param([string[]]$paths);  If(($paths -n... 

 Function      help          param([string]$Name,[string[]]$Category... 

 Function      man           param([string]$Name,[string[]]$Category... 

 Function      mkdir         param([string[]]$paths); New-Item -type... 

 Function      md            param([string[]]$paths); New-Item -type... 

 Function      A:            Set-Location A:

 Function      B:            Set-Location B:

 (...)

The result will tell you not only the names of functions but also their contents, which will be in the 

Definition column. If you would like to examine the definition of a particular function more closely, 

then directly access the function:

 $function:prompt

 'PS ' + $(Get-Location) + $(If ($nestedpromptlevel -ge 1) { '>>' }) + '> ' 

Many of the predefined functions already perform important tasks in PowerShell. Let's now look a 

little more closely at a few examples:

Function

Description

 Clear-Host

Deletes the screen buffer

 help, man

Retrieves  get-help internally and outputs help text one page at 

a time if you use the  -detailed or  -full switches

 mkdir, md

Creates a new subdirectory using  New-Item

Outputs either pipeline contents one page at a time or—if you 

 more

specify one or more path names after  more—the contents of 

specified files one page at a time

 prompt

Returns prompt text

This function is called when you press (Tab) so that 

AutoComplete is activated. This tab completion mechanism uses 

the two variables  $line and  $lastword, in which you can find the 

 TabExpansio

line and the word requested for AutoComplete. Apart from the 

 n

original Microsoft function  TabExpansion supplied along with 

PowerShell, dedicated PowerShell users have developed 

numerous improved alternatives to enhance AutoComplete with 

many new options and functions. 

X:

Invokes  Set-Location for the specified drive letter. A pure alias 

Table of Contents | About PowerShell Plus

268

Sponsors | Resources | © BBS Technologies





could not accomplish this; functions can invoke cmdlets 

combined with arguments, while alias names cannot. 

Table 9.1: Predefined PowerShell functions

If you'd like to know how many functions are currently defined in 

your PowerShell environment, type:

(Dir  Function:).  Count

Prompt: A Better Prompt

Every time a command is successfully executed and the blinking cursor reappears, PowerShell 

invokes the  Prompt function to receive new commands. In default setting, the prompt displays "PS", the path name of the current directory (retrieved by get-location), and after that one ">" or " >>" 

signs depending on whether the console is in normal mode or in a nested prompt. Because a publicly 

accessible function retrieves the prompt, you can make any changes you wish to the prompt. All you 

have to do is to reset the  Prompt function. The relevant changes to the prompt will be made 

immediately:

 Function Prompt {  "Type something. >"  }

 Type something. > 

How do you get the old prompt back? When you change a function, 

the old function will be overwritten. You can't just get the old 

function back. However, all functions will be deleted the moment 

you end PowerShell. So, when you end and restart PowerShell, 

you'll get back your familiar prompt. 

Of course, that raises the question of how you can permanently modify the 

prompt, as well as from where PowerShell actually got the original  Prompt 

function. You can specify permanent changes to the functions in one of your 

PowerShell profiles, which contain scripts that are automatically executed 

after PowerShell starts. PowerShell also defines its own functions in profiles 

so that's where you can change them permanently. You'll find out more about 

profiles in Chapter 10. 

Table of Contents | About PowerShell Plus

269

Sponsors | Resources | © BBS Technologies

Outputting Information Text at Any Location

Because the console contents are actually in the screen buffer, which you can access one line or 

character at a time, you also have the option of displaying additional information at any position in 

the screen buffer. The next function shows you how to do that. Access the screen buffer by using 

 $host.ui.rawui. The  CursorPosition function will furnish the current position of the blinking cursor as X (column) and Y (line). The function will note the current position in  $curPos and specify the new position as an additional 60 characters to the right. Then it relocates the cursor at the new position 

and outputs the time and date. Finally, the old cursor position is restored so that the prompt 

reappears at its usual location:

 function prompt

{

 $curPos  =  $host.  ui.rawui.CursorPosition

 $newPos  =  $curPos

 $newPos.  X+= 60

 $host.  ui.rawui.CursorPosition  =  $newPos

 Write-Host ( "{0:D} {0:T}"   -f ( Get-Date)) `

 -foregroundcolor Yellow

 $host.  ui.rawui.CursorPosition  =  $curPos

 Write-Host ( "PS "   +  $( get-location)  +">" ) `

 -nonewline  -foregroundcolor Green

 " " 

}

Using the Windows Title Bar

There is also room for information in the Windows console title bar where your prompt function could 

put useful information, such as the name of the user who is currently logged on or the current line. 

Use  $host.ui.rawui.WindowTitle to set the text of the Windows title bar. 

The next example specifies the name of the user who is currently logged on. We'll use the 

 GetCurrent .NET static method to get the name from the  WindowsIdentity object. Because invoking this function can consume several seconds of computing time and should not be executed again 

every time a new prompt is displayed, the user name is specified outside the function as a global 

variable:

 $global:CurrentUser  = `

[ System.Security.Principal.WindowsIdentity]:: GetCurrent()

 function prompt

{

 $host.  ui.rawui.WindowTitle  =  "Line: "  `

 +  $host.  UI.RawUI.CursorPosition.Y  +  " "  `

 +  $CurrentUser.  Name  +  " "   +  $Host.  Name `

 +  " "   +  $Host.  Version

 Write-Host ( "PS "   +  $( get-location)  +">" ) `

 -nonewline  -foregroundcolor Green

 return  " " 

}

Table of Contents | About PowerShell Plus

270

Sponsors | Resources | © BBS Technologies



The example incidentally shows how long lines in particular can be 

split up into several shorter lines. If you type a backtick character 

("`") at the end of a line, the line will be continued in the next line. 

Administrator Warning

The  Prompt function can also warn you if you're using PowerShell with elevated privileges. Use 

 WindowsPrincipal to find out your current user identity to determine whether or not you currently 

have administrator privileges. You don't need to understand the .NET code. It will return a global 

variable in  $Admin to you that contains  $true if you have administrator rights. 

This variable evaluates the  Prompt function. If you're working with elevated privileges, the word 

"Administrator:" will appear in the Windows title bar and the ">" sign of the prompt will be displayed in red:

 $CurrentUser  = `

[ System.Security.Principal.WindowsIdentity]:: GetCurrent()

 $principal  =  new-object `

 System.Security.principal.windowsprincipal( $CurrentUser)

 $global:Admin  = `

 $principal.  IsInRole( `

[ System.Security.Principal.WindowsBuiltInRole]:: Administrator)

 Function prompt

{

 # Output standard prompt:

 Write-Host ( "PS "   +  $( get-location))  -nonewline

 # The rest depends on whether you have admin rights or not:

 If ( $admin) {

 $oldtitle  =  $host.  ui.rawui.WindowTitle

 # "Administrator: " displayed in title bar 

 # if its not already included:

 If ( !$oldtitle.  StartsWith( "Administrator: " )) {

 $host.  ui.rawui.WindowTitle  = 

 "Administrator: "   +  $oldtitle

}

 # End prompt in red:

 Write-Host  ">"   -nonewline  -foregroundcolor Red

}  Else {

 Write-Host  ">"   -nonewline

}

 return  " " 

}

Table of Contents | About PowerShell Plus

271

Sponsors | Resources | © BBS Technologies

Clear-Host: Deleting the Screen Buffer

No doubt, you've already noticed that the  cls command deletes the screen buffer. In fact,  cls is actually only an alias for the  Clear-Host function. At first, though, you can't see the contents of this function:

 $function:Clear-Host

 You must provide a value expression on 

 the right-hand side of the "-" operator. 

 At line:1 char:17

 + $function:clear-h <<<< ost

The "-" sign is a special character for PowerShell and, as always, if names contain special characters, put the entire expression in braces (remove line breaks to collapse to one line):

 ${ function: Clear-Host}

 $spaceType  = [ System.Management.Automation.Host.BufferCell]; 

 $space  = [ System.Activator]:: CreateInstance( $spaceType); 

 $space.  Character  =  ' ' ; 

 $space.  ForegroundColor  =  $host.  ui.rawui.ForegroundColor; 

 $space.  BackgroundColor  =  $host.  ui.rawui.BackgroundColor; 

 $rectType  = [ System.Management.Automation.Host.Rectangle]; 

 $rect  = [ System.Activator]:: CreateInstance( $rectType); 

 $rect.  Top  =  $rect.  Bottom  =  $rect.  Right  =  $rect.  Left  =  - 1; $Host.  UI.RawUI.SetBufferContents( $rect,  $space); 

 $coordType  = [ System.Management.Automation.Host.Coordinates]; 

 $origin  = [ System.Activator]:: CreateInstance( $coordType); 

 $Host.  UI.RawUI.CursorPosition  =  $origin; 

This function is very hard to read because it has been written as one long one-liner. The function 

could be read better in this way:

 $spaceType  = [ System.Management.Automation.Host.BufferCell]

 $space  = [ System.Activator]:: CreateInstance( $spaceType)

 $space.  Character  =  ' ' 

 $space.  ForegroundColor  =  $host.  ui.rawui.ForegroundColor

 $space.  BackgroundColor  =  $host.  ui.rawui.BackgroundColor

 $rectType  = [ System.Management.Automation.Host.Rectangle]

 $rect  = [ System.Activator]:: CreateInstance( $rectType)

 $rect.  Top  =  $rect.  Bottom  =  $rect.  Right  =  $rect.  Left  =  - 1

 $Host.  UI.RawUI.SetBufferContents( $rect,  $space)

 $coordType  = [ System.Management.Automation.Host.Coordinates]

 $origin  = [ System.Activator]:: CreateInstance( $coordType)

 $Host.  UI.RawUI.CursorPosition  =  $origin

It doesn't make much sense to customize the  Clear-Host function because what it is supposed to do

—clearing the console contents—it does well. Nevertheless, you could easily override the function:

 function  Clear-Host { }

cls

Table of Contents | About PowerShell Plus

272

Sponsors | Resources | © BBS Technologies

Because  Clear-Host is now "empty" and isn't doing anything, you won't be able to delete the screen contents any more—not even by using  cls, because this alias will internally invoke the same 

function. To get back  Clear-Host, restart PowerShell. 

Predefined Functions Once Again: A:, B:, C:

The list of functions shows that even drive letters are independent functions. How could that be? 

And, above all:  when can that be? Let's first look at what the function D: is actually doing:

 ${ function:D:}

 Set-Location D:

The function does nothing other than switch over to the "  D:" drive, much like  Cd d:. But now the question arises: just when is that doing? Or, in other words: when does PowerShell actually invoke 

the  D: function? If you type "  D:", for example, after a statement, this entry will be interpreted as normal text. That means the built-in  D: function will not be invoked:

 Write-Host D:

D:

Dir D:

Only when "  D:" itself becomes a statement, for example, because the term is the first in a line, or because the term is a sub-expression in parentheses, the  D: function will be executed:

PS C:\> Dir (D:)



 Directory: Microsoft.PowerShell.Core\FileSystem::D:\

 Mode        LastWriteTime   Length Name

 ----        -------------   ------ ----

 d----   08.03.2007  16:17             M

 d----   07.26.2007  10:29            n1

 d----   07.26.2007  09:16           nst

PS D:\> 

The astonishing result: the  D: function is invoked and switches over first to the  D: drive.  Dir then lists the current drive, that is,  D:. In conclusion,  D: remains the current drive. That means that within a line you have not only changed the current drive, but also then listed this drive. But that's 

not really so spectacular because usually what is enclosed in parentheses is executed first, and you 

could also have typed the following in them:

Dir (Cd e:)

 X: functions are interesting more for the reason that they show how you can access statements 

along with arguments under new and concise names. Aliases like  Cd (for  Set-Location) can 

abbreviate unwieldy command names, but they can't predefine additional arguments. In contrast, 

Table of Contents | About PowerShell Plus

273

Sponsors | Resources | © BBS Technologies

functions can invoke other commands as well with predefined arguments. They are designed to ensure that by simply typing a drive name you can switch to that drive just like you would when 

using the older console:

 # Actually, a function is being invoked here:

e:

Dir

Functions, Filters and the Pipeline

Can functions actually read and further process the results of other commands? They can, namely by 

the pipeline, which PowerShell uses to connect more than one command to each other (see Chapter 

5). In Chapter 5,  you learned that the pipeline can command two modes: a slow sequential mode and a rapid streaming mode. In which of the two modes the pipeline can operate really depends on 

the statements used in the pipeline, and how you define your functions. 

The Slow Sequential Mode: $input

In the simplest case, your function doesn't really support the pipeline. Your function is limited 

merely to processing the results of the preceding pipeline command if the command has completed 

its work. The results of the preceding command are always in the  $input automatic variable.  $input is an array: depending on the circumstances, it can contain many elements, exactly one element, or 

no element at all. 

In the simplest case, a function will merely output the contents of  $input again:

 Function output

{

 $input

}

 # The function, when invoked alone, 

 # will return nothing because no pipeline 

 # results are available:

output

 # If you create an array in the pipeline, 

 # the function will output the array:

1,2,3 | output

 1

 2

 3

 # The function is completely indifferent to 

 # which type of data is in the pipeline:

Dir | output

     Directory: Microsoft.PowerShell.Core\FileSystem::

       C:\Users\Tobias Weltner

 Mode        LastWriteTime   Length Name

Table of Contents | About PowerShell Plus

274

Sponsors | Resources | © BBS Technologies

 ----        -------------   ------ ----

 d----   07.20.2007  11:37          Application Data

 d----   07.26.2007  11:03          Backup

 d-r--   04.13.2007  15:05          Contacts

 (...)

Up to now, the function has merely output the pipeline results, and the result wasn't exactly 

spectacular. In the next step, the function should process each pipeline result separately. We want 

to create a function called  MarkEXE, which will inspect the result of  Dir and highlight executable programs having the ".exe" file extension in a red color:

 Function MarkEXE

{

 # Note old foreground color

 $oldcolor  =  $host.  ui.rawui.ForegroundColor

 # Inspect each pipeline element separately in a loop

 Foreach ( $element  in  $input) {

 # If the name ends in ".exe", change the foreground color to red:

 If ( $element.  name.toLower().  endsWith( ".exe" )) {

 $host.  ui.Rawui.ForegroundColor  =  "red" 

}  Else {

 # Otherwise, use the normal foreground color:

 $host.  ui.Rawui.ForegroundColor  =  $oldcolor

}

 # Output element

 $element

}

 # Finally, restore the old foreground color:

 $host.  ui.Rawui.ForegroundColor  =  $oldcolor

}

When you pass on the result of  Dir to this function, you will immediately receive directory listings in which executable programs are listed in red:

Dir  $env:windir  | MarkEXE

Filter: Rapid Streaming Mode

The slow sequential mode of the pipeline that you became accustomed to can be a problem when 

you have to process large quantities of data, resulting in enormous memory consumption and 

waiting periods. If your function supports the rapid streaming mode of the pipeline, in which the 

results of preceding commands are processed in real time while using minimal memory, then all you 

need is a little trick: use the  Filter keyword instead of the  Function keyword. 

You would actually just need to replace the first "function" keyword by "filter" in your  MarkEXE 

function, and it would begin to use the rapid streaming mode right away. Now, without having to 

endure long waits and the risk of a crash, you could use your filter to process recursive directory 

listings, even extremely lengthy ones:

Dir c:\  -recurse | MarkEXE

Table of Contents | About PowerShell Plus

275

Sponsors | Resources | © BBS Technologies

While your  MarkEXE would be invoked only a single time, after  Dir has done its work, the  MarkEXE 

filter would be invoked again and again for every single element. For filters,  $input always contains only a single result. That's why  $input in filters is not useful at all. It's better for you to use the  $_ 

variable in filters because it contains the current result of the preceding command immediately. That 

simplifies code because from then on you no longer need any more loops:

 Filter MarkEXE {

 # Note old foreground color

 $oldcolor  =  $host.  ui.rawui.ForegroundColor

 # The current pipeline element is in $_

 # If the name ends in ".exe", change 

 # the foreground color to red:

 If ( $_.  name.toLower().  endsWith( ".exe" )) {

 $host.  ui.Rawui.ForegroundColor  =  "red" 

}  Else {

 # Otherwise, use the normal foreground color:

 $host.  ui.Rawui.ForegroundColor  =  $oldcolor

}

 # Output element

 $_

 # Finally, restore the old foreground color:

 $host.  ui.Rawui.ForegroundColor  =  $oldcolor

}

Developing Genuine Pipeline Functions

Filters are superior to normal functions in pipelines because they immediately process every single 

result of the preceding command and don't have to wait until the preceding command has completed 

all its tasks. However, filters must be invoked repeatedly for every single result of the preceding 

command. That's difficult because certain tasks, like initialization or tidying, have to be carried out 

again every single time the filter is invoked. The  MarkEXE function, for example, notes the current console foreground color when it begins and restores it when it finishes. The filter would then have 

to perform this task repeatedly for every single result of the preceding command. That costs time 

and resources. 

In reality, filters are nothing more than special functions. If a function is used inside a pipeline, then you can define three fundamentally different task areas: the first initialization in which the function 

completes preparatory steps; the processing of each single result that traverses the pipeline from 

the preceding command; and the tidying chores at the end. These three task areas can be defined in 

functions by using  begin,  process and  end blocks. 

It turns into a filter as soon as a function defines at least the  process block. A filter is nothing more than a function with a process block. Unlike a filter, a function, can also define  begin and  end block. 

That's why the following  MarkEXE function is, of all our examples, the most efficient approach 

because the initialization and cleanup tasks need to be performed only once:

 Function MarkEXE {

begin {

 # Note old foreground color

 $oldcolor  =  $host.  ui.rawui.ForegroundColor

}

Table of Contents | About PowerShell Plus

276

Sponsors | Resources | © BBS Technologies



process {

 # The current pipeline element is in $_

 # If the name ends in ".exe", change 

 # the foreground color to red:

 If ( $_.  name.toLower().  endsWith( ".exe" )) {

 $host.  ui.Rawui.ForegroundColor  =  "red" 

}  Else {

 # Otherwise, use the normal foreground color:

 $host.  ui.Rawui.ForegroundColor  =  $oldcolor

}

 # Output element

 $_

}

end {

 # Finally, restore the old foreground color:

 $host.  ui.Rawui.ForegroundColor  =  $oldcolor

}

}

The next example will show that a filter is actually only a normal 

function that has a  process block. First, it defines a filter:

 filter Test {  "Output: "   +  $_ }

Let's look now at the definition of the filter:

 $function:Test

 process {

 "Output: " + $_

 }

PowerShell has translated its filter instruction into a normal function and set 

the code in a  process block. Therefore, filters are functions that have a 

 process block; nothing more. 

Summary

Functions bring together one or more PowerShell commands under one name. If a function is 

invoked, it will execute the commands defined in it one after the other. 

PowerShell uses this concept for internal purposes too; that's why it comes equipped with a number 

of predefined functions (see Table 9.1). You may modify these predefined functions if you'd like to change how PowerShell behaves. 

Table of Contents | About PowerShell Plus

277

Sponsors | Resources | © BBS Technologies

You have the freedom of creating your own additional functions. For example, you can invent your own convenient shorthand for tasks that would otherwise require the execution of several steps or 

statements. In the simplest case, specify the name of your new function after the  Function keyword and append the commands in braces that are supposed to carry out the function. 

Functions will be more flexible if you pass them arguments that include additional information telling 

the function precisely what it is to do. The function can either access these arguments through the 

 $args variable or define its own parameters. The arguments will then be automatically assigned to 

these parameters ("parameter binding") and all the arguments that might be left over will turn up again in  $args. The parameters of a function can also be typed (in which case they will accept only a particular data type), and they may contain default values. Default values can also consist of 

PowerShell commands. 

The result of a function includes everything that the function has output anywhere within its code. 

Therefore, a function can return zero results, exactly one result, or very many results. As soon as 

the result consists of more than one value, the function wraps it automatically in an array. It 

remains unaltered by the optional  return statement, which merely has the purpose of exiting a 

function ahead of time. 

In the PowerShell pipeline, functions also play a role in that they have the option of reading the 

results of the preceding command and processing them further. The results of the preceding 

command are in the  $input variable. A function can implement the  process block so that functions will not have to wait until the preceding command has completely carried out its work. This block will 

immediately step through every single result of the preceding command, and the respective result of 

the preceding command will then be provided in the  $_ variable.  Filter functions exactly like functions with a  process block. In addition, functions can implement a  begin and  end block, which runs just once respectively and serves the purpose of executing preparatory and follow-up tasks. 

Table of Contents | About PowerShell Plus

278

Sponsors | Resources | © BBS Technologies

CHAPTER 10. 

 Scripts

PowerShell scripts function like batch files in the traditional console: scripts are text files that can 

include any PowerShell code. If you run a PowerShell script, PowerShell will read the instructions in 

it, and then execute them. As a result, scripts are ideal for complex automation tasks. In this 

chapter, you'll learn how to create and execute scripts. 

PowerShell makes certain requirements mandatory for their execution because scripts can contain 

potentially dangerous statements. Depending on the security setting and storage location, scripts 

must have a digital signature or be specified with their absolute or relative path names. These 

security aspects will also be covered in this chapter. 

Topics Covered:

•

W

  riting and Starting PowerShell Scripts  

•

U

  sing Redirection to Create Scripts  

•

C

  reating Scripts with an Editor  

•

S

  tarting Scripts  

•

E

  xecution restrictions  

•

T

  able 10.1: Execution policy setting options  

•

In

  voking Scripts like Commands  

•

P

  assing Arguments to Scripts  

•

$

  args Returns All Arguments  

•

$

  args is an Array  

•

A

  ccessing Separate Arguments in $args  

•

U

  sing Parameters in Scripts  

•

V

  alidating Parameters  

•

S

  copes: Ranges of Validity in Scripts  

•

#

  requires: Script Requirements  

•

M

  aking Scripts Understandable  

•

U

  sing Functions in Scripts  

•

S

  eparating Scripts into Work Scripts and Libraries  

•

L ibrary Scripts Central Directory  

•

C

  reating Pipeline Scripts  

•

S

  low Sequential Mode  

•

Q

  uicker Streaming Mode  

•

W

  riting Pipeline Results  

•

P

  rofile: Autostart Scripts  

•

F our Different Profile Scripts  

•

T

  able 10.2: PowerShell profiles  

•

C

  reating Your Own Profile  

•

C

  reate a Global Profile for All Users  

•

Di

  gital Signatures for Your Scripts  

•

F inding an Appropriate Certificate  

•

F igure 10.1: Using an option dialog to select a certificate  

•

C

  reating a New Certificate  

•

C

  reating Self-Signed Certificates  

•

E

  xamining the Code-Signing Certificate  

•

De

  claring a Certificate "Trusted" 

Table of Contents | About PowerShell Plus

279

Sponsors | Resources | © BBS Technologies

•

F igure 10.2: Certificates must be declared trusted  

•

F igure 10.3: The trusted certificate may now be used for signatures  

•

S

  igning PowerShell Scripts  

•

U

  sing the First Available Certificate  

•

R

  ecursively Signing All PowerShell Scripts  

•

S

  electing Certificates Using the Dialog Box  

•

V

  alidating Signed PowerShell Scripts  

•

M

  anual Validation  

•

T

  able 10.3: Status reports of signature validation and their causes  

•

A

  utomatic Validation  

•

B

  uilding a Miniature PKI  

•

C

  reating a Root Certificate  

•

C

  reating Staff Certificates  

•

C

  reating a Backup  

•

In

  stalling Enterprise-Wide Root Certificates  

•

S

  ummary  

Writing and Starting PowerShell Scripts

A PowerShell script is nothing more than a text file containing PowerShell code. If the text file is 

executed, PowerShell steps through its statements and executes them. PowerShell scripts work very 

much like the batch files of older consoles: you can create PowerShell scripts with much the same 

simplicity you could using batch files. 

Using Redirection to Create Scripts

If your script is short, you could create it directly from within the console by redirecting the script 

code to a file:

 ' "Hello world" '  >  myscript.ps1

But because you must use quotation marks to enclose text, it can be confusing to use quotation 

marks inside the script code. Or you may like to specify multi-line text. So, using "here-strings" 

would work better in this example:

@ ' 

 "Hello world" 

 "One more line" 

 Get-Process

 Dir

 ' @ >  myscript.ps1

Here-strings always begin with  @'  and end with  '@. Everything in between is stored as text, including all special characters and line breaks. If you use double instead of single quotation marks, 

PowerShell will expand all variables in your here-string. 

Table of Contents | About PowerShell Plus

280

Sponsors | Resources | © BBS Technologies

Creating Scripts with an Editor

Considerably more convenient are genuine text editors, such as Notepad. Assign it the task of 

creating a new file:

Notepad  myscript.ps1

Notepad will open and offer to create the  myscript.ps1 file. Click  Yes. Now you can write your script in Notepad. Just enter the same statements in Notepad that you would otherwise have typed 

interactively in the console:

 "Howdy!" 

Then use  File/Save to save your script and close the Notepad. 

Starting Scripts

While your script was created, it can't be started just like that. If you enter the file name of your 

script file, you'll get an error message:

 myscript.ps1

 The term "myscript.ps1" is not recognized as a 

 cmdlet, function, operable program, or script file. 

 Verify the term and try again. 

 At line:1 char:14

 + myscript.ps1 <<<< 

It won't work until you specify at least the relative path name of the script, which is  .\myscript.ps1:

.\ myscript.ps1

 Howdy! 

Execution restrictions

PowerShell always initially prohibits scripts from running. Whether scripts can be started or not is 

determined by the  execution policy:

.\ myscript.ps1

 File "C:\Users\Tobias Weltner\myscript.ps1" 

 cannot be loaded because the execution of scripts 

 is disabled on this system. Please see "get-help 

 about_signing" for more details. 

 At line:1 char:16

 + .\myscript.ps1 <<<< 

Table of Contents | About PowerShell Plus

281

Sponsors | Resources | © BBS Technologies

Only an administrator can change this setting. The  Get-ExecutionPolicy cmdlet will tell you the current setting of your execution policy:

 Get-ExecutionPolicy

 Restricted

If you want to run scripts, choose another setting from Table 10.1 for the execution policy and use Set-ExecutionPolicy to specify it. You just need to change this setting once. PowerShell will make a permanent note of it. 

Setting

Description

Restricted

Script execution is absolutely prohibited. 

Default

Standard system setting normally corresponding to 

"Restricted". 

Only scripts having valid digital signatures may be executed. 

AllSigned

Signatures ensure that the script comes from a trusted source 

and has not been altered. You'll read more about signatures 

later on. 

Scripts downloaded from the Internet or from some other 

"public" location must be signed. Locally stored scripts may be 

executed even if they aren't signed. Whether a script is 

RemoteSigne

"remote" or "local" is determined by a feature called Zone 

d

Identifier, depending on whether your mail client or Internet 

browser correctly marks the zone. Moreover, it will work only if 

downloaded scripts are stored on drives formatted with the 

NTFS file system. 

Unrestricted

PowerShell will execute any script. 

Table 10.1: Execution policy setting options

Usually, the best "liberal" setting is  RemoteSigned because you can run your own locally stored scripts and potentially dangerous scripts downloaded from the Internet are not allowed:

 Set-ExecutionPolicy RemoteSigned

.\ myscript.ps1

 Howdy! 

Table of Contents | About PowerShell Plus

282

Sponsors | Resources | © BBS Technologies



If you want PowerShell to run only those scripts that you approve, 

you can sign your scripts digitally. You'll find out how to do that at 

the end of this chapter. The  RemoteSigned setting requires that all 

the scripts you download from the Internet must be signed. If you 

select  AllSigned, this will apply to local scripts as well. Digital or 

Authenticode signatures are an excellent means for firms to provide a "stamp 

of quality" for their PowerShell scripts. They allow only verified and 

authorized scripts while preventing the execution of potentially hazardous 

scripts from unknown sources. 

Invoking Scripts like Commands

To actually invoke scripts just as easily as normal commands—without having to specify relative or 

absolute paths and the ".psl" file extension—you can employ two simple tricks. The simplest is alias names. You could define a new alias name for invoking a script:

 Set-Alias dosomething .\ myscript.ps1

You could immediately launch you script by entering the  dosomething command:

dosomething

 Howdy! 

However, this alias would only work in the same directory in which the script is stored because it 

uses a relative path name. If you store your scripts in fixed locations, you'd better specify an 

absolute path name or use environment variables. You could put your script in a central directory 

and in a profile for all users:

md  $env:appdata\PSScripts



 directory: Microsoft.PowerShell.Core\FileSystem::

 C:\Users\Tobias Weltner\AppData\Roaming

 Mode      LastWriteTime  Length Name

 ----      -------------  ------ ----

 d----  09.14.2007 10:00         PSScripts

Then copy the script to this directory:

copy  myscript.ps1  $env:appdata\PSScripts\ myscript.ps1

Now, specify a fixed destination path independently of the current directory:

 Set-Alias dosomething  $env:appdata\PSScripts\ myscript.ps1

Table of Contents | About PowerShell Plus

283

Sponsors | Resources | © BBS Technologies



Alternatively, you could declare the directory in which your scripts are stored as a trusted location: 

include this directory in the Windows  Path environment variable. All PowerShell scripts in this 

directory will no longer require you to specify them by using relative or absolute path names. You no 

longer even have to append the "ps1" file extension in this connection. Try it out:

 # Create a directory for your scripts

md c:\PSScripts

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\

 Mode      LastWriteTime Length Name

 ----      ------------- ------ ----

 d----  09.14.2007 10:08        PSScripts

 # Copy the script under another name to this directory

copy  myscript.ps1 c:\PSScripts\ myscript.ps1

 # Invoking failed:

myscript

 The term "myscript" is not recognized as a 

 cmdlet, function, operable program or script 

 file. Verify the term and try again. 

 At line:1 char:4

 + myscript <<<< 100

 # Include the directory in the PATH environment variable:

 $env:path  +=  "; c:\PSScripts" 

 # Invoking succeeded:

myscript

 Howdy! 

Changes to the Windows environment variable can be risky 

because they also can have an impact outside the PowerShell 

console. That's why PowerShell always stores changes to the 

Windows environment variable only temporarily for the current 

session. The modifications would be revoked after closing and 

reopening the PowerShell console. 

If you want to make permanent changes to environment variables like  Path, 

do it either outside the PowerShell console or, even better, re-define your 

preferred settings every time PowerShell starts. You could use profile scripts 

that run automatically when PowerShell starts. You'll learn about them in the 

next section. 

Table of Contents | About PowerShell Plus

284

Sponsors | Resources | © BBS Technologies

Passing Arguments to Scripts

You can write scripts that interact with the user, who can then pass arguments to a script. That 

works for scripts just as it does for the functions in the last chapter.  Let's look at how you can modify your first simple script so that its output is not an unchangeable text, but a welcome text 

that a user can modify. 

$args Returns All Arguments

Arguments that you pass to a function or a script are located in the  $args variable. To get your script to output the text that the user specifies after the script name when the script is invoked, make the 

appropriate changes to your script. First, load it back in Notepad as in the following example:

notepad  myscript.ps1

Now, change your script in the Notepad and replace the lines in it with these:

 "Hello, $args!" 

Save the change and try out your modified script. 

.\ myscript.ps1

 Hello, ! 

The script works, but no text in particular was output. That's obvious because you haven't specified 

any arguments yet. So, try out the script with an argument:

 # The argument is integrated into the text:

.\ myscript.ps1 Tobias

 Hello, Tobias! 

It works and everything that you specify after the script name will be passed as an argument to your 

script. 

$args is an Array

The data you specify after your script when it is invoked are called  arguments. PowerShell evaluates these arguments and uses spaces to separate each argument from the other, which explains why 

your script brings together several spaces in succession:

 # Spaces separate arguments. Several spaces 

 # following each other are combined into one:

.\ myscript.ps1 This   text   has   a   lot   of   spaces ! 

 Hello, This text has a lot of spaces!! 

Table of Contents | About PowerShell Plus

285

Sponsors | Resources | © BBS Technologies

PowerShell has identified seven separate arguments from the data that follows your script. You'll find them all afterwards in  $args,  which is in reality an array. If you would like to use spaces in an argument, and avoid PowerShell interpreting them as separators, your argument must be enclosed 

in quotation marks:

 # Text in quotation marks is understood as precisely one argument:

.\ myscript.ps1  "This   text   has   a   lot   of   spaces!" 

 Hello, This   text   has   a   lot   of   spaces!! 

Now all the spaces are output. 

Accessing Separate Arguments in $args

Because  $args is an array, you could also process each element of the array separately. In Chapter 

4,  you familiarized yourself with arrays so you know now that you can access elements in an array through an index. So, your script might look like this if you'd like to process the first argument:

 "Hello, $($args[0])!" 

However,  $args[0] can no longer be simply integrated into the output text because PowerShell 

resolves only simple variables. The entire expression must be wrapped in a direct variable  $(...). 


Save your script, and then look at how your script handles your arguments now:

 # Arguments are separated by spaces. "Weltner" 

 # is the second argument and will not be output:

.\ myscript.ps1 Tobias Weltner

 Hello, Tobias! 

 # If you'd like to use arguments with spaces, 

 # put them in quotation marks:

.\ myscript.ps1  "Tobias Weltner" 

 Hello, Tobias Weltner! 

Using Parameters in Scripts

While $args is a simple way to pass user data to a script, it's entirely up to you to find out which argument the user specified and in which order. If the user didn't enter his arguments in exactly the 

same order you anticipated, the script will get muddled and may not interpret his arguments 

correctly. In addition, the user won't get any feedback from the script telling him which arguments 

are permitted or required. 

In older script languages, a lot of effort was required to validate passed arguments and to allocate 

them properly. But PowerShell has this option and it works very much like the parameters of the 

functions in the last chapter.  For functions, parameters specified in parentheses after the function name:

Table of Contents | About PowerShell Plus

286

Sponsors | Resources | © BBS Technologies

 function Test( $path,  $name) {

 "The path is: $path" 

 "The name is: $name" 

}

Test  "The path"   "The name" 

 The path is: The path

 The name is: The name

Test  -name  "The name"   -path  "The path" 

 The path is: The path

 The name is: The name

This works exactly the same way for scripts, just that the question arises of where to put the 

parameters for a script. While functions are always located in a  function Name(Parameter) {...} 

construct, such a framework isn't available for scripts. That's why scripts have to use the  param 

statement. 

Let's translate the function with the two parameters  $path and  $name into a script. Open your script again for processing in Notepad:

notepad  myscript.ps1

Now type this code:

 param( $path,  $name)

 "The path is: $path" 

 "The name is: $name" 

Save your script and try it out:

.\ myscript.ps1  "the path"   "the name" 

 The path is: the path

 The name is: the name

.\ myscript.ps1  -name  "the name"   -path  "the path" 

 The path is: the path

 The name is: the name

It works: your script responds now just like the function and uses parameters instead of unnamed 

arguments. The data in parentheses after  param exactly match the same data that you put after the 

function names in parentheses for functions. 

Table of Contents | About PowerShell Plus

287

Sponsors | Resources | © BBS Technologies

Validating Parameters

After reading the last chapter,  you should know how to formulate arguments so that PowerShell can verify that they were specified. The next script requires an argument called  name and another called age. It establishes exactly which data type is necessary for each argument and also determines that an error message will be output if the argument is not specified:

 param([ string] $Name=$( `

Throw  "Parameter missing: -name Name" ), 

[ int] $age=$( `

Throw  "Parameter missing: -age x as number" )) `

 "Hello $name, you are $age years old!" 

Save this script and execute it. If you forget to specify one of the two arguments, or if you specify 

the parameter with an invalid value, PowerShell will automatically output an appropriate error 

message:

 # Parameter missing:

.\ testscript.ps1

 Parameter missing: -name Name

 At C:\Users\Tobias Weltner\testscript.ps1:1 char:28

 + param([string]$Name=$(Throw  <<<< "Parameter 

 missing: -name Name"), [int]$age=$(Throw 

 "Parameter missing: -age x as number"))

 # Parameter missing:

.\ testscript.ps1  -name Tobias

 Parameter missing: -age x as number

 At C:\Users\Tobias Weltner\testscript.ps1:1 char:80

 + param([string]$Name=$(Throw "Parameter missing: 

 -name Name"), [int]$age=$(Throw  <<<< "Parameter 

 missing: -age x as number"))

 # Parameter value is invalid:

.\ testscript.ps1  -name Tobias  -age willibald

 C:\Users\Tobias Weltner\testscript.ps1 : Cannot 

 convert value "willibald" to type "System.Int32". 

 Error: "Input string was not in a correct format." 

 At line:1 char:37

 + .\testscript.ps1 -name Tobias -age  <<<< willibald

 # Parameters are okay:

.\ testscript.ps1  -name Tobias  -age 212

 Hello Tobias, you are 212 years old! 

Table of Contents | About PowerShell Plus

288

Sponsors | Resources | © BBS Technologies



Strictly speaking, there are not  any difference at all between 

functions and scripts. The statements in parentheses after the 

function name are also translated for functions into exactly the 

same  param statement as they are for scripts. You can easily 

convince yourself that this is the case by typing the  Test function in 

the preceding example and then outputting the source code of the function. 

You'll see that the function framework has vanished and the  param statement 

is now in the script block:

 $function:test

 param( $path,  $name)  "The path is: $path" 

 "The name is: $name" 

Scopes: Ranges of Validity in Scripts

To prevent scripts from having unintentional effects on other scripts or their interactive consoles, 

they are usually executed in isolation. Here, "isolation" means that all the variables and functions you create in a script are valid only inside the script. If you want to remove isolation, you can "dot source" scripts and functions when you invoke them: this just means putting a single dot or period 

in front of scripts and functions when you call them. If you want to define the scope of each variable 

or function separately, use the identifiers described in Chapter 3. 

PowerShell stores all the variables in the interactive console in the  global: area. All the variables that a script creates are stored in the  script: area. When a script has completed its work, its  script: area is deleted. That's how PowerShell removes only the variables that the script created. Variables that 

are already there remain untouched because of their location in the  global: area. 

This raises an interesting question of how scripts handle variables that have already been defined 

previously. If a variable doesn't exist in the current scope, PowerShell will try to find it in the parent scope. So, if you created a variable called  $test in the console, your script would be able to read this variable. However, change is constant in the current scope: if you modify the contents of the  $test 

variable inside your script, PowerShell would create a new variable called  $test in the  script: area. 

The result would be two variables: one in the  global: area and one in the  script: area. Your script would use the new variable because when you invoke  $test inside the script, PowerShell will always look in the current scope first and will not proceed to the parent scope until it cannot locate the 

sought word. The script can read this variable since  $test was created in the current scope. Here's a little test script:

 "Variable contents: $test" 

 $test  =  "modified" 

 "Variable contents: $test" 

Take a look at how the script handles the  $test variable:

 # Invoke your script:

.\ myscript.ps1

 # The $test variable was not defined in the 

 # global area, and so it is empty:

Table of Contents | About PowerShell Plus

289

Sponsors | Resources | © BBS Technologies



Variable contents:

 # Then the script modifies $test and uses its 

 # own version in the script: area:

 Variable contents: modified

 # We will now set a value for $test in the 

 # global area and restart the script

 $test  =  "default" 

.\ myscript.ps1

 # The script finds the value in $test that was 

 # set outside the script:

 Variable contents: default

 # The script can change the value of $test, 

 # so it uses its own version in the script:

 Variable contents: modified

 # As soon as the script ends, $test regains 

 # the old value because the script:

 $test

 default

You are free to specify which variable store (or area) you want to 

access by typing the requested area in front of the variable name. 

In this way, it is entirely possible for a script to make permanent 

variable changes that will continue to exist after the script is 

ended. To see how that works, change your script as follows and 

take another look at the results afterwards:

 $test  =  "default" 

 # Create a script:

@ ' "default contents: $test"; 

 $global:test = "modified"; 

 "Variable contents: $test" ' @ >  myscript.ps1

 # Execute a script:

.\ myscript.ps1

 Variable contents: default

 Variable contents: modified

 $test

 modified

You'll find more details on directly accessing the variable store in Chapter 3.  

However, in practice it's often sufficient to decide whether a script should be 

Table of Contents | About PowerShell Plus

290

Sponsors | Resources | © BBS Technologies

generally isolated or not isolated. 

#requires: Script Requirements

Scripts may have certain requirements for their execution. Cmdlets are not necessarily limited to 

just the ones included in PowerShell. Third-party suppliers offer additional cmdlets. For example, if 

you're using  Microsoft Exchange you'll have many additional special Exchange cmdlets at your 

disposal. 

The cmdlets are part of an additional snap-in that Exchange includes. All additional snap-ins are 

loaded on the basis of an automatically starting profile script by using  Add-PSSnapin.  Get-PSSnapin can show you which snap-ins are currently in use by your PowerShell console:

 get-pssnapin

 Name        : Microsoft.PowerShell.Core

 PSVersion   : 1.0

 Description : This Windows PowerShell snap-in contains Windows 

               PowerShell management cmdlets used to manage

 components of Windows PowerShell. 

 Name        : Microsoft.PowerShell.Host

 PSVersion   : 1.0

 Description : This Windows PowerShell snap-in contains cmdlets 

               used by the Windows PowerShell host. 

 Name        : Microsoft.PowerShell.Management

 PSVersion   : 1.0

 Description : This Windows PowerShell snap-in contains management 

               cmdlets used to manage Windows components. 

 Name        : Microsoft.PowerShell.Security

 PSVersion   : 1.0

 Description : This Windows PowerShell snap-in contains cmdlets to 

               manage Windows PowerShell security. 

 Name        : Microsoft.PowerShell.Utility

 PSVersion   : 1.0

 Description : This Windows PowerShell snap-in contains utility 

               Cmdlets used to manipulate data. 

If a script uses commands from an additional snap-in, it can indicate that by using the  #requires 

statement. For example, specify a snap-in after  #requires that is essential for the script. If the snapin is missing, PowerShell won't start the script and will instead output an error message. This is how 

such a script might look:

 #requires -PSSnapin Microsoft.PowerShell.Host

 #requires -PSSnapin something.unavailable

 "It worked" 

Table of Contents | About PowerShell Plus

291

Sponsors | Resources | © BBS Technologies

While the first requirement appears to be met because this snap-in is part of the basic snap-ins, the second required snap-in is missing. If you try to run the script, you'll get an error message informing 

you why the script couldn't be started:

.\ test1.ps1

 The script 'test1.ps1' cannot be run because the following 

 Windows PowerShell snap-ins that are specified by its 

 "#requires" statements are missing: something.unavailable. 

 At line:1 char:11

 + .\test1.ps1 <<<< 

If you want to lock in a script to a particular version of PowerShell, use the  -Version parameter. 

Scripts that use new V2-specific features will be able to use  #requires -Version 2 to specify that they can't be run with the older version. 

Note that you are able to use  -ShellID to limit execution of scripts to particular PowerShell consoles. 

 -ShellID is a PowerShell console identifier and is located in the  $ShellID automatic variable. For the Microsoft console, the tag is  Microsoft.PowerShell. Use  #requires -ShellID Microsoft.PowerShell if you'd like to ensure that a script may be executed in Microsoft consoles only. 

Making Scripts Understandable

Scripts may be as long as you'd like but typically the longer a script is, the harder it will be to read 

it. For this reason, lengthy scripts use two methods to keep script code understandable:

•

Functions: Consolidate smaller tasks in functions, which not only make code easier to grasp 

but can also be reused conveniently. Once you've created a function for a certain task, you 

can use it later in other scripts as well. 

•

Libraries: Embed required functions as a library into your script so you won't need to copy 

your basic functions into every script, inflating them artificially. Your basic functions can 

remain in a single script while your current script focuses on just the one task it needs to 

complete. 

Using Functions in Scripts

To be able to use a function inside a script, simply insert the function into the script code. Look at a 

lengthier script to see how this is done. Open Notepad again:

notepad  net.ps1

Then enter the following script and save it:

 param ([ double] $amount  =  $(Throw  "You have to specify a sum." )) $tax  = VAT( $amount)

 $total  =  $amount  +  $tax

 "{1:C} VAT is payable on the amount of {0:C}: {2:C}"  `

 -f  $amount,  $tax,  $total

 function VAT( $net)

Table of Contents | About PowerShell Plus

292

Sponsors | Resources | © BBS Technologies

{

 $factor  = 0.19

 $net  *  $factor

}

This script uses  param first to define the  amount parameter because the script is supposed to calculate the value-added tax payable on a net sum. The script utilizes the strong type specification 

we saw in Chapter 3 to set the  amount parameter as a floating point number (type:  double). If the user doesn't name a number, an error message will be generated. 

.\ net.ps1

 You have to specify a sum. 

 At C:\Users\Tobias Weltner\net.ps1:1 char:33

 + param ([double]$amount = $(Throw  <<<< 

 "You have to specify a sum."))

If you then specify a sum, the script will generate an error message anyway and will return an 

incorrect result:

.\ net.ps1 100

 The term "VAT" is not recognized as a cmdlet, 

 function, operable program, or script file. 

 Verify the term and try again. 

 At C:\Users\Tobias Weltner\net.ps1:3 char:15

 + $tax = VAT( <<<< $amount)

 VAT is payable on the amount of $100.00: $100.00

Apparently, the script couldn't locate the  VAT function. Unlike most other script languages, 

PowerShell functions that you define inside your script must be at the  beginning of your script. The functions come into play only after PowerShell has read and created the functions with PowerShell 

reading scripts rigidly from top to bottom. So, a correctly written script should look like this:

 param ([ double] $amount  =  $(Throw  "You have to specify a sum." )) function VAT( $net)

{

 $factor  = 0.19

 $net  *  $factor

}

 $tax  = VAT( $amount)

 $total  =  $amount  +  $tax

 "{1:C} VAT is payable on the amount of {0:C}: {2:C}"  `

 -f  $amount,  $tax,  $total

After this transposition, the script now works as expected:

.\ net.ps1 100

 $19.00 VAT is payable on the amount of $100.00: $119.00

Table of Contents | About PowerShell Plus

293

Sponsors | Resources | © BBS Technologies

Separating Scripts into Work Scripts and Libraries

Genuine scripts developed to solve practical problems usually include many more than just one 

function. The scripts may become unclear when function definitions pile up at the beginning of 

scripts. Functions, once you have created, tested, and approved them, should really not be eye-

catching. Prevent that by using script libraries. Save your functions in a separate script file for later 

inclusion in all your scripts. The scripts can then use the functions saved in the file. Try it out. First, create a script library:

notepad  calcfunctions.ps1

Then, enter this function in Notepad and save the script:

 function VAT( $net)

{

 $factor  = 0.19

 $net  *  $factor

}

After this step, create a work script. The work script shouldn't include any general functions. 

Instead, it simply loads the functions it requires from the script library. 

notepad  net.ps1

Enter the following code and save the script:

 param ([ double] $amount  =  $(Throw  "You have to specify a sum." ))

 # Functions will be loaded dot sourced from the library:

. .\ calcfunctions.ps1

 $tax  = VAT( $amount)

 $total  =  $amount  +  $tax

 "{1:C} VAT is payable on the amount of {0:C}: {2:C}"  `

 -f  $amount,  $tax,  $total

The work script will execute the script with the functions first, and then this script will create the 

required functions. Note that all variables and functions that create a script are as a rule "private" 

and are valid only within the script. That's critical because scripts must not have unintentional 

effects on each other. However, because in this case you want the library script to affect the work 

script (namely by creating new functions that will be disclosed in the work script), the "dot sourced" 

library script will be invoked: a single dot will be placed in front of the invoked script. The dot will 

cancel script isolation, and all the functions that the library script creates will also be valid in your 

work script. 

This method is enabling you to load any number of script libraries in your work script. The result is 

that your work script stays clear and concise while the functions in the libraries can be developed 

separately. 

•

Work script: work scripts shouldn't include any general functions, just the code needed to 

perform current tasks. Required functions are implemented from external scripts. These must 

be called by using dot sourcing. 

Table of Contents | About PowerShell Plus

294

Sponsors | Resources | © BBS Technologies



•

Library: libraries may contain only function definitions and no code except for function 

definitions because the code would otherwise be immediately executed when the library is 

reloaded. 

Library Scripts Central Directory

You should work out a strategy for optimal storage of library scripts as soon as you start using 

library scripts in your work scripts. One option would be to store the library scripts in the same 

directory as the work scripts. That way your work scripts could always access its library scripts over 

a relative path specification, as seen in the preceding example. Another option would be to copy 

your work scripts to another location, but in then you would have to remember to copy your library 

scripts as well. 

If you'd prefer to store your library scripts in a central location because you want to deny general 

access to them, or because the library scripts should be stored in a directory that grants users 

authorization to read them only, and then type absolute path names in your work script. Utilize 

environment variables to specify the directory where the library script is. If library scripts are in a 

user profile in the  PSLib directory, you could modify your work script in the following way:

 param ([ double] $amount  =  $(Throw  "You have to specify a sum." ))

 # Functions will be loaded dot sourced from the library:

.  $env:appdata\PSLib\ calcfunctions.ps1

 $tax  = VAT( $amount)

 $total  =  $amount  +  $tax

 "{1:C} VAT is payable on the amount of {0:C}: {2:C}"  `

 -f  $amount,  $tax,  $total

You could use the following lines to create the  PSLib directory in a user profile and to copy your locally stored library in this area to which all users could have access:

 # Create a directory for commonly used script libraries:

md  $env:appdata\PSLib



 directory: Microsoft.PowerShell.Core\FileSystem::

 C:\Users\Tobias Weltner\AppData\Roaming

 Mode       LastWriteTime  Length Name

 ----       -------------  ------ ----

 d----  14.09.2007  09:42         PSLib

 # Copy the locally stored library to the central directory:

copy  calcfunctions.ps1  $env:appdata\PSLib\ calcfunctions.ps1

Use the  $MyInvocation automatic variable if you want to know 

where a script is stored from within a script, to give library scripts 

an absolute path name that are located in the same directory. 

Here's an example of a script, which when executed states its 

name and the directory where it is located:

Table of Contents | About PowerShell Plus

295

Sponsors | Resources | © BBS Technologies

 function  get-scriptname

{

 if ( $myInvocation.  ScriptName) {  $myInvocation.  ScriptName }

 else {  $myInvocation.  MyCommand.Definition;  "second"  }

}

 $myPath  =  get-scriptname

 $myPath

 $myParent  =  split-path  $myPath

 $myParent

Creating Pipeline Scripts

PowerShell scripts can be used as building blocks in the pipeline just like functions, which were 

covered in the last chapter.  Moreover, what applies to functions applies to scripts as well: depending on how you program the script, you can either force the pipeline to adopt the slow and memory-intensive sequential mode or enable the rapid streaming mode. 

Slow Sequential Mode

If you use a script inside the pipeline, the script will collect the results of the preceding statement in the  $input automatic variable. But the script also blocks up the pipeline because the pipeline has to wait first until the preceding statement has fully completed its task. Only then can the pipeline pass 

on its result in  $input to the script. Try out a new test script:

notepad  filter.  ps1

Type this code:

 Foreach ( $element  in  $input)

{

 If ( $element.  name.contains( ".exe" ))

{

 Write-Host  -fore  "red"   $element

}

 Else

{

 Write-Host  $element

}

}

The script will read the results in  $input and mark every line in red that includes the ".exe" term. 

The script functions flawlessly in the pipeline:

Dir  $env:windir | .\ filter.  ps1

Table of Contents | About PowerShell Plus

296

Sponsors | Resources | © BBS Technologies



Long waiting periods occur because the script doesn't go into action until  Dir has done its work. 

Moreover, because all the results of the preceding statement have to be stored temporarily first, 

memory consumption is extremely high and may even make Windows unstable:

Dir c:\  -recurse | .\ filter.  ps1

Quicker Streaming Mode

There are reasons why scripts used in the pipeline should support the rapid streaming mode. It 

works for scripts just as it does for functions: all you need to do is to define the  begin,  process, and end script blocks in your script. The code in the  begin block will be executed once at the beginning and can carry out initialization tasks or output messages to the user. The code in the  process block will be executed in real time for every incoming result of the preceding statement, and the code in 

the  end block will be executed at the end. It could carry out cleanup chores or simply report that the operation is concluded. Your filter script would function in real time as follows:

begin

{

 "Evaluation is beginning... one moment, please." 

}

process

{

 if ( $_.  name.contains( ".exe" ))

{

 Write-Host  -fore  "Red"   $_

}

 else

{

 Write-Host  $_

}

}

end

{

 "Evaluation is concluded." 

}

A normal script that doesn't implement any of the  begin,  process or 

 end blocks will automatically get what amounts to an  end block. 

However, you can't combine them. As soon as you insert one of the 

 begin,  process or  end blocks in your script, no more script code 

may be left outside one of these blocks. If you do, you will receive 

an error message like this one:

 No combined Begin/Process/End clauses with command 

 text could be processed. A script or a function can 

 decide over begin/process/end clauses or command 

 text, but not over both. 

 At C:\Users\Tobias Weltner\filter.ps1:23 char:9

 + "Done!" <<<< 

Table of Contents | About PowerShell Plus

297

Sponsors | Resources | © BBS Technologies

Writing Pipeline Results

While your script did process the results of the preceding statement faultlessly, it ended the pipeline. 

That's wasn't as noticeable because no additional statements followed after your script in the 

pipeline. The reason: your script received the results of the preceding statement, processed them, 

and then used  Write-Host to write them directly in the console. The results were therefore not 

passed on in the pipeline. That's OK if your script concludes the pipeline. 

However, if you want to write an authentic pipeline script that not only receives pipeline data but 

hands them on to the next statement, you need to make sure that the processed data are 

subsequently put back into the pipeline. The next script does that by using a  Switch condition to 

validate a number of file extensions. In this specific example, changing the characters of the names 

to upper case works:

begin

{

 Write-Host  " Evaluation is beginning... one moment, please." 

}

process

{

 $element  =  $_

 Switch( $_.  Extension.toLower())

{

 ".ps1"   {  $element.  name.toUpper() }

 ".vbs"   {  $element.  name.toUpper() }

 ".txt"   {  $element.  name.toUpper() }

 ".xml"   {  $element.  name.toUpper() }

default  {  $element.  name.toLower() }

}

}

end

{

 Write-Host  "Evaluation is concluded." 

}

This script simply outputs the results in the  process block to the pipeline. In this way, it allows the other following statements to process the results. For this reason, you could use  Out-File afterwards to wrap the results in a text file:

Dir | .\ filter.  ps1 |  Out-File  list.txt

.\ list.txt

Table of Contents | About PowerShell Plus

298

Sponsors | Resources | © BBS Technologies



Perhaps you noticed that the list includes only the file names and 

not the start and end messages of the script. As in the preceding 

example,  Write-Host output these two messages. But  Write-Host 

didn't output the file names. That shows the importance of the role 

Write-Host plays: use it for all messages that are supposed to 

appear immediately and never be redirected. 

Profile: Autostart Scripts

Many changes you make in the PowerShell console are in effect for just a limited period of time. All 

alias definitions, functions, and changes to Windows environment variables are valid only until you 

close the PowerShell console. That's why you should use profiles to make basic changes permanent. 

Profiles are special scripts that PowerShell runs automatically when you start it. Locate all your 

initialization tasks in profiles so that PowerShell will always use exactly the configuration you want it 

to use when it starts. 

Four Different Profile Scripts

On the whole, PowerShell supports four different profile scripts, which enable you to select a profile 

that fits your initialization tasks. The first question to ask is: should the initialization tasks apply to you personally or to all users? If you'd like the script to apply to you personally, use your own 

"current user" profile. However, if your statements are supposed to run for all users whenever 

PowerShell is started, the correct profile to use is "all users." 

Profile

Description

Location

All users

Common profile for all users

 $pshome\profile.ps1

All users 

Common profile for all users; 

 $pshome\Microsoft.PowerShell

(private)

valid only in powershell.exe

 _profile.ps1

Current user

Current user profile

 $((Split-Path  $profile -Parent) 

 + "\profile.ps1")

Current user  Current user profile; valid only   $profile

(private)

in powershell.exe

Table 10.2: PowerShell profiles

Table of Contents | About PowerShell Plus

299

Sponsors | Resources | © BBS Technologies



There are also "private" options for these two profiles. These only function if you use the Microsoft Windows PowerShell console. Are there others? Indeed there are. More and more companies are 

supporting PowerShell. Alternative consoles already exist that you could use instead of 

powershell.exe. Use the general profile if you'd like to have your modifications executed when 

PowerShell starts with applications developed by other companies. Use the private profile If you 

want your modifications to be executed only when using the original PowerShell console. 

Table 10.2 lists the four PowerShell profiles and also tells you 

where each profile can be found. You might notice a PowerShell 

design weakness here: the private profile for the current user can 

be accessed easily by using the predefined variable  $profile. That 

could lead to many users (and add-on developers) stored their 

extensions in this profile. However, because it is a private profile, it can only 

be run by the original Microsoft console. And that could become a problem 

right away if you switch to another company's PowerShell product. 

For this reason, you should try not to use private profiles as much as possible 

so that you can be prepared for future developments. Use the general profile 

instead, even if it isn't quite so easy to control. 

Creating Your Own Profile

Profiles aren't mandatory. That's why you might not have an available profile. You've already seen 

how easy it is create new PowerShell scripts and it's just as easy to create profile scripts

Perhaps you've created some useful alias shortcuts and would like these alias definitions to be 

automatically activated whenever PowerShell starts. You can achieve that by creating your own 

personal profile:

notepad  $(( Split-Path  $profile  -Parent)  +  "\profile.ps1" ) This opens Notepad. It will show whether a profile already exists. If not, it will offer to create a new, 

empty script. Click  Yes. 

If a profile script already exists, you should inspect it first. In all probability it originates from some PowerShell extension or other that you downloaded and installed. In this case, simply add some 

statements to the script. For example, insert the following statement into the profile script to set up 

a new alias called  edit, which will allow you to start Notepad conveniently:

 Set-Alias edit  notepad.exe

Save the script after that, and then close and reopen the PowerShell console. Your profile script will 

run invisibly in the background, and your new alias command will be created automatically. You can 

use it for convenient editing of PowerShell scripts:

edit  $(( Split-Path  $profile  -Parent)  +  "\profile.ps1" )

Table of Contents | About PowerShell Plus

300

Sponsors | Resources | © BBS Technologies



Create a Global Profile for All Users

You can create global profile scripts that all system users can use just as easily by specifying the 

location of the "all users" profile:

notepad  $pshome\ profile.ps1

Note that this is permitted only if you have administrator privileges. Otherwise, any user could 

manipulate the start of another user's console. If you aren't the administrator, Windows will deny 

you permission to store anything at this location. 

Windows Vista is a special case. Even when you log on as administrator, Vista will deprive you of 

administrator status: you're a normal user, at least if you haven't turned off the User Account 

Control (UAC). Consequently, to create or work on a global profile, you must first activate your full 

administrator privileges. To accomplish that, don't start PowerShell by clicking in the normal way. 

Instead, use the right mouse button, and then select  Run as Administrator in the shortcut menu. 

Your PowerShell console will run with full administrator privileges for all programs that you call from 

within the console, including the Notepad, which you could then use to modify the global profile. 

Some editors issue no problem reports if you work on the global 

profile without administrator privileges. Apparently, these editors 

have the capacity to make changes to the global profile, as shown 

by the fact that these changes go into effect when you restart 

PowerShell—and yet that's not security vulnerability. In reality, 

Windows Vista just deceives such editors. For compatibility reasons, Vista re-

directs the attempt to modify the protected profile file to a hidden shadow 

area where editors can change profile files in whatever way they wish. 

When PowerShell starts again the same thing happens: PowerShell processes 

the concealed shadow file instead of the protected profile file when no 

authentic global file is available. Could someone take advantage of this to 

foist a start script onto other users? 

No, there's no risk. The hidden file actually exists only in the user profile of 

the user who created it. It has no effect on other users and basically behaves 

exactly like the user's private profile file. You can then find shadow file copies 

in this directory:

Cd  $env:localappdata\VirtualStore

The shadow copy of the global profile is located in the 

 Windows\System32\WindowsPowerShell\v1.0 subdirectory. 

Table of Contents | About PowerShell Plus

301

Sponsors | Resources | © BBS Technologies



Digital Signatures for Your Scripts

Scripts can be easily faked or modified since they are simple text files. . Digital signatures provide 

greater security because they confirm the identity of the script author and guarantee that the script 

has not been altered since it was signed. To the extent that you trust the script publisher, you can 

be sure that nobody is trying to palm off malicious code on you. Even many experts don't completely 

understand how that works because these mechanisms are based on wickedly complex theories. 

Fortunately, in the practical world you need not concern yourself about these theories. What's 

important is that you familiarize yourself with the mechanisms and procedures. For this reason, all 

the important steps involved in using signatures will be embedded in easily understandable 

examples in the following sections. 

Finding an Appropriate Certificate

Since it is hardly possible to use a classic fountain pen to sign PowerShell scripts (not to mention all 

other digital data), you'll need another instrument: a certificate as well as a private and secret key. 

The certificate is your electronic identity and is proof of who produced the signature. The private and 

secret key ensures that only the certificate owner can use the certificate to produce signatures. 

So you're going to need a suitable certificate before you can digitally sign your own PowerShell 

scripts. The intended "code signing" purpose must be entered into the certificate and you'll also need a private and secret key for the certificate. PowerShell can find out whether certificates that meet 

these criteria are available on your computer system because all certificates are located in the  cert: virtual drive:

Dir cert:  -Recurse  -codeSigningCert

directory:  Microsoft.PowerShell.Security\Certificate:: CurrentUser\My

 Thumbprint                                Subject

 ----------                                -------

 E24D967BE9519595D7D1AC527B6449455F949C77  CN=PowerShellTestCert

The  -codeSigningCert parameter ensures that only those certificates are located that are approved 

for the intended "code signing" purpose and for which you have a private and secret key. 

In this case, just one certificate was found, but it could have been more or even none at all. If you 

have exactly one personal code-signing certificate, you could access it over this line:

Dir cert:\CurrentUser\My  -codeSigningCert

What is the difference between  Dir cert:\CurrentUser\My and  Dir 

 cert:CurrentUser\My? The answer: the first path specification is 

 absolute and consequently always works no matter what your 

current directory. The second path specification is  relative and will 

go amiss if you have set your current directory to a subdirectory of 

the certificate store. For this reason, always type a "\" character after  cert:. 

Table of Contents | About PowerShell Plus

302

Sponsors | Resources | © BBS Technologies



If you have a choice of several certificates, you have to narrow your choices down to one. In this 

example, you would specify the certificate name as your choice:

 $certificate  = Dir cert:\CurrentUser\My | 

 Where-Object {  $_.  Subject  -eq  "CN=PowerShellTestCert"  }

You can even use  SelectFromCollection() to open an option dialog and easily select a certificate 

provided that you address the internal functions of the .NET framework from within PowerShell. But 

first you would have to use  LoadWithPartialName() to load the  System.Security.dll in advance: $Store  =  New-Object `

 system.security.cryptography.X509Certificates.x509Store( `

 "My" ,  "CurrentUser" )

 $store.  Open( "ReadOnly" )

[ System.Reflection.Assembly]::`

LoadWithPartialName( "System.Security" )

 $certificate  = `

[ System.Security.Cryptography.x509Certificates.X509Certificate2UI]::`

SelectFromCollection( $store.  certificates, `

 "Your certificates" ,  "Please select" , 0)

 $store.  Close()

 $certificate

 Thumbprint                                Subject

 ----------                                -------

 372883FA3B386F72BCE5F475180CE938CE1B8674  CN=MyCertificate



Figure 10.1: Using an option dialog to select a certificate

Creating a New Certificate

In most cases, you won't find any code-signing certificates on your computer so you'll have to obtain 

one from one of several sources:

Table of Contents | About PowerShell Plus

303

Sponsors | Resources | © BBS Technologies

•

Private: Companies that run their own  Public Key Infrastructure (PKI) will provide you with a private PKI. Typically, only business firms that have their own computing centers or 

universities can offer this option because a PKI is complex and expensive. Moreover, such 

certificates are usually valid within their own sphere of influence only. 

•

Purchased: Well-known and recognized certification companies like  VeriSign or  Thawte will be happy to sell you code-signing certificates in return for payment. You won't need your own 

private PKI, and such certificates are valid worldwide. However, the transaction is expensive 

and must usually be repeated regularly, such as every year. In addition, you have to go 

through elaborate procedures to prove your identity to the certifying enterprise. 

•

Self-signed:An individual certificate basically requires no complicated PKI. You can simply 

act as your own signing authority and issue one to yourself. You can then test and tinker with 

all aspects of the digital signature. Nobody will prevent you from using your own self-signed 

certificates productively. However, self-signed certificates are not managed by any certifying 

authorities. You are solely responsible for these certificates and their integrity. If a self-signed 

certificate lands in the wrong hands, nobody will be able to help you limit damages. For this 

reason, self-signed certificates are mostly used solely in testing environments and later 

replaced with certificates issued by a recognized PKI signing authority. 

Creating Self-Signed Certificates

The key to making self-signed certificates is the Microsoft tool  makecert.exe. Unfortunately, this tool can't be downloaded separately and it may not be spread widely. You have to download it as part of 

a free "Software Development Kit" (SDK).  Makecert.exe is in the .NET framework SDK which you can find at http://msdn2.microsoft.com/en-us/netframework/aa731542.aspx. 

After the SDK is installed, you'll find  makecert.exe on your computer and be able to issue a new 

code-signing certificate with a name you specify by typing the following lines:

 $name  =  "PowerShellTestCert" 

pushd

Cd  "$env:programfiles\Microsoft Visual Studio 8\SDK\v2.0\Bin" 

.\ makecert.exe  -pe  -r  -n  "CN=$name"   -eku 1.3.6.1.5.5.7.3.3  -ss  "my" 

popd

It will be automatically saved to the  \CurrentUser\My certificate store. From this location, you can now call and use any other certificate:

 $name  =  "PowerShellTestCert" 

 $certificate  = Dir cert:\CurrentUser\My | 

 Where-Object {  $_.  Subject  -eq  "CN=$name" }

Examining the Code-Signing Certificate

The code-signing certificate represents your digital identity. But let's first take a look at what the 

certificate "knows" about you. To do so, first call the certificate and store it in a variable:

 # Call all code-signing certificates and store them in a field:

 $certs  = @(Dir cert:CurrentUser\My  -codeSigningCert)

 "{0} certificates were found."   -f  $certs.  count

Table of Contents | About PowerShell Plus

304

Sponsors | Resources | © BBS Technologies

 3 certificates were found. 

 # Use the first certificate that was found:

 $certificate  =  $certs[0]

 # Who is represented by this certificate? 

 $certificate.  subject

 CN=PowerShellTestCert

 # Who issued this certificate? 

 $certificate.  issuer

 CN=PowerShellTestCert

Declaring a Certificate "Trusted" 

As you will quickly see, the certificate naturally contains only data than you specified yourself when 

creating the certificate. Even falsehoods are allowed. Nobody is going to prevent you from assuming 

someone else's identity when you create a certificate yourself. This means that certificates are not 

tamper-proof. The certificate itself "knows" this: if you use  Verify() to check whether you can trust the data given in the certificate, PowerShell will respond with  False in the case of self-signed 

certificates: the certificate is not trusted. 

 $certificate.  Verify()

 False

And why is the certificate untrustworthy? You can use a little trick to find out the answer. PowerShell 

can access the options of the  System.Security.dll library of the .NET framework to get 

 DisplayCertificate() to display all the data about the certificate in a clearly understandable dialog box. But first you'll have to use  LoadWithPartialName() to reload the library:

 # Show all the certificate data in a dialog box:

[ System.Reflection.Assembly]::`

LoadWithPartialName( "System.Security" )

[ System.Security.Cryptography.x509Certificates.X509Certificate2UI]::`

DisplayCertificate( $certificate)

The dialog box tells you what's wrong with the certificate: "This CA Root certificate is not to be 

trusted. To enable trust, install this certificate in the Trusted Root Certificates Authorities store." In the area below this, the dialog box reports that  issued by and  issued for are identical, meaning that this is a self-signed certificate not issued by any external PKI. To make this certificate trusted, it 

must be stored additionally in the certificate store of trusted root certification authorities. 

Table of Contents | About PowerShell Plus

305

Sponsors | Resources | © BBS Technologies







Figure 10.2: Certificates must be declared trusted

In the case of certificates issued by a PKI, there is a difference 

between the references to  issued by and  issued for: after  issued 

 by, you'll find the name of the signing authority. This is precisely 

the advantage of PKI: all you need to do is to copy the signing 

authority just once to the store of trusted root certificate 

authorities. From then on, all certificates issued by this authority are 

automatically accepted as trusted. You can use their certificates immediately 

because the most important commercial certificate authorities are already 

registered in the store of root certificate authorities and they are valid as a 

standard of trust. 

You can get this done either manually or by letting PowerShell do it for you. The following lines will 

copy the certificate in  $certificate to the store of root certificate authorities:

 $Store  =  New-Object `

 system.security.cryptography.X509Certificates.x509Store( `

 "root" ,  "CurrentUser" )

 $Store.  Open( "ReadWrite" )

 $Store.  Add( $certificate)

 $Store.  Close()

Table of Contents | About PowerShell Plus

306

Sponsors | Resources | © BBS Technologies





Whenever you put new certificates into the certificate store, a 

dialog box will ask you whether you really want to do it. This 

prevents you from running this script unsupervised. 

The certificate is immediately trusted; you can use  Verify() to check it, and the result will now be True:

 $certificate.  Verify()

 True

If you open the certificate properties again in the dialog box, this will also tell you that the certificate is acceptable. Click the  Certification Path tab, and you will see the enabled trust. For self-signed certificates, it is the certificate itself. For certificates issued by a PKI, you will see which signing 

authority certifies that the certificate on your computer is trusted. The uppermost certificate in this 

view is always in your store of trusted root certificate authorities. 



Figure 10.3: The trusted certificate may now be used for signatures

To find out what exactly happened and how to also perform this procedure manually, take a look at 

your certificate store:

 certmgr.msc

Table of Contents | About PowerShell Plus

307

Sponsors | Resources | © BBS Technologies

 Microsoft Management Console (MMC) opens and shows you your certificate store. In the  Personal Certificates\Certificates branch, you'll find all your personal certificates, including the code-signing certificates that you created yourself, so you'll also find a copy of your self-signed certificate. If you delete the certificate, it will no longer be trusted. If you use your right mouse button to drag your 

self-signed certificate from the  Personal Certificates\Certificates branch to the  Trusted Root Certification Authorities\ Certificates branch, you will only need to select  Copy here to carry out the same copy procedure that your PowerShell code just automated for you. 

Signing PowerShell Scripts

PowerShell script signatures require only two things: a valid code-signing certificate and the script 

that you want to sign. The cmdlet  Set-AuthenticodeSignature takes care of the rest. 

Using the First Available Certificate

 Dir along with the parameter  -codeSigningCert will retrieve appropriate code-signing certificates. In the most rudimentary case, you can use the first available certificate to sign one—or even all—

PowerShell scripts in your current directory. The following lines will create a simple PowerShell script 

named  test.ps1 and sign this script file with first available code-signing certificate:

 ' "Hello world" '  >  test.ps1

 $certificate  = @(Dir cert:CurrentUser\My `

 -codeSigningCert  -recurse)[0]

 Set-AuthenticodeSignature  test.ps1  $certificate



 directory: C:\Users\Tobias Weltner

 SignerCertificate                         Status  Path

 -----------------                         ------  ----

 E24D967BE9519595D7D1AC527B6449455F949C77  Valid   test.ps1

The signature will be directly inserted into the script as a data block and consist of a digital 

fingerprint of the script (also known as a hash), which can be encrypted using the private key of the 

certificate. You'll find out how useful this is in the next section. 

 # Disclose the signature in the script file:

type  test.ps1

 "Hello world" 

 # SIG # Begin signature block

 # MIIEEQYJKoZIhvcNAQcCoIIEAjCCA/4CAQExCzAJBgUrDgMCGgUAMGkGCisGAQQB

 # gjcCAQSgWzBZMDQGCisGAQQBgjcCAR4wJgIDAQAABBAfzDtgWUsITrck0sYpfvNR

 # AgEAAgEAAgEAAgEAAgEAMCEwCQYFKw4DAhoFAAQUf02ePVE/w2QMUVYbQhkeTsl4

 # AdqgggIqMIICJjCCAY+gAwIBAgIQ0+Yc503n6LJKxel1bq1xtTANBgkqhkiG9w0B

 # AQQFADAdMRswGQYDVQQDExJQb3dlclNoZWxsVGVzdENlcnQwHhcNMDcwOTE0MTAz

 # MTE0WhcNMzkxMjMxMjM1OTU5WjAdMRswGQYDVQQDExJQb3dlclNoZWxsVGVzdENl

 # cnQwgZ8wDQYJKoZIhvcNAQEBBQADgY0AMIGJAoGBAO99s+DoANjTbcx1AYfvlR0q

 # MnoWKkHm9oc+F8hLAXpI8fPiBnxlqrwhZcmiuE1dE1rYIFktomNNtS0i70G2d445

 # o5mUKRtZ9THuwYGnCY+luDBM5cmN0sjcJK9iPHGgtIjFylYwMXhgHA8bBODc8zf0

Table of Contents | About PowerShell Plus

308

Sponsors | Resources | © BBS Technologies

 # 54lSoH5NTOB7uZ4fijVfAgMBAAGjZzBlMBMGA1UdJQQMMAoGCCsGAQUFBwMDME4G

 # A1UdAQRHMEWAEAtDyFc0PeNlfKpgXP1kDKahHzAdMRswGQYDVQQDExJQb3dlclNo

 # ZWxsVGVzdENlcnSCENPmHOdN5+iySsXpdW6tcbUwDQYJKoZIhvcNAQEEBQADgYEA

 # lkCaA6rqq9f/RJifhLY3gZPABVtymP6SGbm6LgASLKzYfdhcmsDxOnwQjAzo4xDk

 # nLux4JccT9vFM+0tR/5d3alsY9rH8E+y8gs6opZNsg0ls4CCDrEWCMD3BOk70ch5

 # yVCv0PDqtLboO/O4dcJiGt9HViUNISHMEYnlR1qgBJExggFRMIIBTQIBATAxMB0x

 # GzAZBgNVBAMTElBvd2VyU2hlbGxUZXN0Q2VydAIQ0+Yc503n6LJKxel1bq1xtTAJ

 # BgUrDgMCGgUAoHgwGAYKKwYBBAGCNwIBDDEKMAigAoAAoQKAADAZBgkqhkiG9w0B

 # CQMxDAYKKwYBBAGCNwIBBDAcBgorBgEEAYI3AgELMQ4wDAYKKwYBBAGCNwIBFTAj

 # BgkqhkiG9w0BCQQxFgQUwY+7iwxEhe2RiHMICRnV/mGny5gwDQYJKoZIhvcNAQEB

 # BQAEgYAyscnxSQsTeqIkmh92ros8NBS+L7tvwRDl8KwAwvBVsMTy7cFzz3lnqc5T

 # /25KFjcVp0Id6oKsQgHW07zdlcR7mC9nfwSKPBTE2G1+tmLHNopMqlcwjH0YriBW

 # f25oYXEKRMMgzsuwC4IjblrVGBe+MdcJy1Cmd2qR3UQXm3m6ZA==

 # SIG # End signature block

Recursively Signing All PowerShell Scripts

 Set-AuthenticodeSignature allows you to sign not only individual scripts, but also many scripts at once in one operation. That means you could use a few lines to sign all your personal PowerShell 

scripts with your digital signature.  Set-AuthenticodeSignature will also accept arrays as file names that can contain any number of separate file names. Instead of a fixed file name, enclose in 

parentheses a subexpression in your statement, and let  Dir list all the PowerShell scripts in the 

current directory. They will all be signed immediately. 

 $certificate  = @(Dir cert:CurrentUser\My  -codeSigningCert  -recurse)[0]

 Set-AuthenticodeSignature (Dir  *.  ps1)  $certificate

 SignerCertificate                         Status   Path

 -----------------                         ------   ----

 E24D967BE9519595D7D1AC527B6449455F949C77  Valid    filter.ps1

 E24D967BE9519595D7D1AC527B6449455F949C77  Valid    myscript.ps1

 E24D967BE9519595D7D1AC527B6449455F949C77  Valid    net.ps1

 E24D967BE9519595D7D1AC527B6449455F949C77  Valid    calcfunctions.ps1

 E24D967BE9519595D7D1AC527B6449455F949C77  Valid    test.ps1

 E24D967BE9519595D7D1AC527B6449455F949C77  Valid    test1.ps1

 E24D967BE9519595D7D1AC527B6449455F949C77  Valid    test3.ps1

 E24D967BE9519595D7D1AC527B6449455F949C77  Valid    testscript.ps1

 E24D967BE9519595D7D1AC527B6449455F949C77  Valid    unsigned.ps1

If you'd like to sign the scripts in your current directory as well as all PowerShell scripts in all 

subdirectories, the invocation is just as clear because you only need to use the  -recurse parameter: Set-AuthenticodeSignature (Dir  -recurse  -include  *.  ps1)  $certificate Selecting Certificates Using the Dialog Box

If there's more than one code-signing certificate on your computer, such as certificates used for 

diverse purposes, then you surely wouldn't want to use the first available certificate but the most 

suitable one. One option is to use the certificate name if you know it:

Table of Contents | About PowerShell Plus

309

Sponsors | Resources | © BBS Technologies

 $certificate  = Dir cert:\CurrentUser\My | 

 Where-Object {  $_.  Subject  -eq  "CN=PowerShellTestCert"  }

Another option is to use the built-in dialog box of .NET framework. It lists all certificates for selection that you pass to  SelectFromCollection(). Before you can do this, you must wrap the certificates in a special collection. In the simplest scenario, you should offer all code-signing certificates for 

selection:

 # Text for the dialog box:

 $title  =  "Available identities" 

 $text  =  "Please select a certificate for signing" 

 # Find certificates:

 $certificates  = Dir cert:\  -recurse  -codeSigningCert

 # Load System.Security librara and wrap 

 # certificates in a collection:

[ System.Reflection.Assembly]::`

LoadWithPartialName( "System.Security" )

 $collection  =  New-Object `

 System.Security.Cryptography.X509Certificates.X509Certificate2Collection

 $certificates |  ForEach-Object {  $collection.  Add( $_) }

 # Display options:

 $certificate  = `

[ System.Security.Cryptography.x509Certificates.X509Certificate2UI]::`

SelectFromCollection( $collection,  $title,  $text, 0)

 # Use selected certificate to sign

 Set-AuthenticodeSignature  -Certificate  $certificate[0] `

 -FilePath  test.ps1



 directory: C:\Users\Tobias Weltner

 SignerCertificate                         Status  Path

 -----------------                         ------  ----

 372883FA3B386F72BCE5F475180CE938CE1B8674  Valid   test.ps1

Validating Signed PowerShell Scripts

How exactly do signatures in scripts benefit you and others? The simple answer is they can be 

validated, both manually and automatically, and tell you whether a PowerShell is trusted or may 

contain malicious code. 

•

Validate it yourself: For manual validation, check whether a signature is in a PowerShell 

script and if it is, whether it is unobjectionable. Among other things, you can find out who 

signed the script, whether the script code was changed, and whether whoever signed the 

script is someone you trust. 

•

Validate automatically: If you set the PowerShell execution policy to  AllSigned, PowerShell will carry out validation automatically as soon as you attempt to run the script. The script will 

run only if the script issuer is trusted and the signature has not been altered since it was 

signed. 

Table of Contents | About PowerShell Plus

310

Sponsors | Resources | © BBS Technologies

Manual Validation

The cmdlet  Get-AuthenticodeSignature validates signatures. This cmdlet requires the name of the 

script file that you want to examine. The script file doesn't have to include a signature. Whether it 

does or doesn't, the  StatusMessage property will tell you the script status:

 ' "Hello" '  >  unsigned.ps1

 $check  =  Get-AuthenticodeSignature  unsigned.ps1

 $check.  StatusMessage

 The file "C:\Users\Tobias Weltner\unsigned.ps1" 

 is not digitally signed. The script will not execute

 on the system. Please see "get-help about_signing" 

 for more details. 

Note that this text conveys exactly the same message that you would receive if you ran an unsigned 

script, even though the execution policy is set to  RemoteSigned or  AllSigned. This means that PowerShell carries out precisely the same validation procedure internally when, depending on the 

current execution policy, it examines the scripts you try to start. Another equally useful property is 

 Status, which summarizes the script status in just one concise phrase:

 $check.  Status

 NotSigned

What happens when you inspect script signatures?  Table 10.3 provides an overview of possible validation results, as well as causes. You can use  get-authenticodesignature to easily ascertain the security status of scripts, which scripts have a valid signature, and which scripts lack signatures or 

whose contents have been modified:

 Get-AuthenticodeSignature (Dir  *.  ps1)



 directory: C:\Users\Tobias Weltner

 SignerCertificate                         Status        Path

 -----------------                         ------        ----

 E24D967BE9519595D7D1AC527B6449455F949C77  Valid         filter.ps1

 E24D967BE9519595D7D1AC527B6449455F949C77  Valid         hauptskript.ps1

 E24D967BE9519595D7D1AC527B6449455F949C77  Valid         myscript.ps1

 E24D967BE9519595D7D1AC527B6449455F949C77  Valid         net.ps1

 E24D967BE9519595D7D1AC527B6449455F949C77  Valid         calcfunctions.ps1

 E24D967BE9519595D7D1AC527B6449455F949C77  Valid         test.ps1

 E24D967BE9519595D7D1AC527B6449455F949C77  HashMismatch  test1.ps1

 E24D967BE9519595D7D1AC527B6449455F949C77  UnknownError  test3.ps1

 E24D967BE9519595D7D1AC527B6449455F949C77  Valid         testscript.ps1

 E24D967BE9519595D7D1AC527B6449455F949C77  Valid         unsigned.ps1

                                           NotSigned     unterskript.ps1

If you want to see only those scripts that are potentially malicious, whose contents have been 

tampered with since they were signed ( HashMismatch), or whose signature comes from an untrusted 

certificate ( UnknownError), use  Where-Object to filter your results:

Table of Contents | About PowerShell Plus

311

Sponsors | Resources | © BBS Technologies

 Get-AuthenticodeSignature (Dir  *.  ps1) | 

 Where-Object {(( $_.  Status  -eq  "HashMismatch" ) `

 -or ( $_.  Status  -eq  "UnknownError" ))}



 directory: C:\Users\Tobias Weltner

 SignerCertificate                         Status        Path

 -----------------                         ------        ----

 E24D967BE9519595D7D1AC527B6449455F949C77  HashMismatch  test1.ps1

 94FD1387CE1CA1340E59A7B16541C6179FDEEC7D  UnknownError  test3.ps1

Status

Message

Description

The file "xyz" is not digitally 

Since the file has no digital 

signed. The script will not 

signature, you must use Set-

 NotSigned

execute on the system. Please  AuthenticodeSignature to 

see "get-help about_signing" 

sign the file. 

for more details. 

The file "xyz" cannot be loaded.  The used certificate is 

A certificate chain processed, 

unknown. Add the certificate 

 UnknownError  but ended in a root certificate 

publisher to the trusted root 

which is not trusted by the 

certificates authorities store. 

trust provider. 

File XXX check this cannot be 

loaded. The contents of file 

"â€¦" may have been tampered 

because the hash of the file 

The file contents were 

 HashMismatch  does not match the hash stored  changed. If you changed the 

in the digital signature. The 

contents yourself, resign the 

script will not execute on the 

file. 

system. Please see "get-help 

about_signing" for more 

details. 

The file contents match the 

 Valid

Signature was validated. 

signature and the signature is 

valid. 

Table 10.3: Status reports of signature validation and their causes

Table of Contents | About PowerShell Plus

312

Sponsors | Resources | © BBS Technologies



Automatic Validation

You don't need to validate the signatures of your script files because PowerShell will carry out 

validation automatically when you try to start a script. The script will run only if the script file 

signature is valid. In all other cases, you will get an error message like those in Table 10.3.  In this way, you can ensure that only those scripts will run that were inspected by a trusted authority and 

were found to be valid (that is, signed). Automatic validation will alert you as well if the script 

contents have been subsequently modified. 

Automatic validation is always active when you use  Set-ExecutionPolicy to set the execution policy either to  AllSigned or  RemoteSigned. All scripts will be tested in principle if you choose  AllSigned. 

If you set your execution policy to  AllSigned, you should make sure 

that your profile scripts are correctly signed. Otherwise, PowerShell 

will no longer execute the profile scripts. 

If you select  RemoteSigned, only those scripts will be checked that you downloaded from the 

Internet, received as an e-mail attachment, or from some other unreliable source. Here's a little 

test:

 # Set ExecutionPolicy to AllSigned. All 

 # scripts must now have a valid signature:

 Set-ExecutionPolicy AllSigned

 # Create an unsigned test script file. 

 # It will not be able to run:

 ' "Hello world" '  >  test1.ps1

.\ test1.ps1

 The file "C:\Users\Tobias Weltner\test1.ps1" 

 cannot be loaded. The file "C:\Users\Tobias 

 Weltner\test1.ps1" is not digitally signed. 

 The script will not execute on the system. Please see

 "get-help about_signing" for more details. 

 At line:1 char:11

 + .\test1.ps1 <<<< 

 # Sign the script file with an untrusted certificate:

 $certificate  = Dir cert:\CurrentUser\My | 

 Where-Object {  $_.  Subject  -eq  "CN=malicious certificate"  }

 Set-AuthenticodeSignature  test1.ps1  $certificate

 directory: C:\Users\Tobias Weltner

 SignerCertificate                         Status  Path

 -----------------                         ------  ----

 94FD1387CE1CA1340E59A7B16541C6179FDEEC7D  Valid   test1.ps1

 # If the certificate is not trusted, 

 # you will always get an error message:

Table of Contents | About PowerShell Plus

313

Sponsors | Resources | © BBS Technologies



.\ test1.ps1

 The file "C:\Users\Tobias Weltner\test1.ps1" 

 cannot be loaded. A certificate chain processed, 

 but ended in a root certificate which is not 

 trusted by the trust provider. 

 At line:1 char:11

 + .\test1.ps1 <<<< 

 # Sign the script with a trusted certificate:

 $certificate  = Dir cert:\CurrentUser\My | 

 Where-Object {  $_.  Subject  -eq  "CN=PowerShellTestCert"  }

 Set-AuthenticodeSignature  test1.ps1  $certificate



 directory: C:\Users\Tobias Weltner

 SignerCertificate                         Status  Path

 -----------------                         ------  ----

 E24D967BE9519595D7D1AC527B6449455F949C77  Valid   test1.ps1

 # If you used a trusted certificate for the signature, 

 # the script will be allowed to run:

.\ test1.ps1

 Hello world

The sole difference between a trusted and an untrusted certificate 

is the question of whether the certificate publisher is specified in 

the special  trusted root certificates authorities store. But even 

when you invoke a script signed with a trusted certificate, your first 

invocation will be accompanied by an additional query:

 Do you want to run software from this untrusted publisher? 

 The file "C:\Users\Tobias Weltner\testscript.ps1" is 

 published 

 by "CN=PowerShellTestCert". This publisher is not trusted on 

 your system. Only run scripts from trusted publishers. 

 [E] Never run  [N] Do not run  [M] Run once  [A] Always run  

 [?] Help (default is "N"):

Only when you answer by selecting "A" for "Always run" will the certificate 

publisher be placed in the trusted root certificates authorities store. Then, 

you won't be pestered with further queries for all the scripts signed with this 

certificate. If you'd like to avoid this query from the start, simply add the 

publisher of your script to the list of trusted root certificates authorities and 

also to the list of trusted publishers. With self-signed certificates, you could 

type:

 # Select certificate:

 $name  =  "PowerShellTestCert" 

Table of Contents | About PowerShell Plus

314

Sponsors | Resources | © BBS Technologies

 $certificate  = Dir cert:\CurrentUser\My | 

 Where-Object {  $_.  Subject  -eq  "CN=$name "  }

 # Declare certificate publisher to be generally trusted

 $Store  =  New-Object `

 system.security.cryptography.X509Certificates.x509Store( `

 "root" ,  "CurrentUser" )

 $Store.  Open( "ReadWrite" )

 $Store.  Add( $certificate)

 $Store.  Close()

 # Run certificates of this publisher:

 $Store  =  New-Object `

 system.security.cryptography.X509Certificates.x509Store( `

 "TrustedPublisher" ,  "CurrentUser" )

 $Store.  Open( "ReadWrite" )

 $Store.  Add( $certificate)

 $Store.  Close()

Building a Miniature PKI

You've seen that you can use self-signed certificates to fully utilize PowerShell security functions 

without an elaborate PKI. While a managed PKI is the better approach, you should also look at how 

you can build your own miniature PKI with the help of the Microsoft tool  makecert.exe.  before you decide to entirely forego the security of digital signatures just because you have no PKI available. 

In the following example, the intended aim is to allow a business department to sign PowerShell 

scripts created by you with valid signatures. The signatures are to be valid across the enterprise. In 

addition, every staff member of the department will receive a personal certificate so that it will be 

possible to trace who has signed which script. 

Creating a Root Certificate

The first step is to create for the department a root certificate, which will not actually be used later 

for signing purposes. It serves merely as publisher of staff certificates. The root certificate will not be created in the certificate store of the current user but in the  Local Machine store so you will require administrator privileges. This is how to create a root certificate:

 $departmentname  =  "IT Department 23" 

pushd

Cd  "$env:programfiles\Microsoft Visual Studio 8\SDK\v2.0\Bin" 

.\makecert  -n  "CN=$departmentname"   -a sha1  -eku 1.3.6.1.5.5.7.3.3 `

 -r  -sv  root.pvk  root.cer  -ss Root  -sr localMachine

 Succeeded

Popd

Table of Contents | About PowerShell Plus

315

Sponsors | Resources | © BBS Technologies



 Makecert has created the root certificate as well as the files  root.pvk and  root.cer. Both will be used later but right now you should verify that the certificate was created properly:

 $certificate  = Dir cert:\LocalMachine\Root | 

 Where-Object {  $_.  Subject  -eq  "CN=$departmentname"  }

 $certificate



 directory: Microsoft.PowerShell.Security\Certificate::

 LocalMachine\Root

 Thumbprint                                Subject

 ----------                                -------

 AD68EC74428B4F294B1FDF7EB8A64D5ED327F84B  CN=IT Department 23

Creating Staff Certificates

With the help of the root certificate, you can now create any number of staff certificates as long as 

you know the secret password that you stipulated when creating the root certificate. Ideally, only 

the department head knows the password. This is how you would proceed to create a new staff 

certificate:

 $staff  =  "Tobias Weltner" 

pushd

Cd  "$env:programfiles\Microsoft Visual Studio 8\SDK\v2.0\Bin" 

.\makecert  -pe  -n  "CN=$staff"   -ss MY  -a sha1  -eku 1.3.6.1.5.5.7.3.3 `

 -iv  root.pvk  -ic  root.cer

 Succeeded

popd

 Makecert registers the previous root certificate as publisher in the 

new staff certificate. This information is loaded by  makecert from 

the  root.pvk and  root.cer files, which were generated when the 

root certificate was created. You should store these two files in a 

safe location as soon as all staff certificates have been created. You 

will need these two files if you want to create additional staff certificates 

later. Protect in particular the  root.pvk file from unauthorized access, because 

whoever has this file (as well as the secret access code you invented when 

you created the root certificates) can make new staff certificates. 

Verify that the staff certificate was created properly:

 $staff  =  "Tobias Weltner" 

 $certificate  = Dir cert:\CurrentUser\My | 

 Where-Object {  $_.  Subject  -eq  "CN=$staff"  }

[ System.Reflection.Assembly]::`

Table of Contents | About PowerShell Plus

316

Sponsors | Resources | © BBS Technologies

LoadWithPartialName( "System.Security" )

[ System.Security.Cryptography.x509Certificates.X509Certificate2UI]::`

DisplayCertificate( $certificate)

The dialog box will now show differing specifications for  Issued by and  Issued for. The issuer of the staff certificate is now your new root certificate, and if you click the  Certification path tab, you'll then see a genuine chain of trust starting with the root certificate for your department. That has great 

advantages because now all that remains to be done is to register your root certificate in the store of 

trusted root certification authorities in the entire enterprise. All the staff certificates originating from your root certificate are now automatically trusted. 

Creating a Backup

Every staff member should save a copy of his staff certificate and store it in a protected location. 

The backup can be done directly from within PowerShell. The following lines will create a password-

protected PFX file with the name  backup.pfx in the current directory. In the example, the password is set to "strictlyconfidential" and, of course, should never be modified. The certificate, along with its secret and private key can be imported again only if the specified password is known. 

 $filename  =  "$(get-location)\backup.pfx" 

 $pwd  =  "strictlyconfidential" 

[ System.Reflection.Assembly]:: LoadWithPartialName( "System.Security" )

 $collection  =  New-Object `

 System.Security.Cryptography.X509Certificates.X509Certificate2Collection

 $collection.  Add( $certificate)

 $bytes  =  $collection.  Export(3,  $pwd)

 $filestream  =  New-Object  System.IO.FileStream( $filename,  "Create" ) $filestream.  Write( $bytes, 0,  $bytes.  Length)

 $filestream.  Close()

If you assume the role of department head, you can now create a code-signing certificate for every 

staff member, generate a respective  pfx backup copy, and then forward this to every staff member. 

To open this  pfx file, a staff member would only need to double-click the file, enter the assigned password, and confirm all further settings. Finally, the certificate could be installed in its own 

certificate store, and staff members could begin to sign their scripts. 

Installing Enterprise-Wide Root Certificates

Your "miniature PKI" should already be functioning on the computer where you stored the root 

certificate. So that your new staff certificates are recognized enterprise-wide, register the root 

certificate across the enterprise in the store of trusted root certification authorities. You can do that 

either manually or you can use Group Policy guidelines in an Active Directory for automatic 

distribution. 

PowerShell installs the root certificate in the  root.cer file in the system-wide store of trusted root certification authorities in the following way:

copy  "$env:programfiles\Microsoft Visual Studio 8\SDK\v2.0\Bin\root.cer"  `

 "root.cer" 

 $Store  =  New-Object `

Table of Contents | About PowerShell Plus

317

Sponsors | Resources | © BBS Technologies

   system.security.cryptography.X509Certificates.x509Store( `

 "root" ,  "LocalMachine" )

 $filename  =  "$(get-location)\root.cer" 

 $store.  Open( "ReadWrite" )

 $collection  =  New-Object `

 System.Security.Cryptography.X509Certificates.X509Certificate2Collection

 $collection.  Import( $filename)

 $store.  Add( $collection[0])

 $store.  Close()

You could likewise open the  root.cer file by double-clicking it or invoke it from within PowerShell:

.\ root.cer

In this case, you would install the certificate interactively with the help of an assistant. In the dialog box, click the  Install certificate button. Follow the directions of the assistant, and select the option Save all certificates in the following store. Click  Search. 

A further dialog box should open. Select the option  Display physical store. Then select in the upper tree structure the following branch:  Trusted root certification authorities/Local computer. Click  OK 

and then  Continue to install the certificate. 

Summary

PowerShell scripts are text files with a ".psl" file extension. They function like the batch files of older consoles and may include any PowerShell statements. If you start a PowerShell script, PowerShell 

will execute its included statements. 

You can't start scripts without the permission of the execution policy. This setting initially prohibits 

scripts from starting, but an administrator can use  Set-ExecutionPolicy to change the setting (see 

Table 10.1) and specify which scripts are allowed to start. The execution policy can specify that only those scripts may run that have a valid digital signature; it can also distinguish between local scripts 

and scripts originating from the Internet. 

To execute a PowerShell script, the script must be invoked with its relative or absolute path name. 

For this reason, it does not suffice to specify only the script name unless the script is in a trusted 

directory, meaning all directories that are named in the  Path environment variable. Another way to launch scripts comfortably is to use an alias name that you assign to the script with the help of  Set-Alias. 

Arguments can be passed to scripts. PowerShell automatically analyzes all the data that you specify 

after a script name when you invoke a script, and it uses a space as separator for arguments. The 

arguments are provided to the script in  $args. Alternatively, the script can also bind arguments to set parameters. To do so, the parameters, much like functions, are defined inside the script by using 

the  Param statement. 

So to ensure that elaborate scripts remain clearly understandable, individual tasks should be 

encapsulated as functions. Functions must always be located at the beginning of a script. However, 

they can be relocated to an external library script that is subsequently reloaded by a work script 

similar to an  Include statement. 

Table of Contents | About PowerShell Plus

318

Sponsors | Resources | © BBS Technologies

PowerShell scripts may be used inside the pipeline. So that scripts do not block the pipeline, they must, like functions, define at least one  process block. The block is separately invoked for every object in the pipeline. 

All variables and functions that a script creates are private and apply only within the script. If you 

want to cancel their isolation, carry out a dot-sourced invocation of scripts and functions, such as 

typing a single dot in front of them when they are called. Set the validity of separate variable and 

function layers by using area designators like  script: and  global:. 

When starting, PowerShell automatically looks for a series of profile scripts. If they are present, 

PowerShell runs them automatically provided that the execution policy allows their execution. You 

can set up the PowerShell work environment in the profile scripts and define alias names or 

functions that are to be provided automatically after PowerShell starts. 

Digital signatures ensure that a script originates from a trusted source and has not been 

subsequently modified. You can imagine such scripts as a stamp of quality. Depending on the 

execution policy setting, PowerShell will permit only those scripts to run that have this stamp of 

quality. 

Table of Contents | About PowerShell Plus

319

Sponsors | Resources | © BBS Technologies

CHAPTER 11. 

 Finding and Avoiding Errors

The more complex your commands, pipelines, functions, or scripts become, the more often that 

errors can creep in. PowerShell has its own remedies for finding and correcting errors at various 

levels of complexity. 

In simple cases, use "what-if" scenarios to check whether a command or a pipeline is really doing what you expect it to do. With the help of such scenarios, you can simulate the result of commands 

without actually executing the commands. You can permit commands to do their work only after 

you're convinced that the commands will function flawlessly. 

If you've written your own functions or scripts, PowerShell can also step through the code and halt 

its execution at locations called breakpoints, which allow you to examine functions or scripts more 

closely at these locations. You can verify whether variables actually do contain an expected result. 

Moreover, PowerShell offers you the option of integrating debugging messages into functions or 

scripts. This enables your code to output progress reports to you at key locations when your code is 

in the development stage. 

Topics Covered:

•

" What-if" Scenarios  

•

Dr

  y Runs: Simulating Operations  

•

S

  tepped Confirmation: Separate Queries  

•

T

  able 11.1: Selection options in stepped confirmation  

•

A

  utomatic Confirmation of Dangerous Actions  

•

D

  efining Fault tolerance  

•

T

  able 11.2: Setting options for ErrorAction and $ErrorActionPreference  

•

R

  ecognizing and Responding to Errors  

•

E

  rror Status in $? 

•

U

  sing Traps  

•

T

  raps Require Unhandled Exceptions  

•

U

  sing Break and Continue to Determine What Happens after an Error  

•

F inding Out Error Details  

•

E

  rror Records: Error Details  

•

E

  rror Record by Redirection  

•

T

  able 11.3: Properties of an error record  

•

E

  rror Record(s) Through the -ErrorVariable Parameter  

•

E

  rror Records Through $Error  

•

E

  rror Record Through Traps  

•

U

  nderstanding Exceptions  

•

H

  andling Particular Exceptions  

•

T

  hrowing Your Own Exceptions  

•

C

  atching Errors in Functions and Scripts  

•

S

  tepping Through Code: Breakpoints  

•

T

  able 11.4: Settings for $DebugPreference  

•

T

  able 11.5: Fine adjustments of the PowerShell console  

•

T

  racing: Displaying Executed Statements  

•

S

  tepping: Executing Code Step-by-Step  

Table of Contents | About PowerShell Plus

320

Sponsors | Resources | © BBS Technologies

•

S

  ummary  

"What-if" Scenarios

Automation is enormously convenient, but it you can also automate errors into the process that can 

wreak total havoc. That's why PowerShell has some mechanisms t to check and protect against 

potentially dangerous processes: these mechanisms are simulation and stepped confirmation. 

Dry Runs: Simulating Operations

If you'd like to first find out what effects a particular command  could have when you use it, try 

simulation. PowerShell will make no changes to your system but show you what would happen if you 

were to run a command without simulation. Use the  -whatif parameter, which many cmdlets 

support, to turn on simulation. 

 # What exactly would happen if Stop-Process 

 # ended all processes beginning with "c"? 

 Stop-Process  -Name c *  -WhatIf

 WhatIf: "Stop-Process" operation is run for the target "ccApp (920)". 

 WhatIf: "Stop-Process" operation is run for the target "CCC (5612)". 

 WhatIf: "Stop-Process" operation is run for the target "ccSvcHst (1848)". 

 WhatIf: "Stop-Process" operation is run for the target "conime (5280)". 

 WhatIf: "Stop-Process" operation is run for the target "csrss (632)". 

 WhatIf: "Stop-Process" operation is run for the target "csrss (688)". 

Of course, your own functions and scripts will support simulation only if you integrate them. Do this 

by simply defining a switch parameter called  whatif:

 function MapDrive([ string] $driveletter, `

[ string] $target, [ switch] $whatif)

{

 If ( $whatif)

{

 Write-Host  "WhatIf: creation of a network drive "   + `

 "with the letter ${driveletter}: at destination $target" 

}

 Else

{

 New-PSDrive  $driveletter FileSystem  $target

}

}

 # Simulate the command first to see what it does:

MapDrive k \\127.0.0.1\c$  -whatif

 WhatIf: creation of a network drive 

 with letter k: at destination \\127.0.0.1\c$

 # Execute command:

Table of Contents | About PowerShell Plus

321

Sponsors | Resources | © BBS Technologies

MapDrive k \\127.0.0.1\c$

 Name       Provider      Root

 ----       --------      ----

 k          FileSystem    \\127.0.0.1\c$

Stepped Confirmation: Separate Queries

As you've seen, PowerShell commands, mainly by using wildcards like "*", are capable of carrying out several tasks at once. To prevent unintentional operations from running, you can give the 

command the task of asking for confirmation before carrying out every single operation. In contrast 

to simulation, stepped confirmation gives you the option of actually carrying out operations one at a 

time, or all at once. Use the  -Confirm parameter to turn on stepping:

 Stop-Service a *  -Confirm

 Confirm

 Are you sure you want to perform this action? 

 Performing operation "Stop-Service" on Target "ApplicationLookup (AeLookupSvc)". 

 |Y| Yes  |A| Yes to All   |N| No  |L| No to All  |S| Suspend  |?| Help :

 Confirm

 Are you sure you want to perform this action? 

 Performing operation "Stop-Service" on Target "Agere Modem Call Progress Audio 

 (AgereModemAudio)". 

 |Y| Yes  |A| Yes to All   |N| No  |L| No to All  |S| Suspend  |?| Help:

The confirming procedure offers you six options for each action that can be selected by pressing a 

button. 

Option

Description

 Yes

Action will be carried out

 Yes to 

Action will be carried out and all remaining actions will also be 

 all

carried out without further queries

 No

Action will not be carried out

 No to all  Action will not be carried out and the remaining actions will also not 

be carried out without further queries (terminate)

The action will be interrupted and you will be returned to the 

 Suspend  prompt, where you can carry out additional checks. As soon as you 

type the command "exit", you will continue the interrupted action

Table of Contents | About PowerShell Plus

322

Sponsors | Resources | © BBS Technologies

 Help

Supplies Help information

Table 11.1: Selection options in stepped confirmation

Automatic Confirmation of Dangerous Actions

Because some operations are more critical than others, developers of PowerShell cmdlets have 

assigned a risk evaluation to each command. There are three settings to choose from:  Low,  Medium, and  High. 

The  Stop-Process cmdlet, which is used to stop running processes and programs, is set to  Medium because while it is somewhat risky to stop processes, you normally shouldn't expect any irreversible 

damage. The Exchange cmdlet, used to remove a user mailbox, is categorized as  High because when 

a mailbox is deleted all of its contents are lost as well. 

You may not change this risk assessment, but you can respond to it. PowerShell's default setting 

requires that it check with you automatically about operations in the  High risk category even if you haven't specified the  -Confirm parameter. This standard setting is stored in the  $ConfirmPreference variable so you can respond by making the default less or more rigorous. If you set 

 $ConfirmPreference to "  Low" (and use quotation marks), PowerShell will automatically question all actions. But if you set  $ConfirmPreference to  "None" , PowerShell will no longer automatically question any actions, even if cmdlets are set to  High. 

 # Calculator may be started and stopped without being called

 # into question because Stop-Process is in the Medium category:

Calc

 Stop-Process  -Name calc

 # If the default setting is changed from High to Low, 

 # PowerShell will automatically question every action:

 $ConfirmPreference  =  "Low" 

calc

 Stop-Process  -Name calc

 Confirm

 Are you sure you want to perform this action? 

 "Stop-Process" operation is run for the target "calc(2388)". 

 |Y| Yes  |A| Yes to All   |N| No  |L| No to All  |S| Suspend  |?| Help:

Two consequences result from this:

•

High-risk environment: If you are uncertain, or working in an environment in which the 

slightest error can have far-reaching consequences, set  $ConfirmPreference to  "Low"  so that you will be queried even for actions that aren't so hazardous. 

•

Unintentional execution:If actions run unintentionally, then no interactive queries should 

appear, not even for risky actions. In such cases, turn off querying by using the  -Confirm:

 $false parameter for a single command. Alternatively, turn off automatic querying in general 

Table of Contents | About PowerShell Plus

323

Sponsors | Resources | © BBS Technologies



by setting  $ConfirmPreference="None" . If you'd like to turn off automatic querying for scripts only but still keep the console in interactive mode, then set 

 $script:ConfirmPreference="None"  inside your script. 

Defining Fault tolerance

PowerShell is very tolerant when errors occur: it simply continues execution—and that is often 

exactly the mode you want. For example, imagine if you started a file copying action that takes 

several hours. Returning to your system some time later, you wouldn't be pleased to find out that 

the operation had already been halted after the fifth data file because of an error. PowerShell default 

settings take this into account and carry out your tasks to the greatest possible extent rather than 

stopping them because of errors. 

If an error fails to cause PowerShell to halt an entire task, you can end up with undesired 

consequences. Although PowerShell can't locate the file in the previous example and can't delete it 

for this reason, the subsequent command is executed anyway, and PowerShell concludes its work 

with a cheerful "Done!". 

Del  "nosuchthing" ;  Write-Host  "Done!" 

 Remove-Item : Cannot find "C:\Users\Tobias Weltner\nosuchthing" 

 because it does not exist. 

 At line:1 char:4

 + Del  <<<< "nosuchthing"; Write-Host "Done!" 

 Done! 

If you set the  $ErrorView automatic variable to the  CategoryView 

value, PowerShell will sum up error messages briefly in just one 

line, and that's the better policy for real professionals:

 $errorview

 NormalView

1 /$null

 Attempted to divide by zero. 

 At line:1 char:3

 + 1/$ <<<< null

 $errorview  =  "categoryview" 

1 /$null

 NotSpecified: (:) [], RuntimeException

Table of Contents | About PowerShell Plus

324

Sponsors | Resources | © BBS Technologies



To determine how PowerShell handles errors, use  ErrorAction, which specifies whether an error may 

terminate or may not terminate an operation. The default setting is  "Continue" , meaning that PowerShell will report an error but continue. Set  ErrorAction to  "Stop"  so that PowerShell doesn't just go on processing the next statement but stops if a terminating error crops up. This setting will 

be in effect for all subsequent commands or only for a particular one as the case may be. 

If the setting is supposed to apply to one particular command, use the  -ErrorAction parameter of the command to set  ErrorAction. Then the next command will halt the action and will no longer output 

any messages that the action was successful:

Del  "nosuchthing"   -ErrorAction  "Stop" ;  Write-Host  "Done!" 

 Remove-Item : Command execution stopped because the shell variable 

 "ErrorActionPreference" is set to Stop: Cannot find path 

 "C:\Users\Tobias Weltner\nosuchthing" because it does not exist. 

 At line:1 char:4

 + Del  <<<< "nosuchthing" -ErrorAction "Stop"; Write-Host "Done!" 

On the other hand, if you want the setting to apply universally as a new default to all commands, 

then assign it to the  $ErrorActionPreference variable. Take the example of a script: type this 

statement at the beginning of your script if you prefer actions in general to be stopped when errors 

occur:

 $script:ErrorActionPreference  =  "Stop" 

Whenever you let a cmdlet run, PowerShell checks first to see 

whether you used the  -ErrorAction parameter to set the 

 ErrorAction for the cmdlet. If not, PowerShell will use as an 

alternative the value deposited in  $ErrorActionPreference. If you 

would like to change the default in scripts only and not in the 

interactive console, then use a local variable in the script the way you did in 

the above example. Local variables begin with the "  script:" prefix. 

Setting

Description

 SilentlyContinu

Suppress error message; continue to run the next command

 e

 Continue

Output error message; continue to run next command 

(default)

 Stop

Halt the execution

 Inquire

Query

Table of Contents | About PowerShell Plus

325

Sponsors | Resources | © BBS Technologies

Table 11.2: Setting options for ErrorAction and $ErrorActionPreference

Recognizing and Responding to Errors

If you want to react to errors yourself so you can output your own, more readable error messages, 

you'll need two things: first, a way to suppress the built-in error message; second, a mechanism 

telling you whether an error has arisen or not. You already know how to suppress error messages 

because you have, once again, dealt with by  ErrorAction. If you set it to  "SilentlyContinue" , then PowerShell will no longer output any error messages. You've already taken the first step:

Del  "nosuchthing"   -ErrorAction  "SilentlyContinue" 

Error Status in $? 

Evaluate the  $?  variable as well to give the user feedback about whether an action was successful or not. . It will tell you whether an error has occurred. If one has, the variable will contain the value 

 $false. This should give you enough to write a little evaluation script:

Del  "nosuchthing"   -ErrorAction  "SilentlyContinue" 

 If ( !$?) {  "Didn't work!" ;  break };  "Everything's okay!" 

If you're now wondering about the peculiarity of the conglomeration "(!$?)", here's a brief refresher: 

"!" stands for the logical "Not" operator. The condition is met if the  $?  variable doesn't contain the $true value (meaning that an error has occurred).  Break ensures that the string doesn't keep on running. The result is that the text "Everything's okay!" will be output only if an error hasn't occurred. 

If you'd like to find out just what sort of error came up, inspect the element  0 in the  $error array. 

PowerShell keeps a record of all errors in  $error. The most recent one is in the element  0: Del  "nosuchthing"   -ErrorAction  "SilentlyContinue" 

 If ( !$?) {  "Error: $($error[0])" ;  break };  "Everything's okay!" 

 Error: Cannot find path "u:\nosuchthing" because it does not exist. 

Using Traps

Alternatively, you can use so-called "traps". If you know that a particular command may not execute successfully under runtime conditions, then note in front of it what should happen if an error occurs:

 Trap {  "A dreadful error has occurred!" } 1 /$null

 A dreadful error has occurred! 

 Attempted to divide by zero. 

 At line:1 char:53

 + Trap { "A dreadful error has occurred!"} 1/$ <<<< null

Table of Contents | About PowerShell Plus

326

Sponsors | Resources | © BBS Technologies

This shows that the  Trap statement specifies PowerShell code that is meant to run as soon as an error occurs that cannot be handled in any other way. 

Traps Require Unhandled Exceptions

To get this to work, an error really does have to occur or, to be precise, an unhandled exception has 

to come up. In the next example, you'll see that this is not always the case because the code after 

 Trap is not executed, even though an error message pops up:

 Trap {  "A dreadful error has occurred!" } 1 / 0

 Attempted to divide by zero. 

 At line:1 char:53

 + Trap { "A dreadful error has occurred!"} 1/0 <<<< 

The reason: the  1/0 statement consists exclusively of constant values; that's why PowerShell 

evaluates it even as it is being compiled. The parser that performs this task recognizes entirely on its 

own that the statement is an invalid numerical value and handles the error itself. So, it isn't even 

reported to  Trap. Very much the same thing happens with most cmdlets because when a cmdlet 

triggers an error, the error is likewise processed internally by the cmdlet and is not reported to  Trap: Trap {  "A dreadful error has occurred!"  } Del  "nosuchthing" 

 Remove-Item : Cannot find path "C:\Users\Tobias Weltner\nosuchthing" 

 because it does not exist. 

 At line:1 char:54

 + Trap { "A dreadful error has occurred!"} Del  <<<< "nosuchthing" 

Surely, it must be possible to catch an error inside a cmdlet? Yes, but only if you set the  ErrorAction of the cmdlet to  "Stop" , which ensures that the error does in fact get reported back to the caller and that the cmdlet doesn't snare it internally:

 Trap {  "A dreadful error has occurred!"  } `

Del  "nosuchthing"   -ErrorAction  "Stop" 

 A dreadful error has occurred! 

 Remove-Item : Command execution stopped because the 

 shell variable "ErrorActionPreference" is set to Stop: 

 Cannot find path "C:\Users\Tobias Weltner\nosuchthing" 

 because it does not exist. 

 At line:1 char:54

 + Trap { "A dreadful error has occurred!"} Del  <<<< "nosuchthing" 

Table of Contents | About PowerShell Plus

327

Sponsors | Resources | © BBS Technologies

Using Break and Continue to Determine What Happens after an Error

After  Trap has processed the error by executing the code you specified after  Trap, it continues execution. That means that PowerShell will output the error message about the current error and 

continue execution with the next command just as if nothing at all had happened. That's why in the 

next example your own error message is output first, then PowerShell's, and finally all further 

commands, which in this case means the text "  Hello":

 Trap {  "A dreadful error has occurred!"  } `

Del  "nosuchthing"   -ErrorAction  "Stop" ;  "Hello" 

 A dreadful error has occurred! 

 Remove-Item : Command execution stopped because the shell variable 

 "ErrorActionPreference" is set to Stop: Cannot find path 

 "C:\Users\Tobias Weltner\nosuchthing" because it does not exist. 

 At line:1 char:54

 + Trap { "A dreadful error has occurred!"} Del  <<<< "nosuchthing" 

Hello

If you would like a different response, use the keyword  Break or  Continue in the  Trap statement. If you specify  Continue,  Trap will behave to a certain extent like the  ErrorAction "SilentlyContinue"  and will suppress the integrated PowerShell error message:

 Trap { "A dreadful error has occurred!" ;  Continue} `

Del  "nosuchthing"   -ea  "Stop" ;  "Hello" 

 A dreadful error has occurred! 

 Hello

 Trap continues execution with the next statement, which is in the same block as  Trap itself. That might seem to be hedged in with too many clauses, but that doesn't play any role in this example 

because there's only one area. A little later on, you'll see that such a subtlety is actually very crucial. 

If you use the  Break statement instead of  Continue,  Trap will respond to a certain extent like the ErrorAction "Stop"  and will generate its built-in error message. Subsequent statements will no longer be executed. 

Finding Out Error Details

Inside the code after  Trap, PowerShell automatically inserts the  $_ variable, which includes all details about the current error. Your "universal" Trap might look like this if you want to catch an error and output details:

 Trap {  Write-Host  -Fore Red  -back White  $_.  Exception.Message; `

 Continue }; 1 /$null

Table of Contents | About PowerShell Plus

328

Sponsors | Resources | © BBS Technologies





Error Records: Error Details

You have just output details about the error using the  $error automatic variable and  $_ inside the Trap block. Let's take a closer look at what is actually stored in these variables and how an  Error Record looks.  Error Records are precisely what the name says, namely what you normally see when an error occurs in PowerShell: the actual error message, which PowerShell displays in red:

Dir MacGuffin

 Get-ChildItem : Cannot find path "C:\Users\Tobias Weltner\MacGuffin" 

 because it does not exist. 

 At line:1 char:4

 + Dir  <<<< MacGuffin

You may have already asked yourself where does PowerShell 

actually set the color of its error message? This setting is located in 

 $host.PrivateData. The following lines will set error message colors 

to red on a white background:

 $host.  PrivateData.ErrorForegroundColor  =  "Red" 

 $host.  PrivateData.ErrorBackgroundColor  =  "White" 

You can also find additional properties in the same location which enable you 

to change the colors of warning and debugging messages. 

However, this is only how  Error Records look when you output the records in the console because 

PowerShell, as always, reduces the object with its wealth of information to text. Just how do you 

access the actual  Error Record object? There are four approaches:

•

Redirection: Redirect the error stream to a variable. 

•

The -ErrorVariable parameter: The error record will be stored in this variable if you use 

the  -ErrorVariable parameter to specify a variable name. 

If you put a plus sign in front of the variable name, the error will 

be added to the variable so that you could store several errors in 

the variable:  -ErrorVariable +listing

•

$error: All errors will be stored as an error record in the  $error variable. As a result, the last error is in  $error[0]. 

•

Traps and $_:Inside the  Trap statement, the current error record is provided in  $_. 

Table of Contents | About PowerShell Plus

329

Sponsors | Resources | © BBS Technologies

Error Record by Redirection

If you want to redirect a command result, use the redirection operator ">":

Dir MacGuffin >  error.txt

 Get-Content  error.txt

Unfortunately, that won't help if the command outputs an error, because errors are not written in 

the standard stream but in the  Error stream. If you want to redirect it, the redirection operator must be "2>":

Dir MacGuffin 2>  error.txt

 Get-Content  error.txt

 Get-ChildItem : Cannot find path "C:\Users\Tobias Weltner\MacGuffin" 

 because it does not exist. 

 At line:1 char:4

 + Dir  <<<< MacGuffin 2> error.txt

It works: the error message—the  Error Record—was in fact redirected and written in a file that  Get-Content subsequently reads. However,  Error Record is actually not text at all but, like nearly everything else in PowerShell, an object containing much more information than its plain text 

representation. When you redirect  Error Record to a file, much of the data contained in  Error Record gets lost in the process. The clever method is this:

 # Redirect Error Record and move it into the pipeline and 

 # assign it to $myerror afterwards

 $myerror  = Del  "nosuchthing"  2>  &  1

 # $myerror now contains the Error Record in object form 

 # so that error details can be queried:

 # Error message:

 $myerror.  Exception.Message

 Cannot find path "C:\Users\Tobias Weltner\nosuchthing" 

 because it does not exist. 

 # Error cause:

 $myerror.  InvocationInfo

 MyCommand        : Remove-Item

 ScriptLineNumber : 1

 OffsetInLine     : -2147483648

 ScriptName       :

 Line             : $myerror = Del "nosuchthing" 2>&1

 PositionMessage  :

                    At line:1 char:15

                    + $myerror = Del  <<<< "nosuchthing" 2>&1

 InvocationName   : Del

 PipelineLength   : 1

 PipelinePosition : 1

Table of Contents | About PowerShell Plus

330

Sponsors | Resources | © BBS Technologies

 # Clearly erroneous identification:

 $myerror.  FullyQualifiedErrorId

 PathNotFound,Microsoft.PowerShell.Commands.RemoveItemCommand

The central point of this example is the redirection to  &1, a character combination that stands for the output pipeline. Think about this for a moment: If you had passed a valid directory name to the 

 Dir command, the command would have retrieved the directory listing, and you could have stored 

the result in a variable without any difficulty. Nobody would have wondered:

 $result  = Dir

By using the "  2>&1" redirection operator, you can simply send just the error information—  Error Record—over the same route, and that's why you can directly allocate  Error Record to a variable and evaluate it afterwards. The properties of  Error Record listed in Table 11.3 are available to you. 

Property

Description

The error is assigned to broad category, activity, cause, 

 CategoryInfo

caller, and call type. In this way, similar errors of 

differing origin can be recognized and jointly handled. 

Often this is null; developers can deposit additional 

 ErrorDetails

information here about the error. 

 Exception

The underlying .NET exception matching the error. 

 Exception.Message provides you the error message. 

Specific and special misidentification allowing you to 

 FullyQualifiedErrorI

 D

identify the error and enable appropriate follow-up 

action. 

Supplies information about where the error occurred, 

 InvocationInfo

such as the script name and its location in the script. 

The object that was operated on when the error 

 TargetObject

occurred. Often null or text corresponding to the 

argument that a cmdlet could not process. 

Table 11.3: Properties of an error record

But note that you are given these properties only if the error record was actually output visibly 

without redirection. The following statement returns "null":

Table of Contents | About PowerShell Plus

331

Sponsors | Resources | © BBS Technologies

 $myerror  = Del  "nosuchthing"   -ea  "SilentlyContinue"  2>  &  amp;1

Error Record(s) Through the -ErrorVariable Parameter

Redirection isn't always necessary. Most cmdlets support the  -ErrorVariable parameter after you 

specify the name of a variable. The  Error Record will then be stored in this variable independently of the current  ErrorAction:

Del  "nosuchthing"   -ErrorVariable myError  -ErrorAction  "SilentlyContinue" 

However, what is now present in  $myError isn't quite identical to what redirection stored in 

 $myError. In the redirection process, exactly one  Error Record was stored—namely the one that would have otherwise been visibly displayed as an error message. The  -ErrorVariable parameter 

always returns an array. The array has only one element, but if you want to evaluate the  Error 

 Record and its manifold properties, you will have to specifically access this array element:

 $myError[0].  Exception.Message

Cannot find path  "C:\Users\Tobias Weltner\nosuchthing"  because it does not exist. 

And why is  Error Record stored in an array? Isn't that totally superfluous when, after all, there's only one  Error Record? Several  Error Records can in fact exist. In the next example, the directory listings will be retrieved from three different directories where none exists. The result is three  Error Records: Dir nosuchthing,notthere,whereisit `

 -ErrorVariable myError  -ErrorAction  "SilentlyContinue" 

 $myError.  Count

3

You can also collect the  Error Records of several statements in your variable to document entire 

sequences of errors. Just type a "+" in front of the variable name for the  -ErrorVariable parameter. 

Cd notthere  -ErrorVariable listing  -ErrorAction  "SilentlyContinue" 

Del nosuchthing  -ErrorVariable  + listing  -ErrorAction  "SilentlyContinue" 

 $listing

 Set-Location : Cannot find path "C:\Users\Tobias Weltner\notthere" 

 because it does not exist. 

 At line:1 char:3

 + Cd  <<<< notthere -ErrorVariable listing -ErrorAction "SilentlyContinue" 

 Remove-Item : Cannot find path "C:\Users\Tobias Weltner\nosuchthing" 

 because it does not exist. 

 At line:1 char:4

 + Del  <<<< nosuchthing -ErrorVariable +listing -ErrorAction "SilentlyContinue" 

Table of Contents | About PowerShell Plus

332

Sponsors | Resources | © BBS Technologies



In case you're asking yourself why PowerShell outputs all  Error 

 Records at the same time when you're outputting  $listing in the 

example, remember that PowerShell converts the contents of an 

array into text automatically if you fail to explicitly select a specific 

element from it. 

Error Records Through $Error

There's still another way to get to  Error Records. PowerShell keeps exacting records of all errors and stores these records in the  $Error variable. So, even if you've forgotten to redirect the  Error Record in time or to specify the  -ErrorVariable parameter, you can still get to the  Error Record of an error. 

 $Error is an array, too. The most current error always ends up as the first entry (with the index 0) and all other errors move up their position once. The number of errors stored is limited to ensure 

enough storage space when many errors are recorded. The maximum number is set in 

 $MaximumErrorCount. 

Error Record Through Traps

Finally, the  Trap statement also offers a way to get to the current  Error Record. Access is gained through the  $_ variable inside the  Trap statement, and you could use  Trap to generate your own error messages very easily:

 Trap { "Oops, error: $($_.Exception.Message)" ;  Continue} `

Del nosuchthing  -ea Stop

 Oops, error: Command execution stopped because the shell variable 

 "ErrorActionPreference" is set to Stop: Cannot find path 

 "C:\Users\Tobias Weltner\nosuchthing" because it does not exist. 

Understanding Exceptions

"Exceptions" are not everyday occurrences. In the contemporary IT world, the terms "errors" or 

"bugs" tend to be avoided. Instead, a more elegant word, "exception," is used. When an error occurs, an exception is thrown and has to be "remedied." Either the command responsible for the 

error rectifies the error or the exception escalates and it has to be remedied at the next-highest 

level. If nobody tackles the error, it will end up highlighted in red in the PowerShell console. 

Because there are different types of exceptions, it is interesting to examine the exception type of an 

error more closely. This is a way for you to initiate different actions according to the approximate 

cause of an error. Take a look at how you can flush the exception of an error out into the open:

 # List exception type of the last error:

 $error[0].  Exception.GetType().  Name

Table of Contents | About PowerShell Plus

333

Sponsors | Resources | © BBS Technologies



 RuntimeException

 # Output all exception types for all errors in this PS session:

 $error |  Foreach-Object {  $_.  Exception.GetType().  FullName }

 System.Management.Automation.CommandNotFoundException

 System.Management.Automation.RuntimeException

 System.Management.Automation.ItemNotFoundException

 You cannot use the NULL value to call a method for an expression. 

 At line:1 char:47

 + $error | Foreach-Object { $_.Exception.GetType( <<<< ).FullName }

Both examples presuppose that errors were actually listed previously, because otherwise  $error 

would be null. 

When you get errors in the listing that complain about a  NULL 

value, then you'll know that some error records are contained in 

 $error that were not thrown by an exception. 

Handling Particular Exceptions

The code set by  Trap is normally executed for any exception. As you've just seen, there are 

exception groups, and if you'd prefer to use one or several groups of different error handlers, go 

ahead. Just write several  Trap statements and specify for each the type of exception for which the statement is responsible:

 function Test

{

 Trap [ System.DivideByZeroException] { 

 "Divided by null!" ;  Continue 

}

 Trap [ System.Management.Automation.ParameterBindingException] { 

 "Incorrect parameter!" ;  Continue 

}

1 /$null

Dir  -MacGuffin

}

Test

 Divided by null! 

 Incorrect parameter! 

Table of Contents | About PowerShell Plus

334

Sponsors | Resources | © BBS Technologies

Throwing Your Own Exceptions

If you're writing your own functions or scripts, sooner or later you'll want to output your own error 

messages in them. You should never output unchangeable error messages to enable your functions 

and scripts to be inserted like building blocks in PowerShell just like all the previous cmdlets and 

functions you've already seen.,. Instead, it would be better to use  Throw to throw exceptions and to leave it up to the system to handle your exception. 

 function TextOutput([ string] $text)

{

 If ( $text  -eq  "" )

{

Throw  "You have to enter some text." 

}

 Else

{

 "OUTPUT: $text" 

}

}

 # An error message will be thrown if no text is entered:

TextOutput

 You have to enter some text. 

 At line:5 char:10

 +     Throw  <<<< "You have to enter some text." 

 # No error will be output in text output:

TextOutput Hello

 OUTPUT: Hello

Of course, you already know from your reading of Chapter 9 that it's best for you to define error messages about the arguments of a function as default values. The previous example was supposed 

to be just a general demonstration of how exceptions are thrown inside a function. If the objective is 

merely to validate the correct arguments, the function can be simplified considerably:

 function TextOutput([ string] $text  =  $(Throw  "You have to enter some text." ))

{  "OUTPUT: $text"  }

But the main thing is that your function should not output its own error messages in the event of a 

fault, but instead throw an exception. That leaves it up to the user of the function to decide what to 

do with the exception you have thrown:

 Trap {  "Oh, an error." ;  Continue} ; TextOutput

 Oh, an error. 

Table of Contents | About PowerShell Plus

335

Sponsors | Resources | © BBS Technologies

Catching Errors in Functions and Scripts

Error handling basically works in your own functions or scripts just as it does in the console. Use 

traps if you want to catch errors. In this connection, it isn't important where you exactly situate the 

 Trap statement. No matter if you put the statement at the beginning or at the end, as soon as an 

error occurs inside the function, the  Trap statement code will be executed. This means that the 

following two functions would behave in exactly the same way:

 function malfunction1

{

 Trap {  "An error occurred."  }

1 /$null

 Get-Process  "nosuchthing" 

Dir xyz:

}

malfunction1

 An error occurred. 

 Attempted to divide by zero. 

 At line:3 char:5

 +   1/$ <<<< null

 Get-Process : Cannot find a process with the name "nosuchthing". 

 Verify the process name and call the cmdlet again. 

 At line:4 char:14

 +   Get-Process  <<<< "nosuchthing"Get-ChildItem : Cannot find drive. 

 A drive with name "xyz" does not exist. 

 At line:5 char:6

 +   Dir  <<<< xyz:

The result of the function example is interesting and confusing at the same time. The first statement 

inside the function doesn't cause an error. That's why the code after  Trap is executed and returns the error message "An error occurred". PowerShell's error message follows afterwards because 

 ErrorAction is not set to  SilentlyContinue. The remaining two faulty commands are also executed. To be precise, they are executed this time without renewed execution of the  Trap block. 

You already know the reason why:  Trap can only capture errors that it can see. Cmdlets use the 

standard setting  Continue as  ErrorAction. In this setting, cmdlets do not report errors to the caller but handle errors themselves. If you'd like your trap to deal with such errors, you must reset 

 ErrorAction to  Stop:

 function malfunction1

{

 Trap {  "An error occurred." }

1 /$null

 Get-Process  "nosuchthing"   -ea Stop

Dir xyz:  -ea Stop

}

malfunction1

 An error occurred. 

 Attempted to divide by zero. 

Table of Contents | About PowerShell Plus

336

Sponsors | Resources | © BBS Technologies

 At line:4 char:5

 +   1/$ <<<< null

 An error occurred. 

 Get-Process : Command execution stopped because the shell variable 

 "ErrorActionPreference" is set to Stop: Cannot find a process with 

 the name "nosuchthing". Verify the process name and call the cmdlet again. 

 At line:5 char:14

 +   Get-Process  <<<< "nosuchthing" -ea Stop

 An error occurred. 

 Get-ChildItem : Command execution stopped because the shell variable 

 "ErrorActionPreference" is set to Stop: Cannot find drive. A drive with 

 name "xyz" does not exist. 

 At line:6 char:6

 +   Dir  <<<< xyz: -ea Stop

Now, the function works the way it was expected to originally. The trap is called for every single 

error. However, internal PowerShell error messages are still generated subsequently. Error 

messages will no longer appear if you use  Continue to instruct your trap to keep on going after the error. Your trap should return an explanatory comment so that you can also find out which error 

actually occurred. 

 function malfunction1

{

 Trap { "Oops, error: $($_.Exception.Message)" ;  Continue}

1 /$null

 Get-Process  "nosuchthing"   -ea Stop

Dir xyz:  -ea Stop

}

malfunction1

 Oops, error: Attempted to divide by zero. 

 Oops, error: Command execution stopped because the 

 shell variable "ErrorActionPreference" is set to Stop: 

 Cannot find a process with the name "nosuchthing". Verify 

 the process name and call the cmdlet again. 

 Oops, error: Command execution stopped because the 

 shell variable "ErrorActionPreference" is set to Stop: Cannot find drive. A drive 

 with name "xyz" does not exist. 

If you would prefer that the function stops when the first error occurs, you should use the  Break 

statement inside  Trap: instead of  Continue. 

 function malfunction1

{

 Trap { "Oops, error: $($_.Exception.Message)" ;  Break}

1 /$null

 Get-Process  "nosuchthing"   -ea Stop

Dir xyz:  -ea Stop

}

malfunction1

 Oops, error: Attempted to divide by zero. 

Table of Contents | About PowerShell Plus

337

Sponsors | Resources | © BBS Technologies

 Attempted to divide by zero. 

 At line:4 char:5

 +   1/$ <<<< null

Now the function is stopped when the first error occurs, but the internal PowerShell message turns 

up again after your own error message.  Break does stop execution in the current area, but does this by throwing the original error again and letting PowerShell handle it. This means that when you use 

 Break you'll always get the PowerShell error message. 

If you would prefer that a function stops after the first error without PowerShell adding its own error 

message, you must do without  Break and understand a little better what the  Continue statement is actually doing.  Continue carries on execution after an error with the next statement that is in the same area as  Trap. So, if the  Trap statement is inside your function, and if an error occurs, then Continue would carry on with the next command inside the function. However, you must move  Trap to the parent area since you want the function to stop after the first faulty command. You could call 

the function from within a second function:

 function Caller

{

 Trap { "Oops, error: $($_.Exception.Message)" ;  Continue}

malfunction

}

 function malfunction

{

1 /$null

 Get-Process  "nosuchthing"   -ea Stop

Dir xyz:  -ea Stop

}

Caller

 Oops, error: Attempted to divide by zero. 

Now the sequence of operations functions as requested.  Trap recognizes the first error in the 

 Malfunction function and because of  Continue carries on execution with the next statement: not with the next statement in  Malfunction but with the next statement in  Caller, because that's where  Trap was defined. 

Of course, this type of call is little peculiar. Do you really have to bother about a second separate 

caller function just so you can stop a function when the first error occurs and take care of the error 

yourself? You don't. You just need to make sure that the  Trap statement is in another area than the one in which the rest of the function is located. For example, you could define an additional one 

inside your function and then call it:

 function malfunction

{

 # Trap is defined in the outer area of the function:

 Trap { "Oops, error: $($_.Exception.Message)" ;  Continue}

 # The rest of the function is your own

 function InnerCore

{

1 /$null

 Get-Process  "nosuchthing"   -ea Stop

Table of Contents | About PowerShell Plus

338

Sponsors | Resources | © BBS Technologies



Dir xyz:  -ea Stop

}

InnerCore

}

It is indeed possible for you to nest functions in PowerShell. The 

 InnerCore function is then a private function that is valid only 

inside the  Malfunction function. However, it does not suffice to only 

define the  InnerCore function, which naturally must also be 

specifically called so that it completes its task. Because the faulty 

lines now run in their own encapsulated function and  Trap is defined outside 

it,  Continue doesn't execute the next statement in  InnerCore but the next 

statement in  Malfunction. 

In the next chapter,  you'll find out in detail how PowerShell really implements functions. You'll learn more about scriptblocks. You don't necessarily have to create your own nested subfunctions. It 

suffices for you to put critical instruction lines in their own scriptblock and to use the call operator 

"&" to execute the block:

 function malfunction

{

 # Trap is defined in the outer area of the function:

 Trap { "Oops, error: $($_.Exception.Message)" ;  Continue}

 # The rest of the function is in its own scriptblock 

 # that is immediately executed by using "&":

 &  {

1 /$null

 Get-Process  "nosuchthing"   -ea Stop

Dir xyz:  -ea Stop

}

}

malfunction

 Oops, error: Attempted to divide by zero. 

Stepping Through Code: Breakpoints

You can stop PowerShell code inside your functions and scripts at any point to see whether 

everything is working the way it should. To do so, use breakpoints, which are nothing more than 

commands. In less complicated cases, you can input the breakpoint command right in the 

PowerShell console:

 Write-Debug  "I'll just stop for a moment." 

Table of Contents | About PowerShell Plus

339

Sponsors | Resources | © BBS Technologies

Surprisingly, this command appears to have no effect whatsoever. Nothing happens. The reason is that the  $DebugPreference variable is set as default for the  "SilentlyContinue"  variable. 

 "SilentlyContinue"  corresponds exactly to what you've already seen it do: output nothing, continue. 

As long as  $DebugPreference is set to this value, debugging is turned off. If you want to turn it on, set  $DebugPreference to another one of the values listed in Table 11.4. 

Setting

Description

 SilentlyContinu

Debugging is turned off

 e

 Stop

Execution is stopped because debugging makes less sense

 Continue

Debugging information is output and the statement 

immediately continued

You receive the selection and, you can temporarily suspend 

 Inquire

execution to examine your code

Table 11.4: Settings for $DebugPreference

There you have the tools you need for a little debugging kit:

•

Installing breakpoints: Use  Write-Debug at all locations inside a function or a script that you want to monitor more closely and have  Write-Debug output useful comments. 

•

Simple debugging: Switch  $DebugPreference to  "Continue"  so that  Write-Debug will output its comments, allowing you to follow the sequence of code operations. 

•

Extended debugging: Switch  $DebugPreference to  "Inquire"  so that  Write-Debug works like a real breakpoint. Execution is then stopped for every  Write-Debug, and you can use the 

suspend option to get back to a prompt and from there use customary PowerShell 

commands, such as to verify the contents of variables. Execution will be continued as soon as 

you type the exit command. 

•

Turning off debugging again: If you would like to stop debugging again, simply set 

 $DebugPreference to the initial value  "SilentlyContinue" . All Write-Debug statements will immediately be ignored so that you won't need to remove these statements. Perhaps you 

would like to debug the code later again. As long as  $DebugPreference is set to 

 "SilentlyContinue" , these statements will have no effect. 

The following loop shows how your breakpoints will respond to different settings for 

 $DebugPreference. If you use the default for execution, 10 numbers will be output:

For ( $i= 0;  $i  -lt 10;  $i++) {  Write-Debug  "Counter is at $i" ;  $i }

 0

 1

 2

Table of Contents | About PowerShell Plus

340

Sponsors | Resources | © BBS Technologies

 3

 (...)

If you turn on simple debugging, the  Write-Debug comments will be highlighted in yellow:

 $Debug-Preference  =  "Continue" 

For ( $i= 0;  $i  -lt 10;  $i++) {  Write-Debug  "Counter is at $i" ;  $i }

 DEBUG: Counter is at 0

 0

 DEBUG: Counter is at 1

 1

 DEBUG: Counter is at 2

 2

 (...)

By using extended debugging, you can convert  Write-Debug statements into genuine breakpoints. 

You could also interrupt execution, inspect variables, and even make changes. As soon as you enter 

the  Exit command, execution will continue:

 # Activate full debugging:

 $Debug-Preference  =  "Inquire" 

For ( $i= 0;  $i  -lt 10;  $i++) {  Write-Debug  "Counter is at $i" ;  $i }

 DEBUG: Counter is at 0

 Confirm

 Continue with this operation? 

 |Y| Yes  |A| Yes to All   |B| Suspend command  |S| Suspend  |?| Help (default is 

 "J"):

 (H)

>> 

 # Execution is suspended; you may inspect variables and make changes:

>>  $i

 0

>>  $i= 7

>>  # Use the Exit command to continue execution

>> exit

 Confirm

 Continue with this operation? 

 |Y| Yes  |A| Yes to All   |B| Suspend command  |S| Suspend  |?| Help (default is 

 "Y"):

 (A)

 7

 (...)

Table of Contents | About PowerShell Plus

341

Sponsors | Resources | © BBS Technologies

Aside from the automatic variable  $DebugPreference, which you can use to determine whether and how debugging messages are output, there are a number of additional automatic variables that work 

in a similar way and define how PowerShell should respond if you make no further specifications 

(Table 11.5). 

Variable

Description

Specifies when confirmation should be 

requested. Confirmation is requested when 

"ConfirmImpact" of the operation is greater 

 ConfirmPreference

than or equal to "$ConfirmPreference". If 

"$ConfirmPreference" is set to "None", 

actions will be confirmed only if "Confirm" is 

specified. 

 DebugPreference

Specifies the action to take when a debugging 

message is conveyed. 

Specifies the action to take when an error 

 ErrorActionPreference

message is conveyed. 

 ErrorView

Specifies the display mode for showing 

errors. 

Specifies the action to take when status files 

 ProgressPreference

are conveyed. 

 ReportErrorShowExceptionClas

Results in display of errors with a description 

 s

of the exception class. 

 ReportErrorShowInnerExceptio

Results in display of errors with inner 

 n

exceptions. 

 ReportErrorShowSource

Results in display of errors with cause of 

errors. 

 ReportErrorShowStackTrace

Results in display of errors with stack trace. 

Specifies the action to take when a detailed 

 VerbosePreference

message is conveyed. Permitted values are 

"SilentlyContinue", "Stop", "Continue" and 

"Inquire". 

Table of Contents | About PowerShell Plus

342

Sponsors | Resources | © BBS Technologies

Specifies the action to take when a warning 

 WarningPreference

message is conveyed. 

 WhatIfPreference

If "true", "WhatIf" is regarded as enabled for 

all commands. 

Table 11.5: Fine adjustments of the PowerShell console

Tracing: Displaying Executed Statements

You don't necessarily have to insert debugging statements into your code since sometimes it's not 

your code that is even being executed. .However, you do have the option to enable tracing. This 

allows PowerShell to output each statement automatically as a debugging message. The cmdlet  Set-

 PSDebug manages tracing. 

 Set-PSDebug  -trace 1

Dir  *.  txt

 DEBUG:    1+ Dir *.txt

 DEBUG:    1+ $_.PSParentPath

 DEBUG:    1+ $catr = ""; 

 DEBUG:    2+ If ( $this.Attributes -band 16 ) { $catr += "d" } 

              Else { $catr += "-" } ; 

 DEBUG:    2+ If ( $this.Attributes -band 16 ) { $catr += "d" } 

              Else { $catr += "-" } ; 

 DEBUG:    3+ If ( $this.Attributes -band 32 ) { $catr += "a" } 

              Else { $catr += "-" } ; 

 DEBUG:    3+ If ( $this.Attributes -band 32 ) { $catr += "a" } 

              Else { $catr += "-" } ; 

 DEBUG:    4+ If ( $this.Attributes -band 1 )  { $catr += "r" } 

              Else { $catr += "-" } ; 

 DEBUG:    4+ If ( $this.Attributes -band 1 )  { $catr += "r" } 

              Else { $catr += "-" } ; 

 DEBUG:    5+ If ( $this.Attributes -band 2 )  { $catr += "h" } 

              Else { $catr += "-" } ; 

 DEBUG:    5+ If ( $this.Attributes -band 2 )  { $catr += "h" } 

              Else { $catr += "-" } ; 

 DEBUG:    6+ If ( $this.Attributes -band 4 )  { $catr += "s" } 

              Else { $catr += "-" } ; 

 DEBUG:    6+ If ( $this.Attributes -band 4 )  { $catr += "s" } 

              Else { $catr += "-" } ; 

 DEBUG:    7+ $catr

 DEBUG:    2+ [String]::Format("{0,10}  {1,8}", $_.LastWriteTime. 

              ToString("d"), $_.LastWriteTime.ToString("t"))

     Directory: Microsoft.PowerShell.Core\FileSystem::C:\Users\Tobias Weltner

 Mode                LastWriteTime     Length Name

 ----                -------------     ------ ----

Table of Contents | About PowerShell Plus

343

Sponsors | Resources | © BBS Technologies



 -a---        19.09.2007     14:30      13386 output.txt

Here, PowerShell lists the PowerShell code of the ScriptProperty  Mode, which is executed when you 

output a directory listing. 

Simple tracing will show you only PowerShell statements executed in the current context. If you 

invoke a function or a script, only the invocation will be shown but not the code of the function or 

script. If you would like to see the code, turn on detailed traced by using the  -trace  2 parameter. 

 Set-PSDebug  -trace 2

If you would like to turn off tracing again, select 0:

 Set-PSDebug  -trace 0

Stepping: Executing Code Step-by-Step

You don't even need your own breakpoints to run PowerShell code one step at a time. Just turn on 

automatic stepping:

 Set-PSDebug  -step

From then on, PowerShell will ask you when every single statement is displayed whether you want 

to execute the statement, skip it, or temporarily suspend the code. 

If you choose  Suspend by pressing "H", you will end up in a nested prompt, which you will recognize by the ">>" sign at the prompt. The code will then be interrupted so you could analyze the system in the console or check variable contents. As soon as you enter  Exit, execution of the code will 

continue. Just select the "A" operation for "Yes to All" in order to turn off the stepping mode. 

By the way, you can also create your own breakpoints by using nested prompts: call 

 $host.EnterNestedPrompt() inside a script or a function. 

 Set-PSDebug has another important parameter called  -strict. It 

ensures that unknown variables will throw an error. Without the 

 Strict option, PowerShell will simply set a null value for unknown 

variables. 

Summary

By using "what-if" scenarios, you can validate the consequences of commands in safe dry runs. One option is to specify the  -whatif parameter if you'd like to see what a command might do. The other option is to specify the  -Confirm parameter if you would like to confirm every single operation 

manually before execution (Table 11.1). Most cmdlets support both parameters so you can reproduce this functionality in your own functions or scripts by using self-defined switch parameters. 

Table of Contents | About PowerShell Plus

344

Sponsors | Resources | © BBS Technologies

Code in functions and scripts can be provided with debugging messages and breakpoints for 

diagnostic purposes. Insert  Write-Debug statements into the code and use  $DebugPreference to determine whether  Write-Debug outputs a message or is actually supposed to suspend the code at 

the location (Table 11.4). If the code is suspended, you can make a detailed examination of the variables of your function or script in the console. Type  Exit when you end the breakpoint and want to continue execution of code. 

PowerShell includes other automatic variables that enable you to determine whether and when 

commands have to be confirmed and how detailed error reports should be (Table 11.5). Among these variables is  $ErrorActionPreference, which you can use to specify whether PowerShell should 

continue execution even if errors occur, or stop execution. The default setting does not stop 

execution when errors occur unexpectedly. 

You can evaluate a number of variables if you prefer responding to errors yourself. The  $?  variable contains  $false if the last command caused an error. PowerShell lists error details in the  $error array, in which every error is stored as an  Error Record. 

You can gain more control over errors by using traps, which are statements executed when an error 

occurs. So that traps work, the error really must throw an exception and may not be caught by the 

command that caused it. For this reason, traps can react to errors only if you have previously 

switched  ErrorAction from  Continue to  Stop. 

Within the code after  Trap, you'll be provided with all the details on the current error in the  $_ 

variable, which contains the  Error Record of the error. Your  Trap statement can also use the  Break and  Continue statements to determine what will happen next. If you specify  Break, then execution will be ended in the code block where  Trap is defined. PowerShell will output the error message of the current error. If you specify  Continue, PowerShell will continue execution with the next 

statement in the same block where  Trap is defined. PowerShell will not output any error message. 

Table of Contents | About PowerShell Plus

345

Sponsors | Resources | © BBS Technologies

CHAPTER 12. 

 Command Discovery and Scriptblocks

In previous chapters you learned step by step how to use various PowerShell command types and 

mechanisms. After 11 chapters, we have reached the end of the list. You'll now put together 

everything you've seen. All of it can actually be reduced to just two PowerShell basic principles: 

 command discovery and  scriptblocks. 

The purpose of this chapter is to tie up the many loose ends of previous chapters and to weave them 

into a larger whole: the basics are complete and the remaining chapters will put the knowledge 

gained to the test of daily tasks. 

Topics Covered:

•

C

  ommand Discovery  

•

T

  he Call Operator "&" 

•

T

  he Call Operator Only Accepts Single Commands  

•

T

  he Call Operator Executes CommandInfo Objects  

•

Id

  entically Named Commands: Which is Running? 

•

T

  able 12.1: Various PowerShell command types  

•

U

  sing Scriptblocks  

•

E

  xecuting Entire Instruction Lines  

•

In

  voke-Expression  

•

P

  ipeline: ForEach-Object  

•

L oops: If and For  

•

F unctions Are Named "Scriptblocks" 

•

B

  uilding Scriptblocks  

•

P

  assing Arguments to Scriptblocks  

•

B

  egin, Process, End Pipeline Blocks  

•

V

  alidity of Variables  

•

E

  xecutionContext  

•

In

  vokeCommand  

•

T

  able 12.2: Important special characters and the internal methods underlying  

them 

•

R

  esolving Variables  

•

C

  reating Scriptblocks  

•

E

  xecuting Instruction Lines  

•

S

  essionState  

•

M

  anaging Variables  

•

M

  anaging Drives  

•

P

  ath Specifications  

•

T

  able 12.3: Path cmdlets and underlying low-level methods of the  

SessionState object 

•

S

  ummary  

Table of Contents | About PowerShell Plus

346

Sponsors | Resources | © BBS Technologies

Command Discovery

From the user's point of view, it's rather easy to assign tasks to PowerShell: you type the command 

in the console, press (Enter), and the command is immediately carried out. But much more complex 

things are happening behind the scenes. PowerShell has to first find out which command you 

actually meant. This operation is called  command discovery and is usually performed automatically. 

Use the  Get-Command cmdlet if you want to run command discovery yourself to understand what is 

actually taking place. 

If you'd like to know what the  Dir command actually is, pass it to  Get-Command:

 Get-Command Dir

 CommandType     Name  Definition

 -----------     ----  ----------

 Alias           Dir   Get-ChildItem

 Get-Command correctly identifies your command in the  CommandType column as  Alias and reports in the  Definition column which actual command PowerShell invoked. Basically, this is the way it 

functions for all commands—even if you invoke the external programs:

 Get-Command ping

 CommandType     Name      Definition

 -----------     ----      ----------

 Application     PING.EXE  C:\Windows\system32\PING.EXE

This time the  CommandType column reports the  Application type, and in the definition the exact path is output to the external program. 

In fact,  Get-Command returns a  CommandInfo object that contains much more information. From 

Chapter 5 you know how to make all object properties visible: send the object to a formatting cmdlet like  Format-List and type an asterisk after it:

 # Get-Command returns a CommandInfo object that exists 

 # in various subtypes:

 $info  =  Get-Command ping

 $info.  GetType().  FullName

 System.Management.Automation.ApplicationInfo

 # Send the object to Format-List and append an asterisk 

 # to see all properties:

 $info |  Format-List  *

 FileVersionInfo : File:             C:\Windows\system32\PING.EXE

                   InternalName:     ping.exe

                   OriginalFilename: ping.exe.mui

                   FileVersion:      6.0.6000.16386 (vista_rtm.061101-2205)

                   FileDescription:  TCP/IP Ping Command

                   Product:          Microsoft® Windows® operating system

Table of Contents | About PowerShell Plus

347

Sponsors | Resources | © BBS Technologies

                   ProductVersion:   6.0.6000.16386

                   Debug:            False

                   Patched:          False

                   PreRelease:       False

                   PrivateBuild:     False

                   SpecialBuild:     False

                   Language:         English (United States)

 Path            : C:\Windows\system32\PING.EXE

 Extension       : .EXE

 Definition      : C:\Windows\system32\PING.EXE

 Name            : PING.EXE

 CommandType     : Application

 Command discovery gets really interesting when there are several commands that have the same 

name. The question is which of these commands PowerShell is executing:

 Get-Command more

 CommandType     Name      Definition

 -----------     ----      ----------

 Function        more      param([string[]]$paths);  If(($paths -ne... 

 Application     more.com  C:\Windows\system32\more.com

As you see, there are two commands called  more. One is a PowerShell function ( CommandType: 

 Function) and the other an external program called  more.com ( CommandType: Application). If you use  more as a command, PowerShell will automatically choose the one it uses based on its own 

internal priority list from among several commands having the same name. Because PowerShell 

functions have a higher priority than external applications, the internal PowerShell functions will 

always be the first in line:

Dir | more

If you'd prefer using the external program  more.com, you must specify it explicitly:

Dir |  more.com

That works because if you specify the command name  more.com there's no danger of confusing the 

names:

 Get-Command  more.com

 CommandType     Name      Definition

 -----------     ----      ----------

 Application     more.com  C:\Windows\system32\more.com

However, there's no guarantee because there could be an alias called  more.com on your system. 

That's why you'll soon learn better methods to execute exactly the command you want to execute 

with utter precision. But first you'll have to know how PowerShell actually invokes commands. 

Table of Contents | About PowerShell Plus

348

Sponsors | Resources | © BBS Technologies



The Call Operator "&" 

The little call operator "&" gives you great discretionary power over the execution of PowerShell commands. If you place this operator in front of a string (or a string variable), the string will be 

interpreted as a command and executed just as if you had input it directly into the console. 

 # Store a command in a variable:

 $command  =  "Dir" 

 # If you output the contents of the variable, 

 # only string will be output:

 $command

Dir

 # If you type the call operator "&" in front of it, 

 # the command will be executed:

 &   $command



 Directory: Microsoft.PowerShell.Core\FileSystem::C:\Users\Tobias Weltner

 Mode       LastWriteTime  Length Name

 ----       -------------  ------ ----

 d----  10.01.2007  16:09         Application Data

 d----  07.26.2007  11:03         Backup

 (...)

The call operator also comes to the rescue when the command 

name contains special characters like white space and can't be 

input directly into the console. Put the name in quotation marks to 

turn it into string and use the call operator to run it:

 &   "A command with whitespace" 

The Call Operator Only Accepts Single Commands

However, the call operator won't run an entire instruction line but always precisely one command. If 

you had assigned not just a single command, like  Dir in the variable but several commands, or if you had also specified arguments for the command, an error would have been generated:

 $command  =  "Dir C:\" 

 &   $command

 The term "Dir c:\" is not recognized as a cmdlet, function, 

 operable program, or script file. Verify the term and try again. 

 At line:1 Char:2

 + &  <<<< $command

Table of Contents | About PowerShell Plus

349

Sponsors | Resources | © BBS Technologies



Why is that? The reason: in the murky depths of PowerShell, the call operator calls  Get-Command to find out what it is supposed to actually be running.  Get-Command always gets only a single 

command, never entire instruction lines:

 # A single command is recognized correctly:

 Get-Command  "Dir" 

 CommandType     Name       Definition

 -----------     ----       ----------

 Alias           Dir        Get-ChildItem

 # A command with arguments or several commands is not recognized:

 Get-Command  "Dir C:\" 

 Get-Command : The term "Dir c:\" is not recognized as a 

 cmdlet, function, operable program, or script file. Verify 

 the term and try again. 

 At line:1 Char:12

 + Get-Command  <<<< "Dir C:\" 

The Call Operator Executes CommandInfo Objects

The call operator initially passes what you specify as a command to  Get-Command,  which returns a 

 CommandInfo object that the call operator then executes. In fact, the call operator can also accept a CommandInfo object directly and save itself the roundabout  Get-Command:

 # Get the CommandInfo object of a command:

 $command  =  Get-Command ping

 $command

 CommandType     Name       Definition

 -----------     ----       ----------

 Application     PING.EXE   C:\Windows\system32\PING.EXE

 # Use the call operator "&" to call the CommandInfo object:

 &   $command  -n 1  -w 100 10.10.10.10

 Pinging 10.10.10.10 with 32 bytes of data:

 Reply from 10.10.10.10: Bytes=32 Time<1ms TTL=128

 Ping statistics for 10.10.10.10:

 Packets: Sent = 1, Received = 1, Lost = 0 (0% Loss), 

 Ca. time in millisec:

 Minimum = 2ms, Maximum = 2ms, Average = 2ms

The  & $command calls the command in  $command. You may 

specify any arguments after it, but you can't wrap the arguments 

directly in  $command because the call operator always executes 

only one single command without arguments. 

Table of Contents | About PowerShell Plus

350

Sponsors | Resources | © BBS Technologies

 # not allowed:

 &   "Dir C:\" 

Did you just have a little dÃ©jÃ -vu experience? Aliases behave exactly the 

same way and can provide only single commands under another name, but 

not commands with arguments. Aliases are nothing more than named call 

operators. If you input the alias, PowerShell will internally invoke the call 

operator for the command that you assigned to the alias. 

Identically Named Commands: Which is Running? 

PowerShell supports a great many commands of the most diverse types, cmdlets, functions, aliases, 

or external commands. Within this range of command types, command names should not be 

ambiguous as there can never be more than one function or alias having the same name. However, 

among the various command types, names can be identical; usually, that's even highly desirable. 

If there are several commands having identical names, PowerShell will examine its own internal 

priority list (Table 12.1) and decide which command will be executed. For example, you can use aliases to set up "command redirection" because aliases have a higher priority than external 

programs. 

 # Run an external command:

ping  -n 1 10.10.10.10

 Pinging 10.10.10.10 with 32 bytes of data:

 Reply from 10.10.10.10: Bytes=32 Time<1ms TTL=128

 Ping statistics for 10.10.10.10:

 Packets: Sent = 1, Received = 1, Lost = 0 (0% Loss), 

 Ca. time in millisec:

 Minimum = 2ms, Maximum = 2ms, Average = 2ms

 # Create a function having the same name:

 function Ping {  "Ping is not allowed."  }

 # Function has priority over external program and turns off command:

ping  -n 1 10.10.10.10

 Ping is not allowed. 

PowerShell functions have a higher priority than external commands, and that's why PowerShell has 

executed its new  Ping function instead of the old  Ping command. You have seemingly brought the Ping command to a halt. Instead of a function, you could also have created an alias, which has an 

even higher priority so that your newly created function would then no longer be invoked. 

 Set-Alias ping  echo

ping  -n 1 10.10.10.10

 -n

Table of Contents | About PowerShell Plus

351

Sponsors | Resources | © BBS Technologies

 1

 10.10.10.10

Now,  Ping calls the  Echo command, which is an alias for W rite-Output and simply outputs the parameters that you may have specified after  Ping in the console. 

If you'd like to see all the commands of a particular type, specify the  -commandType parameter. The next statement lists all commands of the  Filter type:

 Get-Command  -commandType  Filter

CommandType Description

Priority

 Alias

An alias for another command added by using  Set-  1

 Alias

 Function

A PowerShell function defined by using  function

2

A PowerShell filter defined by using  filter (a 

 Filter

2

function with a  process block)

 Cmdlet

A PowerShell cmdlet from a registered snap-in

3

 Application

An external Win32 application

4

 ExternalScript

An external script file with the file extension ".ps1" 5

 Script

A scriptblock

-

Table 12.1: Various PowerShell command types

If you enter the  Ping command in this example,  Get-Command will first find out which commands are possible:

 Get-Command Ping

 CommandType     Name       Definition

 -----------     ----       ----------

 Function        Ping       "Ping is not allowed." 

 Alias           ping       echo

 Application     PING.EXE   C:\Windows\system32\PING.EXE

Table of Contents | About PowerShell Plus

352

Sponsors | Resources | © BBS Technologies

Based on the internal PowerShell priority list, the command of the alias type is selected from these three commands and executed. If you'd rather run another  Ping command, you will have to 

circumvent automatic selection. 

You've seen that the call operator accepts commands in two ways: either as a string (in which case 

it tasks Get-Command with automatically choosing an appropriate command) or as a  CommandInfo 

object (in which case it is clear which command is meant). So, if you'd like to run a particular 

command yourself, get its  CommandInfo object. That will retrieve  Get-Command. If you'd like to run the original  Ping command, the third array element is suitable:

 # Get all commands named "Ping":

 $commands  =  Get-Command Ping

 # Call the third command (array index 2):

 &   $commands[2]  -n 1 10.10.10.10

 Pinging 10.10.10.10 with 32 bytes of data:

 Reply from 10.10.10.10: Bytes=32 Time<1ms TTL=128

 Ping statistics for 10.10.10.10:

 Packets: Sent = 1, Received = 1, Lost = 0 (0% Loss), 

 Ca. time in millisec:

 Minimum = 2ms, Maximum = 2ms, Average = 2ms

However, calling by means of an array index is usually not a good idea because you don't know 

whether several identically named commands exist, and if they do, in which order the commands 

were defined. It's better to specify right from the beginning the type you want, which  Get-Command 

always reports in the  CommandType column. Name conflicts are out of the question because there 

can be only one command having a particular name for each type. 

The original  Ping command is of the  Application type. So, if you'd like to invoke this command, instruct  Get-Command to retrieve for you the  Ping command of the  Application type. It shouldn't be important to you at all whether there are any other identically named commands of other types. 

PowerShell will start the original  Ping command in any case:

 # Return and then start the "Ping" command of the "Application" type:

 $command  =  Get-Command  -commandType Application Ping

 &   $command  -n 1 10.10.10.10

 Pinging 10.10.10.10 with 32 bytes of data:

 Reply from 10.10.10.10: Bytes=32 Time<1ms TTL=128

 Ping statistics for 10.10.10.10:

 Packets: Sent = 1, Received = 1, Lost = 0 (0% Loss), 

 Ca. time in millisec:

 Minimum = 2ms, Maximum = 2ms, Average = 2ms

 # Call in only one line:

 &  ( Get-Command  -commandType Application Ping)  -n 1 10.10.10.10

 Pinging 10.10.10.10 with 32 bytes of data:

 Reply from 10.10.10.10: Bytes=32 Time<1ms TTL=128

 Ping statistics for 10.10.10.10:

 Packets: Sent = 1, Received = 1, Lost = 0 (0% Loss), 

 Ca. time in millisec:

Table of Contents | About PowerShell Plus

353

Sponsors | Resources | © BBS Technologies

 Minimum = 2ms, Maximum = 2ms, Average = 2ms

You now know how PowerShell finds out which command is supposed to be run and how you can use 

the call operator to invoke your own commands. However, the call operator does have one nasty 

limitation: it can never execute more than one single command, nor can it execute any instruction 

lines, nor commands with arguments. If the call operator is calling the shots behind the scenes, how 

can it execute the entire instruction lines that you type in the console? To clear that up, you'll need 

another very important PowerShell basic element - scriptblocks. 

Using Scriptblocks

The scriptblock is a special form of command. The scriptblock can contain as much PowerShell code 

as you like. It is defined by braces. The smallest possible scriptblock is just the minimal amount of 

PowerShell code in braces. You can use the previously described call operator to execute a 

scriptblock:

 &  {  "Today's date: "   + ( get-date) }

 Today's date: 10/07/2007 12:32:39

Executing Entire Instruction Lines

Perhaps you're beginning to realize how scriptblocks enable the call operator to execute not just 

single commands, but entire instruction lines. The call operator normally runs just single commands, 

but among the permitted commands, according to Table 12.1,  are commands of the script type, the scriptblocks. This is the solution to running whole lines of instructions since scriptblocks can consist 

of any number of commands. In the next example, the call operator runs several statements in the 

line:

 # The call operator "&" can run several commands 

 # if these are enclosed in braces:

 &  { Get-Process |  Where-Object {  $_.  Name  -like  'a*' }}

This is the way command entry works in the PowerShell console: if you type an instruction line in the 

console, PowerShell will turn the line into a scriptblock and execute it just the way it did in the 

previous example. Scriptblocks are the universal basic element of PowerShell. Many PowerShell 

commands and structures, upon closer examination, are nothing more than scriptblocks. Let's take a 

look at all the places where scriptblocks are hidden in PowerShell. 

Invoke-Expression

You've seen above that the call operator can process whole instruction lines with the help of a 

scriptblock. Actually, this function corresponds to the  Invoke-Expression cmdlet, which is nothing more than a scriptblock that is passed to the call operator:

 Invoke-Expression  'Get-Process | Where-Object { $_.Name -like "a*"}' 

Table of Contents | About PowerShell Plus

354

Sponsors | Resources | © BBS Technologies



 Handles  NPM(K)    PM(K)      WS(K) VM(M)   CPU(s)     Id ProcessName

 -------  ------    -----      ----- -----   ------     -- -----------

      36       2      712         48    21            2616 agrsmsvc

     311       9    10988       3324   112             464 AppSvc32

     105       3     1044        736    37            1228 Ati2evxx

     130       5     2056       3916    48            1732 Ati2evxx

      79       4     4612       1092    58     2,75   2064 ATSwpNav

      99       3    11892       7600    45            1432 audiodg

Just remember to put code after  Invoke-Expression in single 

quotation marks. If you use double quotation marks, PowerShell 

will replace all the variable names in the string with the variable 

contents. Because part of the  $_ variable in the last example is 

part of the code to be executed, it would be incorrectly replaced 

with "null" and generate an error:

 # Don't enclose the string after Invoke-Expression 

 # in double quotation marks:

 Invoke-Expression  "Get-Process | 

   Where-Object { $_.Name -like 'a*'}" 

 The term ".Name" is not recognized as a cmdlet, 

 function, operable program, or script file. Verify 

 the term and try again. 

 At line:1 Char:35

 + Get-Process | Where-Object { .Name  <<<< -like 'a*'}

The following statement is completely identical:

 &  { Get-Process |  Where-Object {  $_.  Name  -like  'a*' }}

Pipeline: ForEach-Object

In Chapter 5,  you used the  ForEach-Object cmdlet in the pipeline, which loops over every pipeline object one by one. PowerShell code follows  ForEach-Object in braces, so it is actually a scriptblock. 

The following scriptblock was executed for every object in the pipeline:

 Get-Process |  ForEach-Object {  $_.  name }

Loops: If and For

Do you remember Chapter 7?  You worked with conditions, which also use scriptblocks, as they do in this example:

 $age  = 21

 If ( $age  -lt 21)

Table of Contents | About PowerShell Plus

355

Sponsors | Resources | © BBS Technologies

{

 "You're too young." 

}

 Else

{

 "You may drink a wine." 

}

The  If statement uses two scriptblocks. The first is executed if the condition after  If is met; the second, if it is not met. You saw much the same thing for the loops in Chapter 8:

For ( $x= 1;  $x  -le 10;  $x++)

{

 $x

}

Again, here's a scriptblock in braces that iterates until the termination condition of the loop is met. 

Functions Are Named "Scriptblocks" 

A new light is shed on the functions from Chapter 9,  because functions and scriptblocks are basically identical. Functions are nothing more than  named scriptblocks that you can call directly through a set name. Take a look:

 function Test {  "Hello world!"  }

The identifier  function sets a name for the scriptblock that follows it in braces. That's why this scriptblock will be run when you specify the assigned name:

Test

 Hello world! 

You can see that the function actually consists of just one conventional scriptblock when you get the 

scriptblock of the function:

 $scriptblock  =  $function:Test

 $scriptblock

 "Hello world!" 

 $scriptblock.  GetType().  Name

 ScriptBlock

You could reprogram the function by allocating another scriptblock to it:

 # Allocate scriptblock in braces:

 $function:Test  = {  "Morning!"  }

Test

Table of Contents | About PowerShell Plus

356

Sponsors | Resources | © BBS Technologies



 Morning! 

 # String will be automatically changed to a scriptblock type:

 $function:Test  =  ' "Morning!" ' 

Test

 Morning! 

 # Don't use braces inside a string:

 $function:Test  =  "{ 'Morning!' }" 

Test

 'Morning!' 

Just remember not to use braces in a string. If you do anyway the 

braces will not delimit the scriptblock but ensure that any special 

characters in the string are not evaluated as special characters. 

That's why the  Test function in the last example outputs a string 

along with the quotation marks. 

If you like, you could use your newly acquired skills to even create functions entirely without the 

 Function statement:

 # Directly create a new function:

 New-Item  function:newFunction  -value { "Hello world!" }  -force CommandType     Name          Definition

 -----------     ----          ----------

 Function        newFunction   "Hello world!" 

newFunction

 Hello world! 

Building Scriptblocks

Because functions are nothing more than named scriptblocks, which support all the features that 

distinguish functions. Let's see whether that's really true. 

Passing Arguments to Scriptblocks

Parameters may be specified in parentheses after the name of a function so that the user of the 

function can pass additional arguments to it later. The following simple function example defines a 

parameter called  $text and outputs only what was passed to the function as an argument:

Table of Contents | About PowerShell Plus

357

Sponsors | Resources | © BBS Technologies

 function TextOutput( $text)

{

 $text

}

TextOutput  "Hello" 

 Hello

How can a scriptblock offer the same functionality? After all, a scriptblock doesn't have a  function 

statement after which you could define a parameter. In reality, every function is only a scriptblock. 

Have a look here to see how a scriptblock embeds parameters:

 $function:TextOutput

 param($text) $text

A scriptblock uses the  param statement to define a parameter. Think of Chapter 10 and scripts, which do precisely the same thing. So scripts are also nothing more than scriptblocks, although they 

tend to be very extensive ones. You could easily define your own  anonymous scriptblock (i.e., one 

you don't have to name) that processes arguments. The following scriptblock accepts two 

parameters and multiplies them:

{  param( $value1,  $value2)   $value1  *  $value2 }

To invoke the scriptblock, use the call operator again:

 &  {  param( $value1,  $value2)   $value1  *  $value2 } 10 5

 50

 &  {  param( $value1,  $value2)   $value1  *  $value2 }  "Hello"  10

 HelloHelloHelloHelloHelloHelloHelloHelloHelloHello

Begin, Process, End Pipeline Blocks

A further characteristic of functions is their ability to define three blocks called  begin,  process, and end in order to process PowerShell pipeline results in real time. Do you still remember Chapter 9?  If a function is used inside a pipeline, it initially runs code in the begin block, then once again in the 

process block for every pipeline object, and finally in the end block. If the three blocks aren't 

defined, the function can't process pipeline results in real time, but blocks the pipeline until all 

results are available. 

Scriptblocks can also define these three blocks and be used in the pipeline. In fact, the  ForEach-

 Object cmdlet is basically nothing more than a scriptblock that has in itself a  process block:

 # The ForEach-Object cmdlet... 

 Get-Process |  ForEach-Object {  $_.  Name }

 # ...is a scriptblock that has a process block in itself:

 Get-Process |  &  { process {  $_.  Name } }

Table of Contents | About PowerShell Plus

358

Sponsors | Resources | © BBS Technologies

The  Where-Object cmdlet works in a similar way:

 # The Where-Object cmdlet... 

 Get-Process |  Where-Object {  $_.  Name  -like  "a*"  }

 # ...is a scriptblock with a process and a condition:

 Get-Process |  &  { process {  If ( $_.  Name  -like  "a*" ) {  $_ } } }

Validity of Variables

All the variables that are created inside a function are private and valid (only inside the function) 

unless you expressly specify another validity in the variable name. In the following example, the 

 Test function defines two variables. The variable  $value1 is created without any particular validity identifier and consequently is private. This variable is valid only inside the function. On the other 

hand, the variable  $value2, is created with the  global: validity identifier and consequently is also valid outside the function:

 function Test

{

 $value1  = 10

 $global:value2  = 20

}

Test

 $value1

 $value2

 20

Let's try the same thing with a scriptblock:

 &  {  $value1  = 10;  $global:value2  = 20 }

 $value1

 $value2

 20

As it turns out, scriptblocks determine the validity of variables. All the variables that you define 

without any particular validity identifier inside a scriptblock are valid only inside the scriptblock. This behavior is not confined to functions but applies in all scriptblocks invoked by using the "&" call operator. In contrast, PowerShell runs scriptblocks executed inside loops or conditions in the current 

context. That's why the  $text variable is valid outside the condition as well:

 If ( $age  -ge 18)

{

 $text  =  "You are of age" 

}

 Else

{

 $text  =  "You are under age" 

}

 $text

Table of Contents | About PowerShell Plus

359

Sponsors | Resources | © BBS Technologies

 You are under age

ExecutionContext

PowerShell provides a very special object, the automatic variable  $ExecutionContext, which you will rarely need but which will help you better understand PowerShell internal operations. This object 

offers two main properties: InvokeCommand and  SessionState. 

InvokeCommand

By now, you should be familiar with three important special characters that PowerShell uses in the 

console. Double quotation marks define not only a string but also ensure at the same time that 

variable names in the string are replaced with variable contents. The ampersand, "&", is the call operator and runs commands. Finally, braces create new scriptblocks. 

In fact, behind these special characters are internal methods that perform the actual tasks. You can 

control these methods directly. The automatic variable  $ExecutionContext makes these methods 

accessible through its  InvokeCommand property. It is important to know how PowerShell works 

internally, even though you usually won't need these methods because the special characters are 

easier to get to. 

Special Character

Definition

Internal Method

" 

Resolves variables in a string

 ExpandString()

& 

Executes commands

 InvokeScript()

{}

Creates a new scriptblock

 NewScriptBlock()

Table 12.2: Important special characters and the internal methods underlying them

Resolving Variables

Whenever you assign a string in double quotation marks to a variable, PowerShell resolves the 

variable and replaces it with matching variable contents:

 $name  =  'Tobias Weltner' 

 # String variables in double quotation marks will be resolved:

 $text  =  "Your name is $name" 

 $text

 Your name is Tobias Weltner

Table of Contents | About PowerShell Plus

360

Sponsors | Resources | © BBS Technologies

The method  ExpandString() carries out this resolution internally. This means that variables can also be resolved in the following way:

 $name  =  'Tobias Weltner' 

 # String variables in single quotation marks will not be resolved:

 $text  =  'Your name is $name' 

 $text

 Your name is $name

 # The method ExpandString() actually resolves the variable:

 $executioncontext.  InvokeCommand.ExpandString( $text)

 Your name is Tobias Weltner

Creating Scriptblocks

If you place PowerShell code in braces, PowerShell will make a scriptblock out of the code. You've 

seen how you can either use the call operator to immediately execute a scriptblock or to assign it to 

a function. The method  NewScriptBlock() is used to generate new scriptblocks:

 # Create a new scriptblock

 $sb  = { 4 * 5 }

 $sb.  GetType().  Name

 ScriptBlock

 &   $sb

 20

 # Do the same using the low level function NewScriptBlock():

 $sb  =  $executioncontext.  InvokeCommand.NewScriptBlock( '4*5' )

 $sb.  GetType().  Name

 ScriptBlock

 &   $sb

 20

Executing Instruction Lines

Input instruction lines are executed internally by the  InvokeScript() method. The following three 

commands accomplish the same thing:

 Invoke-Expression  '4*5' 

Table of Contents | About PowerShell Plus

361

Sponsors | Resources | © BBS Technologies

 20

 &  { 4 * 5 }

 20

 $executioncontext.  InvokeCommand.InvokeScript( '4*5' )

 20

SessionState

SessionState is an object that reflects the current state of your PowerShell environment. You can 

likewise locate this object in the  $ExecutionContext automatic variable:

 $executioncontext.  SessionState |  Format-List  *

Drive      :  System.Management.Automation.DriveManagementIntrinsics

Provider   :  System.Management.Automation.CmdletProviderManagementIntrinsics

Path       :  System.Management.Automation.PathIntrinsics

PSVariable :  System.Management.Automation.PSVariableIntrinsics

The four properties  Drive,  Provider,  Path and  PSVariable,  are subobjects that you can use to query the current state of these PowerShell areas as well as to modify them. 

Managing Variables

 PSVariable will retrieve the value of any variable and can also be used to modify variables:

 $value  =  "Test" 

 # Retrieve variable contents:

 $executioncontext.  SessionState.PSVariable.GetValue( "value" )

Test

 # Modify variable contents:

 $executioncontext.  SessionState.PSVariable.Set( "value" , 100)

 $value

100

Managing Drives

 Drive manages drives in PowerShell. You could define the current drive in the following way:

 $executioncontext.  SessionState.Drive.Current

 Name       Provider      Root       CurrentLocation

 ----       --------      ----       ---------------

 C          FileSystem    C:\   Users\Tobias Weltner

Table of Contents | About PowerShell Plus

362

Sponsors | Resources | © BBS Technologies

 GetAll() lists all available drives and as such is equivalent to the G et-PSDrive cmdlet: $executioncontext.  SessionState.Drive.GetAll()

 Name       Provider      Root                     CurrentLocation

 ----       --------      ----                     ---------------

 Alias      Alias

 Env        Environment

 C          FileSystem    C:\                 Users\Tobias Weltner

 D          FileSystem    D:\

 Function   Function

 HKLM       Registry      HKEY_LOCAL_MACHINE

 HKCU       Registry      HKEY_CURRENT_USER

 Variable   Variable

 cert       Certificate   \

If you are interested only in the drives of a particular provider, such as only in genuine data file 

drives, use  GetAllForProvider() and specify the provider you want:

 $executioncontext.  SessionState.Drive.GetAllForProvider( "FileSystem" )

 Name       Provider      Root        CurrentLocation

 ----       --------      ----        ---------------

 C          FileSystem    C:\    Users\Tobias Weltner

 D          FileSystem

Path Specifications

 Path returns several methods that cover all aspects of path names that are usually taken care of by cmdlets (Table 12.3). Moreover, the object offers some additional methods that you can use:

 # Put together a path name from a directory part and a file part:

 $executioncontext.  SessionState.Path.Combine( "C:" ,  "test.txt" ) C:\test.txt

Method

Description

Cmdlet

 CurrentLocation

Current working directory

 Get-

 Location

 Pop-

 PopLocation()

Retrieve stored directory

 Location

 PushCurrentLocation()

Store current working directory

 Push-

 Location

Table of Contents | About PowerShell Plus

363

Sponsors | Resources | © BBS Technologies

Set new directory as current 

 Set-

 SetLocation()

working directory

 Location

 GetResolvedPSPathFromPSPat

Return absolute path name for 

 Resolve-

 h()

specified relative path name

 Path

Table 12.3: Path cmdlets and underlying low-level methods of the SessionState object

Summary

Whenever you assign the task of running a command to PowerShell, it relies on  command discovery 

to look up which command is intended. If the command is unclear because several commands have 

the same name, PowerShell uses a priority list (Table 12.1) and automatically selects a command from it. 

You can use the call operator character, "&", to run commands that you do  not directly input in the console. The call operator carries out the same command discovery process as the console does for 

direct command inputs. Alternatively, you can use  Get-Command to carry out command discovery 

and to pass the result directly to the call operator. This allows you to determine which identically 

named commands should be executed so that the choice is made by you and not by the integrated 

PowerShell priority list. 

Put everything together in a scriptblock if you would like to invoke more than a single command or 

to pass arguments to a command. Scriptblocks are nothing more than any piece of PowerShell code 

enclosed in braces. You can run scriptblocks by using the call operator. It is interesting to note that 

scriptblocks are the foundation of PowerShell. They provide the basis for many cmdlets and are the 

"soul" of every function and script. 

If you'd like to take a look behind the scenes to see how PowerShell actually does run commands or 

create scriptblocks, you will need the object in the  $ExecutionContext automatic variable. It offers you access to many low-level functions, which actually perform the tasks involved when you create 

scriptblocks or use the call operator (Table 12.2). 

Table of Contents | About PowerShell Plus

364

Sponsors | Resources | © BBS Technologies

CHAPTER 13. 

 Text and Regular Expressions

PowerShell distinguishes sharply between text in single quotation marks and text in double quotation 

marks. PowerShell won't modify text wrapped in single quotation marks but it does inspect text in 

single quotation marks and may modify it by inserting variable contents automatically. Enclosing 

text in double quotation marks is the foremost and easiest way to couple results and descriptions. 

The formatting operator  -f, one of many specialized string operators, offers more options. For 

example, you can use  -f to output text column-by-column and to set it flush. Other string commands are also important. They can replace selected text, change case, and much more. 

Pattern recognition adds a layer of complexity because it uses wildcard characters to match 

patterns. In simple cases, you can use the same wildcards that you use in the file system. 

Substantially more powerful, but also more complex, are regular expressions. 

Topics Covered:

•

D

  efining Text  

•

S

  pecial Characters in Text  

•

R

  esolving Variables  

•

In

  serting Special Characters  

•

T

  able 13.1: Special characters and "escape" sequences for text  

•

" Here-Strings": Acquiring Text of Several Lines  

•

C

  ommunicating with the User  

•

Q

  uerying User Name and Password  

•

F igure 13.1: Querying user passwords using the integrated secure dialog  

box 

•

U

  sing Special Text Commands  

•

S

  tring Operators  

•

T

  able 13.2: Operators used for handling string  

•

F ormatting String  

•

S

  etting Numeric Formats  

•

T

  able 13.3: Formatting numbers  

•

T

  able 13.4: Formatting date values  

•

T

  able 13.5: Customized date value formats  

•

O

  utputting Values in Tabular Form: Fixed Width  

•

S

  tring Object Methods  

•

T

  able 13.6: The methods of a string object  

•

A

  nalyzing Methods: Split() as Example  

•

U

  sing String Class Commands  

•

J oin(): Changing Arrays to Text  

•

C

  oncat(): Assembling a String Out of Several Parts  

•

S

  imple Pattern Recognition  

•

T

  able 13.7: Using simple placeholders  

•

R

  egular Expressions  

•

De

  scribing Patterns  

•

T

  able 13.8: Placeholders for characters  

•

Q

  uantifiers  

Table of Contents | About PowerShell Plus

365

Sponsors | Resources | © BBS Technologies

•

T

  able 13.9: Quantifiers for patterns  

•

A

  nchors  

•

T

  able 13.10: Anchor boundaries  

•

R

  ecognizing IP Addresses  

•

V

  alidating E-Mail Addresses  

•

S

  imultaneous Searches for Different Terms  

•

C

  ase Sensitivity  

•

T

  able 13.11: Regular expression elements  

•

F inding Information in Text  

•

S

  earching for Several Keywords  

•

F orming Groups  

•

F urther Use of Sub-Expressions  

•

G

  reedy or Lazy? Detailed or Concise Results... 

•

F inding String Segments  

•

R

  eplacing a String  

•

U

  sing Back References  

•

P

  utting Characters First at Line Beginnings  

•

R

  emoving Superfluous White Space  

•

F inding and Removing Doubled Words  

•

S

  ummary  

Defining Text

Use quotation marks to delimit it if you'd like to save text in a variable or to output it. Use single 

quotation marks if you want text to be stored in a variable in (literally) exactly the same way you 

specified it:

 $text  =  'This text may also contain $env:windir `: $(2+2)' 

 This text may also contain $env:windir `: $(2+2)

Text will have an entirely different character when you wrap it in (conventional) double quotation 

marks because enclosed special characters will be evaluated:

 $text  =  "This text may also contain $env:windir `: $(2+2)" 

 This text may also contain C:\Windows: 4

Special Characters in Text

If text is enclosed in double quotation marks, PowerShell will look for particular special characters in 

it. Two special characters are important in this regard: "$" and the special backtick character, "`". 

Resolving Variables

If PowerShell encounters one of the variables from Chapter 3,  it will assign the variable its value:

Table of Contents | About PowerShell Plus

366

Sponsors | Resources | © BBS Technologies

 $windir  =  "The Windows directory is here: $env:windir" 

 $windir

 The Windows directory is here: C:\Windows

This also applies to direct variables, which calculate their value themselves:

 $result  =  "One CD has the capacity of $(720MB / 1.44MB) diskettes." 

 $result

 One CD has the capacity of 500 diskettes. 

Inserting Special Characters

The peculiar backtick character, "`", has two tasks: if you type it before characters that are 

particularly important for PowerShell, such as "$" or quotation marks, PowerShell will interpret the characters following the backtick as normal text characters. You could output quotation marks in 

text like this:

 "This text includes `"  quotation marks` "" 

 This text includes "quotation marks" 

If one of the letters listed in Table 13.1 follows the backtick character, PowerShell will insert special characters:

 $text  =  "This text consists of`ntwo lines." 

 This text consists of

 two lines! 

Escape Sequence

Special Characters

`n

New linèr

Carriage return

`t

Tabulator

à

Alarm

`b

Backspacè' 

Single quotation mark

Table of Contents | About PowerShell Plus

367

Sponsors | Resources | © BBS Technologies

`" 

Double quotation mark

`0

Null

``

Backtick character

Table 13.1: Special characters and "escape" sequences for text

"Here-Strings": Acquiring Text of Several Lines

Using "here-strings" is the best way to acquire long text consisting of several lines or many special characters. "Here-strings" are called by this name because they enable you to acquire text exactly the way you want to store it in a text variable, much like a text editor. Here-strings are preceded by 

the  @"  character and terminated by the  "@ character. Note here once again that PowerShell will automatically resolve (assign variable values and evaluate backtick characters in) text enclosed by 

 @"  and  "@ characters. If you use single quotation marks instead, the text will remain exactly the way you typed it:

 $text  = @ " 

 Here-Strings can easily stretch over several lines and may also include 

 "quotation marks". Nevertheless, here, too, variables are replaced with 

 their values: C:\Windows, and subexpressions like 4 are likewise replaced 

 with their result. The text will be concluded only if you terminate the 

 here-string with the termination symbol "@. 

 " @

 $text

 Here-Strings can easily stretch over several lines and may also include

 "quotation marks". Nevertheless, here, too, variables are replaced with

 their values: C:\Windows, and subexpressions like 4 are likewise replaced

 with their result. The text will be concluded only if you terminate the

 here-string with the termination symbol "@. 

Communicating with the User

If you'd like to request users to input text, use  Read-Host:

 $text  =  Read-Host  "Your entry" 

Your entry: Hello world ! 

 $text

 Hello world! 

Table of Contents | About PowerShell Plus

368

Sponsors | Resources | © BBS Technologies

Text acquired by  Read-Host behaves like text enclosed in single quotation marks. Consequently, special characters and variables are not resolved. Manually use the  ExpandString() method if you 

want to resolve the contents of a text variable later on, that is, have the variables and special 

characters in it replaced. PowerShell normally uses this method internally when you allocate text in 

double quotation marks:

 # Query and output text entry by user:

 $text  =  Read-Host  "Your entry" 

Your entry:  $env:windir

 $text

 $env:windir

 # Treat entered text as if it were in double quotation marks:

 $ExecutionContext.  InvokeCommand.ExpandString( $text)

 $text

 C:\Windows

If you'd like to use Read-Host to acquire sensitive data, passwords, use the  -asSecureString 

parameter. The screen entries will be masked by asterisks. The result will be a so-called 

 SecureString. To be able to work on the encrypted  SecureString as a normal text entry, it must be changed to plain text first:

 $pwd  =  Read-Host  -asSecureString  "Password" 

 Password: *************

 $pwd

 System.Security.SecureString

[ Runtime.InteropServices.Marshal]::`

PtrToStringAuto([ Runtime.InteropServices.Marshal]::`

SecureStringToBSTR( $pwd))

 strictly confidential

Querying User Name and Password

If you'd like to authenticate a user, such as query his name and password, use  Get-Credential. This cmdlet uses the secure dialog boxes that are integrated into Windows to request user name and 

password:

 Get-Credential  -Credential  "Your name?" 

 UserName       Password

 --------       --------

 \Your name     System.Security.SecureString

Table of Contents | About PowerShell Plus

369

Sponsors | Resources | © BBS Technologies



The result is an object having two properties: the given user name is in  UserName and the 

encrypted password is in  Password as an instance of  SecureString:



Figure 13.1: Querying user passwords using the integrated secure dialog box

Normally,  Get-Credential is used if logon data are actually needed, such as to run a program under a particular user name:

 $logon  =  Get-Credential

 $startinfo  =  new-object  System.Diagnostics.ProcessStartInfo

 $startinfo.  UserName  =  $logon.  UserName

 $startinfo.  Password  =  $logon.  Password

 $startinfo.  FileName  =  "$env:windir\regedit.exe" 

 $startinfo.  UseShellExecute  =  $false

[ System.Diagnostics.Process]:: Start( $startinfo)

However, the user context that creates the  Secure String can turn it into readable text whenever 

you wish, as was the case for  Read-Host. For this reason, you can also use  Get-Credential to query sensitive information that you can work on subsequently in plain text:

 $logon  =  Get-Credential

[ Runtime.InteropServices.Marshal]::`

PtrToStringAuto([ Runtime.InteropServices.Marshal]::`

SecureStringToBSTR( $logon.  Password))

 MySecretPassword

Using Special Text Commands

Often, results need to be properly output and provided with descriptions. The simplest approach 

doesn't require any special commands: insert the result as a variable or sub-expression directly into 

text and make sure that text is enclosed in double quotation marks. 

 # Embedding a subexpression in text:

 "One CD has the capacity of $(720MB / 1.44MB) diskettes." 

Table of Contents | About PowerShell Plus

370

Sponsors | Resources | © BBS Technologies

 One CD has the capacity of 500 diskettes. 

 # Embedding a variable in text:

 $result  = 720MB  / 1.44MB

 "One CD has the capacity of $result diskettes." 

 One CD has the capacity of 500 diskettes. 

More options are offered by special text commands that PowerShell furnishes from three different 

areas:

•

String operators: PowerShell includes a number of string operators for general text tasks, 

which you can use to replace text and to compare text (Table 13.2). 

•

Dynamic methods: the  String data type, which saves text, includes its own set of text 

statements that you can use to search through, dismantle, reassemble, and modify text in 

diverse ways (Table 13.6). 

•

Static methods:finally, the  String .NET class includes static methods bound to no particular text. 

String Operators

The  -f format operator is the most important PowerShell string operator. You'll soon be using it to format numeric values for easier reading:

 "{0} diskettes per CD"   -f (720mb / 1.44mb)

 500 diskettes per CD

All operators function in basically the same way: they anticipate data from the left and the right that 

they can link together. For example, you can use  -replace to substitute parts of the string for other parts:

 "Hello Carl"   -replace  "Carl" ,  "Eddie" 

 Hello Eddie

There are three implementations of the  -replace operator; many other string operators also have 

three implementations. Its basic version is case insensitive. If you'd like to distinguish between 

lowercase and uppercase, use the version beginning with "c" (for  case-sensitive):

 # No replacement because case sensitivity was turned off this time:

 "Hello Carl"   -creplace  "carl" ,  "eddie" 

 Hello Carl

The third type begins with "i" (for  insensitive) and is case insensitive. This means that this version is actually superfluous because it works the same way as  -replace. The third version is merely 

demonstrative: if you use  -ireplace instead of  -replace, you'll make clear that you expressly do  not want to distinguish between uppercase and lowercase. 

Table of Contents | About PowerShell Plus

371

Sponsors | Resources | © BBS Technologies

Operator

Description

Example

 *

Repeats a string

 "=" * 20

 +

Combines two string parts

 "Hello " + "World" 

 "Hello Carl" 

 -replace, 

 -ireplace

Substitutes a string; case insensitive

 -replace "Carl", 

 "Eddie" 

 "Hello Carl" 

 -creplace

Substitutes a string; case sensitive

 -creplace "carl", 

 "eddie" 

 -eq, -ieq

Verifies equality; case insensitive

 "Carl" -eq "carl" 

 -ceq

Verifies equality; case sensitive

 "Carl" -ceq "carl" 

Verifies whether a string is included in 

 -like, -ilike

another string (wildcards are permitted;  "Carl" -like "*AR*" 

case insensitive)

Verifies whether a string is included in 

 "Carl" -clike 

 -clike

another string (wildcards are permitted;  "*AR*" 

case sensitive)

Verifies whether a string is not included 

 -notlike, 

 "Carl" -notlike 

 -inotlike

in another string (wildcards are 

 "*AR*" 

permitted; case insensitive)

Verifies whether a string is included in 

 "Carl" -cnotlike 

 -cnotlike

another string (wildcards are permitted;  "*AR*" 

case sensitive)

 -match, 

Verifies whether a pattern is in a string;  "Hello" -match 

 -imatch

case insensitive

 "[ao]" 

 -cmatch

Verifies whether a pattern is in a string;  "Hello" -cmatch 

case sensitive

 "[ao]" 

Table of Contents | About PowerShell Plus

372

Sponsors | Resources | © BBS Technologies

 -notmatch, 

Verifies whether a pattern is not in a 

 "Hello" -notmatch 

 -inotmatch

string; case insensitive

 "[ao]" 

 -cnotmatch

Verifies whether a pattern is not in a 

 "Hello" -cnotmatch 

string; case sensitive

 "[ao]" 

Table 13.2: Operators used for handling string

Formatting String

The format operator  -f formats a string and requires a string, along with wildcards on its left side and on its right side, that the results are to be inserted into the string instead of the wildcards:

 "{0} diskettes per CD"   -f (720mb / 1.44mb)

 500 diskettes per CD

It is absolutely necessary that exactly the same results are on the right side that are to be used in 

the string are also on the left side. If you want to just calculate a result, then the calculation should 

be in parentheses. As is generally true in PowerShell, the parentheses ensure that the enclosed 

statement is evaluated first and separately and that subsequently, the result is processed instead of 

the parentheses. Without parentheses,  -f would report an error:

 "{0} diskettes per CD"   -f 720mb / 1.44mb

 Bad numeric constant: 754974720 diskettes per CD. 

 At line:1 char:33

 + "{0} diskettes per CD" -f 720mb/1 <<<< .44mb

You may use as many wildcard characters as you wish. The number in the braces states which value 

will appear later in the wildcard and in which order:

 "{0} {3} at {2}MB fit into one CD at {1}MB"  `

 -f (720mb / 1.44mb), 720, 1.44,  "diskettes" 

 500 diskettes at 1.44MB fit into one CD at 720MB

Setting Numeric Formats

The formatting operator  -f can insert values into text as well as format the values. Every wildcard used has the following formal structure:  {index[,alignment][:format]}:

Table of Contents | About PowerShell Plus

373

Sponsors | Resources | © BBS Technologies



•

Index: This number indicates which value is to be used for this wildcard. For example, you 

could use several wildcards with the same index if you want to output one and the same 

value several times, or in various display formats. The index number is the only obligatory 

specification. The other two specifications are voluntary. 

•

Alignment: Positive or negative numbers can be specified that determine whether the value 

is right justified (positive number) or left justified (negative number). The number states the 

desired width. If the value is wider than the specified width, the specified width will be 

ignored. However, if the value is narrower than the specified width, the width will be filled 

with blank characters. This allows columns to be set flush. 

•

Format: The value can be formatted in very different ways. Here you can use the relevant 

format name to specify the format you wish. You'll find an overview of available formats 

below. 

Formatting statements are case sensitive in different ways than 

what is usual in PowerShell. You can see how large the differences 

can be when you format dates:

 # Formatting with a small letter d:

 "Date: {0:d}"   -f ( Get-Date)

 Date: 08/28/2007

 # Formatting with a large letter D:

 "Date: {0:D}"   -f ( Get-Date)

 Date: Tuesday, August 28, 2007

Symbol Type

Call

Result

#

Digit placeholder

"{0:(#).##}" -f $value (1000000)

%

Percentage

"{0:0%}" -f $value

100000000%

, 

Thousands separator

"{0:0,0}" -f $value

1,000,000

,. 

Integral multiple of 

"{0:0,.} " -f $value

1000

1,000

. 

Decimal point

"{0:0.0}" -f $value

1000000.0

"{0:00.0000}" -f 

0

0 placeholder

1000000.0000

$value

Table of Contents | About PowerShell Plus

374

Sponsors | Resources | © BBS Technologies

1,000,000.00 

c

Currency

"{0:c}" -f $value

â‚¬

d

Decimal

"{0:d}" -f $value

1000000

e

Scientific notation

"{0:e}" -f $value

1.000000e+006

e

Exponent wildcard

"{0:00e+0}" -f $value

10e+5

f

Fixed point

"{0:f}" -f $value

1000000.00

g

General

"{0:g}" -f $value

1000000

n

Thousands separator

"{0:n}" -f $value

1,000,000.00

x

Hexadecimal

"0x{0:x4}" -f $value

0x4240

Table 13.3: Formatting numbers

Using the formats in Table 13.3,  you can format numbers quickly and comfortably. No need for you to squint your eyes any longer trying to decipher whether a number is a million or 10 million:

10000000000

 "{0:N0}"   -f 10000000000

10,000,000,000

There's also a very wide range of time and date formats. The relevant formats are listed in Table 

13.4 and their operation is shown in the following lines:

 $date=  Get-Date

 Foreach ( $format  in  "d" ,  "D" ,  "f" ,  "F" ,  "g" ,  "G" ,  "m" ,  "r" ,  "s" ,  "t" ,  "T" , `

 "u" ,  "U" ,  "y" ,  "dddd, MMMM dd yyyy" ,  "M/yy" ,  "dd-MM-yy" ) {

 "DATE with $format : {0}"   -f  $date.  ToString( $format) }

 DATE with d : 10/15/2007

 DATE with D : Monday, 15 October, 2007

 DATE with f : Monday, 15 October, 2007 02:17 PM

 DATE with F : Monday, 15 October, 2007 02:17:02 PM

 DATE with g : 10/15/2007 02:17

 DATE with G : 10/15/2007 02:17:02

 DATE with m : October 15

 DATE with r : Mon, 15 Oct 2007 02:17:02 GMT

 DATE with s : 2007-10-15T02:17:02

 DATE with t : 02:17 PM

Table of Contents | About PowerShell Plus

375

Sponsors | Resources | © BBS Technologies

 DATE with T : 02:17:02 PM

 DATE with u : 2007-10-15 02:17:02Z

 DATE with U : Monday, 15 October, 2007 00:17:02

 DATE with y : October, 2007

 DATE with dddd, MMMM dd yyyy : Monday, October 15 2007

 DATE with M/yy : 10/07

 DATE with dd-MM-yy : 15-10-07

Symbol Type

Call

Result

"{0:d}" -f 

d

Short date format

09/07/2007

$value

D

Long date format

"{0:D}" -f 

Friday, September 7, 2007

$value

"{0:t}" -f 

t

Short time format

10:53 AM

$value

T

Long time format

"{0:T}" -f 

10:53:56 AM

$value

Full date and time 

"{0:f}" -f 

Friday, September 7, 2007 

f

(short)

$value

10:53 AM

F

Full date and time (long) "{0:F}" -f 

Friday, September 7, 2007 

$value

10:53:56 AM

"{0:g}" -f 

g

Standard date (short)

09/07/2007 10:53 AM

$value

G

Standard date (long)

"{0:G}" -f 

09/07/2007 10:53:56 AM

$value

"{0:M}" -f 

M

Day of month

September 07

$value

r

RFC1123 date format

"{0:r}" -f 

Fri, 07 Sep 2007 10:53:56 

$value

GMT

"{0:s}" -f 

s

Sortable date format

2007-09-07T10:53:56

$value

Table of Contents | About PowerShell Plus

376

Sponsors | Resources | © BBS Technologies

Universally sortable date  "{0:u}" -f 

u

2007-09-07 10:53:56Z

format

$value

U

Universally sortable GMT  "{0:U}" -f 

Friday, September 7, 2007 

date format

$value

08:53:56

Year/month format 

"{0:Y}" -f 

Y

September 2007

pattern

$value

Table 13.4: Formatting date values

If you want to find out which type of formatting options are supported, you need only look for .NET 

types that support the  toString() method:

[ appdomain]:: currentdomain.getassemblies() |  ForEach-Object {

 $_.  GetExportedTypes() |  Where-Object { !   $_.  IsSubclassof([ System.Enum])}

} |  ForEach-Object {

 $Methods  =  $_.  getmethods() |  Where-Object { $_.  name  -eq  "tostring" } | %{ "$_" }; If ( $methods  -eq  "System.String ToString(System.String)" ) {

 $_.  fullname

}

}

 System.Enum

 System.DateTime

 System.Byte

 System.Convert

 System.Decimal

 System.Double

 System.Guid

 System.Int16

 System.Int32

 System.Int64

 System.IntPtr

 System.SByte

 System.Single

 System.UInt16

 System.UInt32

 System.UInt64

 Microsoft.PowerShell.Commands.MatchInfo

For example, among the supported data types is the "globally unique identifier"  System.Guid. 

Because you'll frequently require GUID, which is clearly understood worldwide, here's a brief 

example showing how to create and format a GUID:

 $guid  = [ GUID]:: NewGUID()

 Foreach ( $format  in  "N" ,  "D" ,  "B" ,  "P" ) {

 "GUID with $format : {0}"   -f  $GUID.  ToString( $format)}

Table of Contents | About PowerShell Plus

377

Sponsors | Resources | © BBS Technologies

 GUID with N : 0c4d2c4c8af84d198b698e57c1aee780

 GUID with D : 0c4d2c4c-8af8-4d19-8b69-8e57c1aee780

 GUID with B : {0c4d2c4c-8af8-4d19-8b69-8e57c1aee780}

 GUID with P : (0c4d2c4c-8af8-4d19-8b69-8e57c1aee780)

Symbol Type

Call

Result

dd

Day of month

"{0:dd}" -f $value

07

ddd

Abbreviated name of day

"{0:ddd}" -f $value

Fri

dddd

Full name of day

"{0:dddd}" -f $value

Friday

gg

Era

"{0:gg}" -f $value

A. D. 

hh

Hours from 01 to 12

"{0:hh}" -f $value

10

HH

Hours from 0 to 23

"{0:HH}" -f $value

10

mm

Minute

"{0:mm}" -f $value

53

MM

Month

"{0:MM}" -f $value

09

MMM

Abbreviated month name

"{0:MMM}" -f $value

Sep

MMMM

Full month name

"{0:MMMM}" -f $value September

ss

Second

"{0:ss}" -f $value

56

tt

AM or PM

"{0:tt}" -f $value

yy

Year in two digits

"{0:yy}" -f $value

07

yyyy

Year in four digits

"{0:YY}" -f $value

2007

zz

Time zone including leading 

"{0:zz}" -f $value

+02

zero

zzz

Time zone in hours and minutes "{0:zzz}" -f $value

+02:00

Table of Contents | About PowerShell Plus

378

Sponsors | Resources | © BBS Technologies

Table 13.5: Customized date value formats

Outputting Values in Tabular Form: Fixed Width

To display the output of several lines in a fixed-width font and align them one below the other, each 

column of the output must have a fixed width. A formatting operator can set outputs to a fixed 

width. 

In the following example,  Dir returns a directory listing, from which a subsequent loop outputs file names and file sizes. Because file names and sizes vary, the result is ragged right and hard to read:

dir |  ForEach-Object {  "$($_.name) = $($_.Length) Bytes"  }

 history.csv = 307 Bytes

 info.txt = 8562 Bytes

 layout.lxy = 1280 Bytes

 list.txt = 164186 Bytes

 p1.nrproj = 5808 Bytes

 ping.bat = 116 Bytes

 SilentlyContinue = 0 Bytes

The following result with fixed column widths is far more legible. To set widths, add a comma to the 

sequential number of the wildcard and after it specify the number of characters available to the 

wildcard. Positive numbers will set values to right alignment, negative numbers to left alignment:

dir |  ForEach-Object {  "{0,-20} = {1,10} Bytes"   -f  $_.  name,  $_.  Length }

 history.csv          =        307 Bytes

 info.txt             =       8562 Bytes

 layout.lxy           =       1280 Bytes

 list.txt             =     164186 Bytes

 p1.nrproj            =       5808 Bytes

 ping.bat             =        116 Bytes

 SilentlyContinue     =          0 Bytes

String Object Methods

You know from Chapter 6 that PowerShell stores everything in objects and that every object contains a set of instructions known as methods. Text is stored in a  String object,  which includes a number of useful commands for working with text. For example, to ascertain the file extension of a 

file name, use  LastIndexOf() to determine the position of the last "." character, and then use Substring() to extract text starting from the position:

 $path  =  "c:\test\Example.bat" 

Table of Contents | About PowerShell Plus

379

Sponsors | Resources | © BBS Technologies

 $path.  Substring(  $path.  LastIndexOf( "." ) + 1 ) bat

Another approach uses the dot as separator and  Split() to split up the path into an array. The result is that the last element of the array (-1 index number) will include the file extension:

 $path.  Split( "." )[ - 1]

 bat

Table 13.6 provides an overview of all the methods that include a string object. 

Function

Description

Example

CompareTo()

Compares one string to another

("Hello").CompareTo(

"Hello")

Returns "True" if a specified 

("Hello").Contains("ll" 

Contains()

comparison string is in a string or if  )

the comparison string is empty

$a = ("Hello 

Copies part of a string to another 

World").toCharArray()

CopyTo()

("User!").CopyTo(0, 

string

$a, 6, 5)

$a

Tests whether the string ends with  ("Hello").EndsWith("lo

EndsWith()

a specified string

")

Equals()

Tests whether one string is identical  ("Hello").Equals($a)

to another string

Returns the index of the first 

IndexOf()

("Hello").IndexOf("l")

occurrence of a comparison string

Returns the index of the first 

("Hello").IndexOfAny(

IndexOfAny()

occurrence of any character in a 

"loe")

comparison string

Inserts new string at a specified 

("Hello 

Insert()

World").Insert(6, 

index in an existing string

"brave ")

Table of Contents | About PowerShell Plus

380

Sponsors | Resources | © BBS Technologies

Retrieves a new object that can 

("Hello").GetEnumera

GetEnumerator()

enumerate all characters of a string tor()

LastIndexOf()

Finds the index of the last 

("Hello").LastIndexOf(

occurrence of a specified character

"l")

Finds the index of the last 

("Hello").LastIndexOf

LastIndexOfAny() occurrence of any character of a 

Any("loe")

specified string

Pads a string to a specified length 

PadLeft()

and adds blank characters to the 

("Hello").PadLeft(10)

left (right-aligned string)

Pads string to a specified length 

("Hello").PadRight(10

PadRight()

and adds blank characters to the 

) + "World!" 

right (left-aligned string)

Removes any requested number of  ("Hello 

Remove()

characters starting from a specified  World").Remove(5,6)

position

("Hello 

Replaces a character with another 

Replace()

character

World").Replace("l", 

"x")

Converts a string with specified 

("Hello 

Split()

splitting points into an array

World").Split("l")

Tests whether a string begins with 

("Hello 

StartsWith()

World").StartsWith("H

a specified character

e")

("Hello 

Substring()

Extracts characters from a string

World").Substring(4, 

3)

ToCharArray()

Converts a string into a character 

("Hello 

array

World").toCharArray()

("Hello 

ToLower()

Converts a string to lowercase

World").toLower()

Table of Contents | About PowerShell Plus

381

Sponsors | Resources | © BBS Technologies

Converts a string to lowercase 

("Hello 

ToLowerInvariant

()

using casing rules of the invariant 

World").toLowerInvari

language

ant()

("Hello 

ToUpper()

Converts a string to uppercase

World").toUpper()

ToUpperInvariant Converts a string to uppercase 

("Hello 

using casing rules of the invariant 

World").ToUpperInvar

()

language

iant()

Trim()

Removes blank characters to the 

(" Hello ").Trim() + 

right and left

"World" 

Removes blank characters to the 

(" Hello ").TrimEnd() 

TrimEnd()

right

+ "World" 

TrimStart()

Removes blank characters to the 

(" Hello ").TrimStart() 

left

+ "World" 

Provides a character at the 

Chars()

("Hello").Chars(0)

specified position

Table 13.6: The methods of a string object

Analyzing Methods: Split() as Example

You already know in detail from Chapter 6 how to use  Get-Member to find out which methods an object contains and how to invoke them. Just as a quick refresher, let's look again at an example of 

the  Split() method to see how it works. 

( "something"  |  Get-Member Split).  definition

 System.String[] Split(Params Char[] separator), System.String[] Split(

 Char[] separator, Int32 count), System.String[] Split(Char[] separator, 

 StringSplitOptions options), System.String[] Split(Char[] separator, 

 Int32 count, StringSplitOptions options), System.String[] Split(String[] 

 separator, StringSplitOptions options), System.String[] Split(String[] 

 separator, Int32 count, StringSplitOptions options)

 Definition gets output, but it isn't very easy to read. Because  Definition is also a string object, you can use methods from Table 13.6,  including  Replace(), to insert a line break where appropriate. That makes the result much more understandable:

Table of Contents | About PowerShell Plus

382

Sponsors | Resources | © BBS Technologies

( "something"  |  Get-Member Split).  Definition. Replace( "), " ,  ")`n" ) System.String[] Split(Params Char[] separator)

 System.String[] Split(Char[] separator, Int32 count)

 System.String[] Split(Char[] separator, StringSplitOptions options)

 System.String[] Split(Char[] separator, Int32 count, 

   StringSplitOptions options)

 System.String[] Split(String[] separator, StringSplitOptions options)

 System.String[] Split(String[] separator, Int32 count, 

   StringSplitOptions options)

There are six different ways to invoke  Split(). In simple cases, you might use  Split() with only one argument,  Split(), you will expect a character array and will use every single character as a possible splitting separator. That's important because it means that you may use several separators at once:

 "a,b;c,d;e;f" .  Split( ",;" )

 a

 b

 c

 d

 e

 f

If the splitting separator itself consists of several characters, then it has got to be a string and not a single  Char character. There are only two signatures that meet this condition:

 System.String[] Split(String[] separator, 

   StringSplitOptions options)

 System.String[] Split(String[] separator, Int32 count, 

   StringSplitOptions options)

You must make sure that you pass data types to the signature that is exactly right for it to be able 

to use a particular signature. If you want to use the first signature, the first argument must be of the 

 String[] type and the second argument of the  StringSplitOptions type. The simplest way for you to meet this requirement is by assigning arguments first to a strongly typed variable. Create the 

variable with exactly the type that the signature requires:

 # Create a variable of the [StringSplitOptions] type:

[ StringSplitOptions] $option  =  "None" 

 # Create a variable of the String[] type:

[ string[]] $separator  =  ",;" 

 # Invoke Split with the wished signature and use a two-character long separator:

( "a,b;c,;d,e;f,;g" ).  Split( $separator,  $option)

 a,b;c

 d,e;f

 g

 Split() in fact now uses a separator consisting of several characters. It splits the string only at the points where it finds precisely the characters that were specified. There does remain the question of 

how do you know it is necessary to assign the value "  None" to the  StringSplitOptions data type. The 

Table of Contents | About PowerShell Plus

383

Sponsors | Resources | © BBS Technologies

simple answer is: you don't know and it isn't necessary to know. If you assign a value to an unknown data type that can't handle the value, the data type will automatically notify you of all valid 

values:

[ StringSplitOptions] $option  =  "werner wallbach" 

 Cannot convert value "werner wallbach" to type 

 "System.StringSplitOptions" due to invalid enumeration 

 values. Specify one of the following enumeration values

 and try again. The possible enumeration values are 

 "None, RemoveEmptyEntries". 

 At line:1 char:28

 + [StringSplitOptions]$option  <<<< = "werner wallbach" 

By now it should be clear to you what the purpose is of the given valid values and their names. For 

example, what was  RemoveEmptyEntries() able to accomplish? If  Split() runs into several separators following each other, empty array elements will be the consequence.  RemoveEmptyEntries() deletes 

such empty entries. You could use it to remove redundant blank characters from a text:

[ StringSplitOptions] $option  =  "RemoveEmptyEntries" 

 "This   text   has   too   much   whitespace" .  Split( " " ,  $option) This

 text

 has

 too

 much

 whitespace

Now all you need is just a method that can convert the elements of an array back into text. The 

method is called  Join(); it is not in a  String object but in the  String class. 

Using String Class Commands

Chapter 6 clearly defined the distinction between classes and objects (or instances). Just to refresh your memory: every  String object is derived from the  String class. Both include diverse methods. 

You can see these methods at work when you press (Tab) after the following instruction, which 

activates AutoComplete:

[ String]:: (Tab)

 Get-Member will return a list of all methods. This time, specify the  -Static parameter in addition:

 "sometext"  |  Get-Member  -Static  -MemberType Method

You've already used static methods. In reality, the  -f format operator corresponds to the  Format() static method, and that's why the following two statements work in exactly the same way:

 # Using a format operator:

 "Hex value of 180 is &h{0:X}"   -f 180

Table of Contents | About PowerShell Plus

384

Sponsors | Resources | © BBS Technologies

 Hex value of 180 is &hB4

 # The static method Format has the same result:

[ string]:: Format( "Hex value of 180 is &h{0:X}" , 180)

 Hex value of 180 is &hB4

The  Format() static method is very important but is usually ignored because  -f is much easier to handle. But you wouldn't be able to do without two other static methods:  Join() and  Concat(). 

Join(): Changing Arrays to Text

 Join() is the counterpart of  Split() discussed above.  Join() assembles an array of string elements into a string. It enables you to complete the above example and to make a function that removes 

superfluous white space characters from the string:

 function RemoveSpace([ string] $text) {

 $private:array  =  $text.  Split( " " , `

[ StringSplitOptions]:: RemoveEmptyEntries)

[ string]:: Join( " " ,  $array)

}

RemoveSpace  "Hello,   this   text   has   too   much   whitespace." 

 Hello, this text has too much whitespace. 

Concat(): Assembling a String Out of Several Parts

 Concat() assembles a string out of several separate parts. At first glance, it works like the "+" 

operator:

 "Hello"   +  " "   +  "World!" 

 Hello World! 

But note that the "+" operator always acts strangely when the first value isn't a string:

 # Everything will be fine if the first value is string:

 "Today is "   + ( Get-Date)

 Today is 08/29/2007 11:02:24

 # If the first value is not text, errors may result:

( Get-Date)  +  " is a great date!" 

 Cannot convert argument "1", with value: " is a great date!", 

 for "op_Addition" to type "System.TimeSpan": "Cannot convert 

 value " is a great date!" to type "System.TimeSpan". Error: 

 "Input string was not in a correct format."" 

 At line:1 char:13

Table of Contents | About PowerShell Plus

385

Sponsors | Resources | © BBS Technologies

 + (Get-Date) +  <<<< " is a great date! 

If the first value of the calculation is a string, all other values will be put into the string form and 

assembled as requested into a complete string. If the first value is not a string—in the example, it 

was a date value—all the other values will be changed to this type. That's just what causes an error, 

because it is impossible to change  "is a great date!"  to a date value. For this reason, the "+" 

operator is an unreliable tool for assembling a string. 

 Concat() causes fewer problems: it turns everything you specify to the method into a string. 

 Concat(), when converting, also takes into account your current regional settings; it will provide, for example, U.S. English date and time formats:

[ string]:: Concat( "Today is " , ( Get-Date))

 Today is 8/29/2007 11:06:00 AM

[ string]:: Concat(( Get-Date),  " is a great date!" )

 8/29/2007 11:06:24 AM is a great date! 

Simple Pattern Recognition

Recognizing patterns is a frequent task that is necessary for verifying user entries, such as to 

determine whether a user has given a valid network ID or valid e-mail address. Useful and effective 

pattern recognition requires wildcard characters that represent a certain number and type of 

characters. 

A simple form of wildcards was invented for the file system many years ago and it still works today. 

In fact, you've doubtlessly used it before in one form or another:

 # List all files in the current directory that 

 # have the txt file extension:

Dir  *.  txt

 # List all files in the Windows directory that 

 # begin with "n" or "w":

dir  $env:windir\[ nw] *.  *

 # List all files whose file extensions begin with 

 # "t" and which are exactly 3 characters long:

Dir  *.  t?? 

 # List all files that end in one of the letters 

 # from "e" to "z" 

dir  *[ e-z].  *

Wildcar

Description

Example

d

*

Any number of any character (including no characters   Dir *.txt

Table of Contents | About PowerShell Plus

386

Sponsors | Resources | © BBS Technologies

at all)

? 

Exactly one of any characters

 Dir *.??t

 Dir 

[xyz]

One of specified characters

 [abc]*.*

[x-z]

One of the characters in the specified area

 Dir *[p-z].*

Table 13.7: Using simple placeholders

The placeholders in Table 13.7 not only work in the file system, but also in conjunction with string operators like  -like and  -notlike. This makes child's play of pattern recognition. For example, if you want to verify whether a user has given a valid IP address, you could do so in the following way:

 $ip  =  Read-Host  "IP address" 

 If ( $ip  -like  "*.*.*.*" ) {  "valid"  }  Else {  "invalid"  }

If you want to verify whether a valid e-mail address is in a variable, you could check the pattern in 

the following way:

 $email  =  "tobias.weltner@powershell.de" 

 $email  -like  "*.*@*.*" 

However, such wildcards only reveal the worst errors and are not very exact:

 # Wildcards are appropriate only for very simple pattern 

 # recognition and leave room for erroneous entries:

 $ip  =  "300.werner.6666." 

 If ( $ip  -like  "*.*.*.*" ) {  "valid"  }  Else {  "invalid"  }

 valid

 # The following invalid e-mail address was not identified as false:

 $email  =  ".@." 

 $email  -like  "*.*@*.*" 

 True

Regular Expressions

Use regular expressions for more accurate pattern recognition if you require it. Regular expressions 

offer many more wildcard characters; for this reason, they can describe patterns in much greater 

detail. For the very same reason, however, regular expressions are also much more complicated. 

Table of Contents | About PowerShell Plus

387

Sponsors | Resources | © BBS Technologies

Describing Patterns

Using the regular expression elements listed in Table 13.11,  you can describe patterns with much greater precision. These elements are grouped into three categories:

•

Char: The  Char represents a single character and a collection of  Char objects represents a string. 

•

Quantifier: Allows you to determine how often a character or a string occurs in a pattern. 

•

Anchor: Allows you to determine whether a pattern is a separate word or must be at the 

beginning or end of a sentence. 

The pattern represented by a regular expression may consist of four different character types:

•

Literal characterslike "abc" that exactly matches the "abc" string. 

•

Masked or "escaped" characters with special meanings in regular expressions; when 

preceded by "\", they are understood as literal characters: "\[test\]" looks for the "[test]" 

string. The following characters have special meanings and for this reason must be masked if 

used literally: ". ^ $ * + ? { [ ] \ | ( )". 

•

Predefined wildcard charactersthat represent a particular character category and work 

like placeholders. For example, "\d" represents any number from 0 to 9. 

•

Custom wildcard characters: They consist of square brackets, within which the characters 

are specified that the wildcard represents. If you want to use any character  except for the 

specified characters, use "^" as the first character in the square brackets. For example, the 

placeholder "[^f-h]" stands for all characters except for "f", "g", and "h". 

Element Description

. 

Exactly one character of any kind except for a line break (equivalent 

to [^\n])

[^abc]

All characters except for those specified in brackets

[^a-z]

All characters except for those in the range specified in the brackets

[abc]

One of the characters specified in brackets

[a-z]

Any character in the range indicated in brackets

\a

Bell alarm (ASCII 7)

\c

Any character allowed in an XML name

\cA-\cZ

Control+A to Control+Z, equivalent to ASCII 0 to ASCII 26

Table of Contents | About PowerShell Plus

388

Sponsors | Resources | © BBS Technologies

\d

A number (equivalent to [0-9])

\D

Any character except for numbers

\e

Escape (ASCII 9)

\f

Form feed (ASCII 15)

\n

New line

\r

Carriage return

\s

Any whitespace character like a blank character, tab, or line break

\S

Any character except for a blank character, tab, or line break

\t

Tab character

Unicode character with the hexadecimal code FFFF. For example, 

\u FFFF

the Euro symbol has the code 20AC

\v

Vertical tab (ASCII 11)

\w

Letter, digit, or underline

\W

Any character except for letters

\x nn

Particular character, where nn specifies the hexadecimal ASCII code

.*

Any number of any character (including no characters at all)

Table 13.8: Placeholders for characters

Table of Contents | About PowerShell Plus

389

Sponsors | Resources | © BBS Technologies

Quantifiers

Every wildcard listed in Table 13.8 is represented by exactly one character. Using quantifiers, you can more precisely determine how many characters are respectively represented. For example, 

"\d{1,3}" stands for a number occurring one to three times for a one-to-three digit number. 

Element Description

*

Preceding expression is not matched or matched once or several 

times (matches as much as possible)

Preceding expression is not matched or matched once or several 

*? 

times (matches as little as possible)

.*

Any number of any character (including no characters at all)

? 

Preceding expression is not matched or matched once (matches as 

much as possible)

Preceding expression is not matched or matched once (matches as 

?? 

little as possible)

{n,}

n or more matches

{n,m}

Inclusive matches between n and m

{n}

Exactly n matches

+

Preceding expression is matched once

Table 13.9: Quantifiers for patterns

Anchors

Anchors determine whether a pattern has to be at the beginning or ending of a string. For example, 

the regular expression "\b\d{1,3}" finds numbers only up to three digits if these turn up separately in a string. The number "123" in the string "Bart123" would not be found. 

Elements Description

Table of Contents | About PowerShell Plus

390

Sponsors | Resources | © BBS Technologies

Matches at end of a string (\Z is less ambiguous for multi-line 

$

texts)

\A

Matches at beginning of a string, including multi-line texts

\b

Matches on word boundary (first or last characters in words)

\B

Must not match on word boundary

\Z

Must match at end of string, including multi-line texts

^

Must match at beginning of a string (\A is less ambiguous for 

multi-line texts)

Table 13.10: Anchor boundaries

Recognizing IP Addresses

The patterns, such as an IP address, can be much more precisely described by regular expressions 

than by simple wildcard characters. Usually, you would use a combination of characters and 

quantifiers to specify which characters may occur in a string and how often:

 $ip  =  "10.10.10.10" 

 $ip  -match  "\b\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}\b" 

 True

 $ip  =  "a.10.10.10" 

 $ip  -match  "\b\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}\b" 

 False

 $ip  =  "1000.10.10.10" 

 $ip  -match  "\b\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}\b" 

 False

The pattern is described here as four numbers (char:  \d) between one and three digits (using the 

quantifier  {1,3}) and anchored on word boundaries (using the anchor  \b), meaning that it is surrounded by white space like blank characters, tabs, or line breaks. Checking is far from perfect 

since it is not verified whether the numbers really do lie in the permitted number range from 0 to 

255. 

 # There still are entries incorrectly identified as valid IP addresses:

Table of Contents | About PowerShell Plus

391

Sponsors | Resources | © BBS Technologies

 $ip  =  "300.400.500.999" 

 $ip  -match  "\b\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}\b" 

 True

Validating E-Mail Addresses

If you'd like to verify whether a user has given a valid e-mail address, use the following regular 

expression:

 $email  =  "test@somewhere.com" 

 $email  -match  "\b[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,4}\b" 

 True

 $email  =  ".@." 

 $email  -match  "\b[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,4}\b" 

 False

Whenever you look for an expression that occurs as a single "word" in text, delimit your regular expression by word boundaries (anchor: \b). The regular expression will then know you're interested 

only in those passages that are demarcated from the rest of the text by white space like blank 

characters, tabs, or line breaks. 

The regular expression subsequently specifies which characters may be included in an e-mail 

address. Permissible characters are in square brackets and consist of "ranges" (for example, "A-Z0-9") and single characters (such as "._%+-"). The "+" behind the square brackets is a quantifier and means that at least one of the given characters must be present. However, you can also stipulate as 

many more characters as you wish. 

Following this is "@" and, if you like, after it a text again having the same characters as those in front of "@". A dot ( \. ) in the e-mail address follows. This dot is introduced with a "\" character because the dot actually has a different meaning in regular expressions if it isn't within square 

brackets. The backslash ensures that the regular expression understands the dot behind it literally. 

After the dot is the domain identifier, which may consist solely of letters ( [A-Z]). A quantifier ( {2,4}) again follows the square brackets. It specifies that the domain identifier may consist of at least two 

and at most four of the given characters. 

However, this regular expression still has one flaw. While it does verify whether a valid e-mail 

address is in the text somewhere, there could be another text before or after it:

 $email  =  "Email please to test@somewhere.com and reply!" 

 $email  -match  "\b[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,4}\b" 

 True

Table of Contents | About PowerShell Plus

392

Sponsors | Resources | © BBS Technologies



Because of "\b", when your regular expression searches for a pattern somewhere in the text, it only takes into account word boundaries. If you prefer to check whether the entire text corresponds to an 

authentic e-mail, use the elements for sentence beginnings (anchor: "^") and endings (anchor: 

"$"):instead of word boundaries. 

 $email  -match  "^[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,4}$" 

Simultaneous Searches for Different Terms

Sometimes, search terms are ambiguous because there may be several ways to write them. You can 

use the "?" quantifier to mark parts of the search term as optional. In simple cases, put a "?" after an optional character. Then the character in front of "?" may, but doesn't have to, turn up in the search term:

 "color"   -match  "colou?r" 

True

 "colour"   -match  "colou?r" 

True

The "?" character here doesn't represent any character at all, as 

you might expect after using simple wildcards. For regular 

expressions, "?" is a quantifier and always specifies how often a 

character or expression in front of it may occur. In the example, 

therefore, "u?" ensures that the letter "u" may, but not necessarily, 

be in the specified location in the pattern. Other quantifiers are "*" (may also 

match more than one character) and "+" (must match characters at least 

once). 

If you prefer to mark more than one character as optional, put the character in a sub-expression, 

which are placed in parentheses. The following example recognizes both the month designator "Nov" 

and "November":

 "Nov"   -match  "\bNov(ember)?\b" 

 True

 "November"   -match  "\bNov(ember)?\b" 

 True

If you'd rather use several alternative search terms, use the OR character "|":

 "Bob and Ted"   -match  "Alice|Bob" 

 True

Table of Contents | About PowerShell Plus

393

Sponsors | Resources | © BBS Technologies

And if you want to mix alternative search terms with fixed text, use sub-expressions again:

 # finds "and Bob":

 "Peter and Bob"   -match  "and (Bob|Willy)" 

 True

 # does not find "and Bob":

 "Bob and Peter"   -match  "and (Bob|Willy)" 

 False

Case Sensitivity

In keeping with customary PowerShell practice, the  -match operator is case insensitive. Use the 

operator  -cmatch as alternative if you'd prefer case sensitivity.:

 # -match is case insensitive:

 "hello"   -match  "heLLO" 

 True

 # -cmatch is case sensitive:

 "hello"   -cmatch  "heLLO" 

 False

If you want case sensitivity in only some pattern segments, use  -match. Also, specify in your regular expression which text segments are case sensitive and which are insensitive. Anything following the 

"(?i)" construct is case insensitive. Conversely, anything following "(?-i)" is case sensitive. This explains why the word "test" in the below example is recognized only if its last two characters are lowercase, while case sensitivity has no importance for the first two characters:

 "TEst"   -match  "(?i)te(?-i)st" 

 True

 "TEST"   -match  "(?i)te(?-i)st" 

 False

If you use a .NET framework  RegEx object instead of  -match, the  RegEx object will automatically sense shifts between uppercase and lowercase, behaving like  -cmatch. If you prefer case 

insensitivity, either use the above construct to specify an option in your regular expression or avail 

yourself of "  IgnoreCase" to tell the  RegEx object your preference:

[ regex]:: matches( "test" ,  "TEST" ,  "IgnoreCase" )

Table of Contents | About PowerShell Plus

394

Sponsors | Resources | © BBS Technologies



Element Description

Category

(xyz)

Sub-expression

|

Alternation construct

Selection

When followed by a character, the character is not 

\

recognized as a formatting character but as a literal 

Escape

character

 x? 

Changes the x quantifier into a "lazy" quantifier

Option

Activates of deactivates special modes, among others, 

(?xyz)

Option

case sensitivity

 x+

Turns the x quantifier into a "greedy" quantifier

Option

?:

Does not backtrack

Reference

? 

Specifies name for back references

Reference

<  name> 

Table 13.11: Regular expression elements

Of course, a regular expression can perform any number of 

detailed checks, such as verifying whether numbers in an IP 

address lie within the permissible range from 0 to 255. The 

problem is that this makes regular expressions long and hard to 

understand. Fortunately, you generally won't need to invest much 

time in learning complex regular expressions like the ones coming up. It's 

enough to know which regular expression to use for a particular pattern. 

Regular expressions for nearly all standard patterns can be downloaded from 

the Internet. In the following example, we'll look more closely at a complex 

regular expression that evidently is entirely made up of the conventional 

elements listed in Table 13.11:

 $ip  =  "300.400.500.999" 

 $ip  -match  "\b(?:(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.)"   + 

`

 "{3}(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\b" 

Table of Contents | About PowerShell Plus

395

Sponsors | Resources | © BBS Technologies

 False

The expression validates only expressions running into word boundaries (the 

anchor is \b). The following sub-expression defines every single number:

(?:25[0 - 5]|2[0 - 4][0 - 9]|[01]?[0 - 9][0 - 9]?)

The construct  ?: is optional and enhances speed. After it come three 

alternatively permitted number formats separated by the alternation 

construct "|".  25[0-5] is a number from  250 through  255.  2[0-4][0-9] is a number from  200 through  249. Finally,  [01]?[0-9][0-9]?  is a number from  0-9 or  00-99 or  100-199.  The quantifier "?" ensures that the preceding pattern must be included. The result is that the sub-expression describes numbers 

from 0 through 255. An IP address consists of four such numbers. A dot 

always follows the first three numbers. For this reason, the following 

expression includes a definition of the number:

(?:(?:25[0 - 5]|2[0 - 4][0 - 9]|[01]?[0 - 9][0 - 9]?)\.){3}

A dot, ( \. ), is appended to the number. This construct is supposed to be 

present three times ( {3}). When the fourth number is also appended, the 

regular expression is complete. You have learned to create sub-expressions 

(by using parentheses) and how to iterate sub-expressions (by indicating the 

number of iterations in braces after the sub-expression), so you should now 

be able to shorten the first used IP address regular expression:

 $ip  =  "10.10.10.10" 

 $ip  -match  "\b\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}\b" 

 True

 $ip  -match  "\b(?:\d{1,3}\.){3}\d{1,3}\b" 

 True

Finding Information in Text

Regular expressions can recognize patterns. They can also filter out data corresponding to certain 

patterns from text. As such, regular expressions are excellent tools for parsing raw data. For 

example, use the same regular expression as the one above to identify e-mail addresses if you want 

to extract an e-mail address from a letter. Afterwards, look in the  $matches variable to see which results were returned. The  $matches variable is created automatically when you use the  -match 

operator (or one of its siblings, like - cmatch). 

 $matches is a hash table (Chapter 4), so you can either output the entire hash table or access single elements in it by using their names, which you must specify in square brackets:

Table of Contents | About PowerShell Plus

396

Sponsors | Resources | © BBS Technologies



 $rawtext  =  "If it interests you, my e-mail address is tobias@powershell.com." 

 # Simple pattern recognition:

 $rawtext  -match  "\b[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,4}\b" 

 True

 # Reading data matching the pattern from raw text:

 $matches

 Name                           Value

 ----                           -----

 0                              tobias@powershell.com

 $matches[0]

 tobias@powershell.com

Does that also work for more than one e-mail addresses in text? Unfortunately, it doesn't do so right 

away. The  -match operator looks only for the first matching expression. So, if you want to find more than one occurrence of a pattern in raw text, you have to switch over to the  RegEx object underlying the  -match operator and use it directly. 

In one essential respect, the  RegEx object behaves unlike the 

 -match operator. Case sensitivity is the default for the  RegEx 

object, but not for  -match. For this reason, you must put the "  (?i)" 

option in front of the regular expression to eliminate confusion, 

making sure the expression is evaluated without taking case 

sensitivity into account. 

 # A raw text contains several e-mail addresses. -match finds the first one only:

 $rawtext  =  "test@test.com sent an e-mail that was forwarded to spam@muell.de." 

 $rawtext  -match  "\b[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,4}\b" 

 True

 $matches

 Name                           Value

 ----                           -----

 0                              test@test.com

 # A RegEx object can find any pattern but is case sensitive by default:

 $regex  = [ regex] "(?i)\b[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,4}\b" 

 $regex.  Matches( $rawtext)

 Groups   : {test@test.com}

 Success  : True

 Captures : {test@test.com}

Table of Contents | About PowerShell Plus

397

Sponsors | Resources | © BBS Technologies

 Index    : 4

 Length   : 13

 Value    : test@test.com

 Groups   : {spam@muell.de}

 Success  : True

 Captures : {spam@muell.de}

 Index    : 42

 Length   : 13

 Value    : spam@muell.de

 # Limit result to e-mail addresses:

 $regex.  Matches( $rawtext) |  Select-Object  -Property Value

 Value

 -----

 test@test.com

 spam@muell.de

 # Continue processing e-mail addresses:

 $regex.  Matches( $rawtext) |  ForEach-Object {  "found: $($_.Value)"  }

 found: test@test.com

 found: spam@muell.de

Searching for Several Keywords

You can use the alternation construct "|" to search for a group of keywords, and then find out which keyword was actually found in the string:

 "Set a=1"   -match  "Get|GetValue|Set|SetValue" 

 True

 $matches

 Name                           Value

 ----                           -----

 0                              Set

 $matches tells you which keyword actually occurs in the string. But note the order of keywords in 

your regular expression—it's crucial because the first matching keyword is the one selected. In this 

example, the result would be incorrect:

 "SetValue a=1"   -match  "Get|GetValue|Set|SetValue" 

 True

 $matches[0]

 Set

Table of Contents | About PowerShell Plus

398

Sponsors | Resources | © BBS Technologies

Either change the order of keywords so that longer keywords are checked before shorter ones â€¦:

 "SetValue a=1"   -match  "GetValue|Get|SetValue|Set" 

 True

 $matches[0]

 SetValue

... or make sure that your regular expression is precisely formulated, and remember that you're 

actually searching for single words. Insert word boundaries into your regular expression so that 

sequential order no longer plays a role:

 "SetValue a=1"   -match  "\b(Get|GetValue|Set|SetValue)\b" 

 True

 $matches[0]

 SetValue

It's true here, too, that  -match finds only the first match. If your raw text has several occurrences of the keyword, use a  RegEx object again:

 $regex  = [ regex] "\b(Get|GetValue|Set|SetValue)\b" 

 $regex.  Matches( "Set a=1; GetValue a; SetValue b=12" )

 Groups   : {Set, Set}

 Success  : True

 Captures : {Set}

 Index    : 0

 Length   : 3

 Value    : Set

 Groups   : {GetValue, GetValue}

 Success  : True

 Captures : {GetValue}

 Index    : 9

 Length   : 8

 Value    : GetValue

 Groups   : {SetValue, SetValue}

 Success  : True

 Captures : {SetValue}

 Index    : 21

 Length   : 8

 Value    : SetValue

Table of Contents | About PowerShell Plus

399

Sponsors | Resources | © BBS Technologies

Forming Groups

A raw text line is often a heaping trove of useful data. You can use parentheses to collect this data in 

sub-expressions so that it can be evaluated separately later. The basic principle is that all the data 

that you want to find in a pattern should be wrapped in parentheses because  $matches will return 

the results of these sub-expressions as independent elements. For example, if a text line contains a 

date first, then text, and if both are separated by tabs, you could describe the pattern like this:

 # Defining pattern: two characters separated by a tab

 $pattern  =  "(.*)\t(.*)" 

 # Generate example line with tab character

 $line  =  "12/01/2009`tDescription" 

 # Use regular expression to parse line:

 $line  -match  $pattern

 True

 # Show result:

 $matches

 Name                           Value

 ----                           -----

 2                              Description

 1                              12/01/2009

 0                              12/01/2009    Description

 $matches[1]

 12/01/2009

 $matches[2]

 Description

When you use sub-expressions,  $matches will contain the entire searched pattern in the first array element named "0". Sub-expressions defined in parentheses follow in additional elements. To make them easier to read and understand, you can assign sub-expressions their own names and later use 

the names to call results. To assign names to a sub-expression, type  ?<Name>  in parentheses for the first statement:

 # Assign subexpressions their own names:

 $pattern  =  "(?<Date> .*)\t(? <Text> .*)" 

 # Generate example line with tab character:

 $line  =  "12/01/2009`tDescription" 

 # Use a regular expression to parse line:

 $line  -match  $pattern

 True

 # Show result:

 $matches

Table of Contents | About PowerShell Plus

400

Sponsors | Resources | © BBS Technologies

 Name                    Value

 ----                    -----

 Text                    Description

 Date                    12/01/2009

 0                       12/01/2009    Description

 $matches.  Date

 12/01/2009

 $matches.  Text

 Description

Each result retrieved by  $matches for each sub-expression naturally requires storage space. If you don't need the results, discard them to increase the speed of your regular expression. To do so, type 

"?:" as the first statement in your sub-expression:

 # Don't return a result for the second subexpression:

 $pattern  =  "(?<Date> .*)\t(?:.*)" 

 # Generate example line with tab character:

 $line  =  "12/01/2009`tDescription" 

 # Use a regular expression to parse line:

 $line  -match  $pattern

 True

 # No more results will be returned for the second subexpression:

 $matches

 Name                   Value

 ----                   -----

 Date                   12/01/2009

 0                      12/01/2009    Description

Further Use of Sub-Expressions

With the help of results from each sub-expression, you can create surprisingly flexible regular 

expressions. For example, how could you define a Web site HTML tag as a pattern? A tag always has 

the same structure:  <tagname [parameter]>...</tagname> . This means that a pattern for one particular strictly predefined HTML tag can be found quickly:

 "<body background=1>contents</body>"   -match  "<body\b[^>]*>(.*?)</body>" 

 True

 $matches[1]

 Contents

Table of Contents | About PowerShell Plus

401

Sponsors | Resources | © BBS Technologies

The pattern begins with the fixed text "<body". Any additional words, separated by word boundaries, may follow with the exception of ">". The concluding ">" follows and then the contents of the  body tag, which may consist of any number of any characters (.*?). The expression, enclosed in parentheses, is a sub-expression and will be returned later as a result in  $matches so that you'll know what is inside the  body tag. The concluding part of the tag follows in the form of fixed text ("</body"). 

This regular expression works fine for  body tags, but not for other tags. Does this mean that a 

regular expression has to be defined for every HTML tag? Naturally not. There's a simpler solution. 

The problem is that the name of the tag in the regular expression occurs twice, once initially 

("<body...>") and once terminally ("</body>"). If the regular expression is supposed to be able to process any tags, then it would have to be able to find out the name of the tag automatically and 

use it in both locations. How to accomplish that? Like this:

 "<body background=2>Contents</body>"   -match  "< ([A-Z][A-Z0-9]*)[^>]*>(.*?)</\1>" 

 True

 $matches

 Name                           Value

 ----                           -----

 2                              Contents

 1                              body

 0                              <body background=2>Contents</body> 

This regular expression no longer contains a strictly predefined tag name and works for any tags 

matching the pattern. How does that work? The initial tag in parentheses is defined as a sub-

expression, more specifically as a word that begins with a letter and that can consist of any 

additional alphanumeric characters. 

 ([A-Z][A-Z0-9]*)

The name of the tag revealed here must subsequently be iterated in the terminal part. Here you'll 

find "</\1>". "\1" refers to the result of the first sub-expression. The first sub-expression evaluated the tag name and so this name is used automatically for the terminal part. 

The following  RegEx object could directly return the contents of any HTML tag:

 $regexTag  = [ regex] "(?i)<([A-Z][A-Z0-9]*)[^>]*>(.*?)</\1>" 

 $result  =  $regexTag.  Matches( "<button>Press here</button>" ) $result[0].  Groups[2].  Value  +  " is in tag "   +  $result[0].  Groups[1].  Value Press here is in tag button

Table of Contents | About PowerShell Plus

402

Sponsors | Resources | © BBS Technologies

Greedy or Lazy? Detailed or Concise Results... 

Readers who have paid careful attention may wonder why the contents of the HTML tag were 

defined by ".*?" and not simply by ".*" in regard to regular expressions. . After all, ".*" should suffice so that an arbitrary character (char: ".") can turn up any number of times (quantifier: "*"). 

At first glance, the difference between ".*" and ".*? is not easy to recognize; but a short example should make it clear. 

Assume that you would like to evaluate month specifications in a logging file, but the months are not 

all specified in the same way. Sometimes you use the short form, other times the long form of the 

month name is used. As you've seen, that's no problem for regular expressions, because sub-

expressions allow parts of a keyword to be declared optional:

 "Feb"   -match  "Feb(ruary)?" 

 True

 $matches[0]

 Feb

 "February"   -match  "Feb(ruary)?" 

 True

 $matches[0]

 February

In both cases, the regular expression recognizes the month, but returns different results in 

 $matches. By default, the regular expression is "greedy" and wants to achieve a match in as much detail as possible. If the text is "February," then the expression will search for a match starting with 

"Feb" and then continue searching "greedily" to check whether even more characters match the pattern. If they do, the entire (detailed) text is reported back. 

However, if your main concern is just standardizing the names of months, you would probably prefer 

getting back the shortest common text. That's exactly what the "??" quantifier does, which in 

contrast to the regular expression is "lazy." As soon as it recognizes a pattern, it returns it without checking whether additional characters might match the pattern optionally. 

 "Feb"   -match  "Feb(ruary)?" 

 True

 $matches[0]

 Feb

 "February"   -match  "Feb(ruary)?" 

Table of Contents | About PowerShell Plus

403

Sponsors | Resources | © BBS Technologies

 True

 $matches[0]

 Feb

Just what is the connection between the "??" quantifier of this example and the "*?" if the preceding example? In reality, "*?" is not a self-contained quantifier. It just turns a normally "greedy" 

quantifier into a "lazy" quantifier. This means you could use "?" to force the quantifier "*" to be 

"lazy" and to return the shortest possible result. That's exactly what happened with our regular expressions for HTML tags. You can see how important this is if you use the greedy quantifier "*" 

instead of "*?", then it will attempt to retrieve a result in as much detail as possible. That can go wrong:

 # The greedy quantifier * returns results in as much detail as possible:

 "<body background=1>Contents</body></body>"   -match  "<body\b[^>]*>(.*)</body>" 

 True

 $matches[1]

 Contents<\body> 

 # The right quantifier is *?, the lazy one, which returns results that 

 # are as short as possible

 "<body background=1>Contents</body></body>"   -match  "<body\b[^>]*>(.*?)</body>" 

 True

 $matches[1]

 Contents

According to the definition of the regular expression, any characters are allowed inside the tag. 

Moreover, the entire expression must end with "</body>". If "</body>" is also inside the tag, the following will happen: the greedy quantifier ("*"), coming across the first "</body>", will at first assume that the pattern is already completely matched. But because it is greedy, it will continue to 

look and will discover the second "</body>" that also fits the pattern. The result is that it will take both "</body>" specifications into account, allocate one to the contents of the tag, and use the other as the conclusion of the tag. 

I this example, it would be better to use the lazy quantifier ("*?") that notices when it encounters the first "</body>" that the pattern is already correctly matched and consequently doesn't go to the trouble of continuing to search. It will ignore the second "</body>" and use the first to conclude the tag. 

Table of Contents | About PowerShell Plus

404

Sponsors | Resources | © BBS Technologies

Finding String Segments

Entire books have been written about the uses of regular expressions. That's why it would go beyond 

the scope of this book to discuss more details. However, our last example, which locates text 

segments, shows how you can use the elements listed in Table 13.11 to easily harvest surprising search results. If you type two words, the regular expression will retrieve the text segment between 

the two words if at least one word is, and not more than six other words are, between the two 

words:

 "Find word segments from start to end"   -match  "\bstart\W+(?:\w+\W+){1,6}?end\b" 

True

 $matches[0]

 Name                           Value

 ----                           -----

 0                              start to end

Replacing a String

You already know how to replace a string because you were already introduced to the  -replace 

operator. Simply tell the operator what term you want to replace in a string and the task is done:

 "Hello, Ralph"   -replace  "Ralph" ,  "Martina" 

 Hello, Martina

But simple replacement isn't always sufficient, so you need to use regular expressions for 

replacements. Some of the following interesting examples show how that could be useful. 

Perhaps you'd like to replace several different terms in a string with one other term. Without regular 

expressions, you'd have to replace each term separately. Or use instead the alternation operator, 

"|", with regular expressions:

 "Mr. Miller and Mrs. Meyer"   -replace  "(Mr.|Mrs.)" ,  "Our client" 

 Our client Miller and Our client Meyer

You can type any term in parentheses and use the "|" symbol to separate them. All the terms will be replaced with the replacement string you specify. 

Using Back References

This last example replaces specified keywords anywhere in a string. Often, that's sufficient, but 

sometimes you don't want to replace a keyword everywhere it occurs but only when it occurs in a 

certain context. In such cases, the context must be defined in some way in the pattern. How could 

you change the regular expression so that it replaces only the names Miller and Meyer? Like this:

 "Mr. Miller, Mrs. Meyer and Mr. Werner"  `

Table of Contents | About PowerShell Plus

405

Sponsors | Resources | © BBS Technologies

   -replace  "(Mr.|Mrs.)\s*(Miller|Meyer)" ,  "Our client" 

 Our client, Our client and Mr. Werner

The result looks a little peculiar, but the pattern you're looking for was correctly identified. The only 

replacements were  Mr.  or  Mrs.   Miller and  Mr.  or  Mrs.   Meyer. The term "Mr. Werner" wasn't replaced. 

Unfortunately, the result also shows that it doesn't make any sense here to replace the entire 

pattern. At least the name of the person should be retained. Is that possible? 

This is where the back referencing you've already seen comes into play. Whenever you use 

parentheses in your regular expression, the result inside the parentheses is evaluated separately, 

and you can use these separate results in your replacement string. The first sub-expression always 

reports whether a "Mr." or a "Mrs." was found in the string. The second sub-expression returns the name of the person. The terms "$1" and "$2" provide you the sub-expressions in the replacement string (the number is consequently a sequential number; you could also use "$3" and so on for 

additional sub-expressions). 

 "Mr. Miller, Mrs. Meyer and Mr. Werner"  ` 

 -replace  "(Mr.|Mrs.)\s*(Miller|Meyer)" ,  "Our client $2" 

 Our client , Our client  and Mr. Werner

Strangely enough, at first the back references don't seem to work. The cause can be found quickly: 

"$1" and "$2" look like PowerShell variables, but in reality they are regular terms of the  -replace operator. As a result, if you put the replacement string inside double quotation marks, PowerShell 

will replace "$2" with the PowerShell variable $2, which is normally empty. So that replacement with back references works, consequently, you must either put the replacement string inside single 

quotation marks or add a backtick to the "$" special character so that PowerShell won't recognize it as its own variable and replace it:

 # Replacement text must be inside single quotation marks 

 # so that the PS variable $2:

 "Mr. Miller, Mrs. Meyer and Mr. Werner"   -replace `

 "(Mr.|Mrs.)\s*(Miller|Meyer)" ,  'Our client $2' 

 Our client Miller, Our client Meyer and Mr. Werner

 # Alternatively, $ can also be masked by `$:

 "Mr. Miller, Mrs. Meyer and Mr. Werner"   -replace `

 "(Mr.|Mrs.)\s*(Miller|Meyer)" ,  "Our client `$2" 

 Our client Miller, Our client Meyer and Mr. Werner

Putting Characters First at Line Beginnings

Replacements can also be made in multiple instances in text of several lines. For example, when you 

respond to an e-mail, usually the text of the old e-mail is quoted in your new e-mail as and marked 

with ">" at the beginning of each line. Regular expressions can do the marking. 

Table of Contents | About PowerShell Plus

406

Sponsors | Resources | © BBS Technologies

However, to accomplish this, you need to know a little more about "multi-line" mode. Normally, this mode is turned off, and the "^" anchor represents the text beginning and the "$" the text ending. So that these two anchors refer respectively to the line beginning and line ending of a text of several 

lines, the multi-line mode must be turned on with the "(?m)" statement. Only then will  -replace substitute the pattern in every single line. Once the multi-line mode is turned on, the anchors "^" 

and "\A", as well as "$" and "\Z", will suddenly behave differently. "\A" will continue to indicate the text beginning, while "^" will mark the line ending; "\Z" will indicate the text ending, while "$" will mark the line ending. 

 # Using Here-String to create a text of several lines:

 $text  = @ " 

 Here is a little text. 

 I want to attach this text to an e-mail as a quote. 

 That's why I would put a ">" before every line. 

 " @

 $text

 Here is a little text. 

 I want to attach this text to an e-mail as a quote. 

 That's why I would put a ">" before every line. 

 # Normally, -replace doesn't work in multiline mode. 

 # For this reason, only the first line is replaced:

 $text  -replace  "^" ,  "> " 

 > Here is a little text. 

 I want to attach this text to an e-mail as a quote. 

 That's why I would put a ">" before every line. 

 # If you turn on multiline mode, replacement will work in every line:

 $text  -replace  "(?m)^" ,  "> " 

 > Here is a little text. 

 > I want to attach this text to an e-mail as a quote. 

 > That's why I would put a ">" before every line. 

 # The same can also be accomplished by using a RegEx object, 

 # where the multiline option must be specified:

[ regex]:: Replace( $text,  "^" ,  "> " , `

[ Text.RegularExpressions.RegExOptions]:: Multiline)

 > Here is a little text. 

 > I want to attach this text to an e-mail as a quote. 

 > That's why I would put a ">" before every line. 

 # In multiline mode, \A stands for the text beginning

 #  and ^ for the line beginning:

[ regex]:: Replace( $text,  "\A" ,  "> " , `

[ Text.RegularExpressions.RegExOptions]:: Multiline)

 > Here is a little text. 

 I want to attach this text to an e-mail as a quote. 

Table of Contents | About PowerShell Plus

407

Sponsors | Resources | © BBS Technologies

 That's why I would put a ">" before every line. 

Removing Superfluous White Space

Regular expressions can perform routine tasks as well, such as remove superfluous white space. The 

pattern describes a blank character (char: "\s") that occurs at least twice (quantifier: "{2,}"). That is replaced with a normal blank character. 

 "Too   many   blank   characters"   -replace  "\s{2,}" ,  " " 

 Too many blank characters

Finding and Removing Doubled Words

How is it possible to find and remove doubled words in text? Here, you can use back referencing 

again. The pattern could be described as follows:

 "\b(\w+)(\s+\1){1,}\b" 

The pattern searched for is a word (anchor: "\b"). It consists of one word (the character "\w" and quantifier "+"). A blank character follows (the character "\s" and quantifier "?"). This pattern, the blank character and the repeated word, must occur at least once (at least one and any number of 

iterations of the word, quantifier "{1,}"). The entire pattern is then replaced with the first back reference, that is, the first located word. 

 # Find and remove doubled words in a text:

 "This this this is a test"   -replace  "\b(\w+)(\s+\1){1,}\b" ,  '$1' 

 This is a test

Summary

Text is demarcated either by single or double quotation marks. If you use double quotation marks, 

PowerShell will replace PowerShell variables and special characters in text. Text enclosed in single 

quotation marks will remain unchanged. The same is true for characters in text marked with the 

backtick character, which can be used to insert special characters in the text (Table 13.1). 

The user can query text directly through the Read-Host cmdlet. Lengthier text, text of several lines, 

can also be inputted through Here-Strings, which are begun with @"(Enter) and ended with 

"@(Enter). 

By using the format operator -f, you can output formatted text. This gives you the option to display 

text in different ways or to set fixed widths to output text in aligned columns (Table 13.3 through 

Table 13.5). Along with the formatting operator, PowerShell has a number of further string operators you can use to validate patterns or to replace a string (Table 13.2). Most of these operators are also available in two special forms, which are either case-insensitive (preceded by "i") or case-sensitive (preceded by "c"). 

Table of Contents | About PowerShell Plus

408

Sponsors | Resources | © BBS Technologies

PowerShell stores text in string objects, which contain dynamic methods to work on the stored text. 

You can use these methods by typing a dot after the string object (or the variable in which the text 

is stored) and then activating auto complete (Table 13.6). Along with the dynamic methods that always refer to text stored in a string object, there are also static methods that are provided directly 

by the string data type by qualifying the string object with "[string]::". 

The simplest way to describe patterns is to use the simple wildcards in Table 13.7.  This allows you to check whether text is recognized in a particular pattern. However, simple wildcards are appropriate 

tools only for rudimentary pattern recognition. Moreover, simple wildcards can only recognize 

patterns; they cannot extract data from them. A far more sophisticated tool is regular expressions. 

They consist of the diverse elements listed in Table 13.11,  consisting basically of the categories 

"character," "quantifier," and "anchor." Regular expressions describe any complex pattern and can be used along with the operators  -match or  -replace. Use the .NET object [regex] if you want to be very specific and utilize advanced functionality of regular expressions. 

The  -match operator reports whether the string contains the pattern you're looking for and 

subsequently retrieves the contents of the pattern in the  $matches variable. This means that you 

can use  -match not only to recognize patterns, but also to parse unstructured data directly. The 

 -replace operator searches for a pattern and replaces it with an alternative string. Both operators also support back references, whose use was explained in detail in several chapter examples. 

Table of Contents | About PowerShell Plus

409

Sponsors | Resources | © BBS Technologies

CHAPTER 14. 

 XML

Raw information used to be stored in comma-separated lists or .ini files, but for some years the XML 

standard has prevailed. XML is an acronym for Extensible Markup Language and is a descriptive 

language for any structured information. In the past, handling XML was difficult, but PowerShell now 

has excellent XML support. With its help, you can comfortably wrap data in XML as well as read 

existing XML files. 

Topics Covered:

•

X

  ML Structure  

•

L oading and Processing XML Files  

•

A

  ccessing Single Nodes and Modifying Data  

•

U

  sing SelectNodes() to Choose Nodes  

•

A

  ccessing Attributes  

•

A

  dding New Nodes  

•

E

  xploring the Extended Type System  

•

T

  he XML Data of the Extended Type System  

•

F inding Predefined Views  

XML Structure

XML uses  tags to uniquely identify pieces of information. A tag is a pair of angle brackets like the ones used for HTML documents in a Web site. Typically, a piece of information is delimited by a start 

and end tag. The end tag is preceded by "/"; the result is known as a node, which in this case is called  Name:

<Name>Tobias Weltner</Name> 

In addition, nodes possess attributes, or information relating to the node itself. This information is in 

the introductory tag:

<staff branch="Hanover" Type="sales">...</staff> 

If a node is empty, the start and end tags can be collapsed. The ending symbol "/" drifts toward the end of the tag. If the branch office in Hanover doesn't have any staff currently working in the sales 

department, the tag will look like this:

<staff branch="Hanover" Type="sales"/> 

Usually, though, nodes aren't empty and they contain further information, which in turn is included 

in tags. This allows reproduction of information structures that can be nested as deeply as you like. 

The following XML structure describes two staff members of the Hanover branch office who are 

working in the sales department. 

<staff branch="Hanover" Type="sales"> 

Table of Contents | About PowerShell Plus

410

Sponsors | Resources | © BBS Technologies



<employee> 

<Name>Tobias Weltner</Name> 

<function>management</function> 

<age>39</age> 

</employee> 

<employee> 

<Name>Cofi Heidecke</Name> 

<function>security</function> 

<age>4</age> 

</employee> 

</staff> 

So that XML files can be recognized as such, they usually begin with a header, which in a very 

simple case might look like this:

<?xml version="1.0" ?> 

This header declares that the subsequent XML conforms to the specifications of XML version 1.0. 

What is known as a "schema" could also be given here. Specifically, a schema has the form of an 

XSD ( XML Schema Definition) file and describes what the valid structure of the XML file should be to fulfill a certain purpose. In the previous example, the schema could specify that there must always 

be a node called "staff" as part of staff information, which in turn could include as many sub-nodes named "staff" as required. The schema would also specify that information relating to name and 

function must also be defined for each staff member. 

Because XML files consist of plain text, you can easily create them using any editor or directly from 

within PowerShell. Let's save the previous staff list as an  xml file:

 $xml  = @ ' 

 <?xml version="1.0" standalone="yes"?> 

 <staff branch="Hanover" Type="sales"> 

   <employee> 

     <Name>Tobias Weltner</Name> 

     <function>management</function> 

     <age>39</age> 

   </employee> 

   <employee> 

     <Name>Cofi Heidecke</Name> 

     <function>security</function> 

     <age>4</age> 

   </employee> 

 </staff> 

 ' @ |  Out-File employee.  xml

XML is case-sensitive! 

Table of Contents | About PowerShell Plus

411

Sponsors | Resources | © BBS Technologies

Loading and Processing XML Files

If you want to process XML files as actual XML and not as text, the text contents must be converted 

into the XML type. The type conversion covered in Chapter 6 performs this task in just one line: $xmldata  = [ xml]( Get-Content employee.  xml)

Use  Get-Content to read the XML from the previously saved  xml file and  [xml] to convert the XML 

into genuine XML. You could just as easily have directly specified the XML from the  $xml variable: $xmldata  = [ xml] $xml

However, conversion works only if the specified XML is also valid and contains no syntactic errors. 

You'll get an error when trying to convert if the structure of your XML is faulty. 

The structure of information that describes the XML is now included in  $xmldata. From now on, it will be very easy to retrieve single pieces of information because the XML object represents each node 

as attributes. You can get a staff list like this:

 $xmldata.  staff.employee

 Name             Function        Age

 ----             -----         -----

 Tobias Weltner   management       39

 Cofi Heidecke    security          4

Accessing Single Nodes and Modifying Data

If a node in your XML is unique, you can access it by typing a dot as in the previous example. Often, 

however, XML documents contain many similar nodes (known as  siblings) just as the last example 

includes individual employees. For example, you could use the PowerShell pipeline if you'd like to 

access a particular employee to modify his data:

 $xmldata.  staff.employee | 

 Where-Object {  $_.  Name  -match  "Tobias Weltner"  }

 Name               function         Age

 ----               -----          -----

 Tobias Weltner     management        39

 $employee  =  $xmldata.  staff.employee | 

 Where-Object {  $_.  Name  -match  "Tobias Weltner"  }

 $employee.  function  =  "vacation" 

 $xmldata.  staff.employee

 Name               function         Age

 ----               -----          -----

 Tobias Weltner     vacation          39

 Cofi Heidecke      security           4

Table of Contents | About PowerShell Plus

412

Sponsors | Resources | © BBS Technologies



Using SelectNodes() to Choose Nodes

The  SelectNodes() method, which the  XPath query language supports, also allows you to select nodes.  XPath specifies the "path name" to a node:

 $xmldata  = [ xml]( Get-Content employee.  xml)

 $xmldata.  SelectNodes( "staff/employee" )

 Name               function         Age

 ----               -----          -----

 Tobias Weltner     management        39

 Cofi Heidecke      security           4

The result looks just like the direct accessing of attributes in the preceding example. However,  XPath supports wildcards enclosed in square brackets. The next statement retrieves just the first employee 

node:

 $xmldata.  SelectNodes( "staff/employee[1]" )

 Name                function          Age

 ----                -----           -----

 Tobias Weltner      management         39

If you'd like, you can get a list of all employees who are under the age of 18:

 $xmldata.  SelectNodes( "staff/employee[age<18]" )

 Name                 function        Age

 ----                 -----         -----

 Cofi Heidecke        security          4

In a similar way, the query language will also retrieve the last employee on the list. Position 

specifications are also possible:

 $xmldata.  SelectNodes( "staff/employee[last()]" )

 $xmldata.  SelectNodes( "staff/employee[position()>1]" )

Alternatively, you can also use what is known as the  XpathNavigator, 

which you get by multiple type conversion from XML text:

 # Create navigator for XML:

 $xpath  = [System.  XML.  XPath.XPathDocument]`

[ System.IO.TextReader][ System.IO.StringReader]`

( Get-Content employee.  xml |  out-string)

 $navigator  =  $xpath.  CreateNavigator()

 # Output the last employee name of the Hanover branch office:

 $query  =  "/staff[@branch='Hanover']/employee[last()]/Name" 

 $navigator.  Select( $query) |  Format-Table Value

Table of Contents | About PowerShell Plus

413

Sponsors | Resources | © BBS Technologies

 Value

 -----

 Cofi Heidecke

 # Output all employees for the Hanover branch office 

 # except for Tobias Weltner:

 $query  =  "/staff[@branch='Hanover']/employee[Name!='Tobias 

 Weltner']" 

 $navigator.  Select( $query) |  Format-Table Value

 Value

 -----

 Cofi Heideckesecurity4

Accessing Attributes

Attributes are information defined in an XML tag. If you'd like to see the attributes of a node, use 

 get_Attributes():

 $xmldata.  staff.get_Attributes()

 #text

 -----

 Hanover

 sales

Use  GetAttribute() i f you'd like to query a particular attribute:

 $xmldata.  staff.GetAttribute( "branch" )

 Hanover

Use  SetAttribute() to specify new attributes or modify (overwrite) existing ones:

 $xmldata.  staff.SetAttribute( "branch" ,  "New York" )

 $xmldata.  staff.GetAttribute( "branch" )

 New York

Adding New Nodes

If you'd like to add the names of new employees to the employee list, first use  CreateElement() to create an employee element and then to lay down its inner structure. Afterwards, the element can 

be inserted at the desired location in the XML structure:

Table of Contents | About PowerShell Plus

414

Sponsors | Resources | © BBS Technologies

 # Load XML from file:

 $xmldata  = [ xml]( Get-Content employee.  xml)

 # Create new node:

 $newemployee  =  $xmldata.  CreateElement( "employee" )

 $newemployee.  set_InnerXML( ` 

 "<Name>Bernd Seiler</Name><function>expert</function>" )

 # Write nodes in XML:

 $xmldata.  staff.AppendChild( $newemployee)

 # Check result:

 $xmldata.  staff.employee

 Name                Function         Age

 ----                -----           -----

 Tobias Weltner      management         39

 Cofi Heidecke       security            4

 Bernd Seiler        expert

 # Output plain text:

 $xmldata.  get_InnerXml()

 <?xml version="1.0"?><Branch office staff="Hanover" Type="sales"> 

 <employee><Name>Tobias Weltner</Name><function>management</function> 

 <age>39</age></employee><employee><Name>Cofi Heidecke</Name> 

 <function>security</function><age>4</age></employee><employee> 

 <Name>Bernd Seiler</Name><function>expert</function></employee></staff> Exploring the Extended Type System

The PowerShell Extended Type System (ETS) ensures that objects can be converted into meaningful 

text; moreover, it can pass additional properties and methods to objects. The precise instructions for 

these operations are laid down in XML files having the  .ps1xml file extension. 

The XML Data of the Extended Type System

Whenever PowerShell has to convert an object into text, it searches through several of its own 

internal records to find any that describe the object and its conversion. The right files contain XML; 

their name ends with  .format.ps1xml. These files are located in the PowerShell root directory 

 $pshome:

Dir  $pshome\ *.  format.ps1xml

 Mode                LastWriteTime     Length Name

 ----                -------------     ------ ----

 -a---         4/13/2007     19:40      22120 Certificate.format.ps1xml

 -a---         4/13/2007     19:40      60703 DotNetTypes.format.ps1xml

 -a---         4/13/2007     19:40      19730 FileSystem.format.ps1xml

 -a---         4/13/2007     19:40     250197 Help.format.ps1xml

 -a---         4/13/2007     19:40      65283 PowerShellCore.format.ps1xml

 -a---         4/13/2007     19:40      13394 PowerShellTrace.format.ps1xml

Table of Contents | About PowerShell Plus

415

Sponsors | Resources | © BBS Technologies

 -a---         4/13/2007     19:40      13540 Registry.format.ps1xml

All these files define a multitude of  Views, which you can examine using PowerShell XML support. 

[ xml] $file  =  Get-Content  "$pshome\dotnettypes.format.ps1xml" 

 $file.  Configuration.ViewDefinitions.View

 Name                               ViewSelectedBy    TableControl

 ----                               --------------    ------------

 System.Reflection.Assembly         ViewSelectedBy    TableControl

 System.Reflection.AssemblyName     ViewSelectedBy    TableControl

 System.Globalization.CultureInfo   ViewSelectedBy    TableControl

 System.Diagnostics.FileVersionInfo ViewSelectedBy    TableControl

 System.Diagnostics.EventLogEntry   ViewSelectedBy    TableControl

 System.Diagnostics.EventLog        ViewSelectedBy    TableControl

 System.Version                     ViewSelectedBy    TableControl

 System.Drawing.Printing.PrintDo... ViewSelectedBy    TableControl

 Dictionary                         ViewSelectedBy    TableControl

 ProcessModule                      ViewSelectedBy    TableControl

 process                            ViewSelectedBy    TableControl

 PSSnapInInfo                       ViewSelectedBy

 PSSnapInInfo                       ViewSelectedBy    TableControl

 Priority                           ViewSelectedBy    TableControl

 StartTime                          ViewSelectedBy    TableControl

 service                            ViewSelectedBy    TableControl

 (...)

Finding Predefined Views

Predefined views are highly interesting because you can use the  -view parameter to make extensive 

adjustments and modifications of results given by formatting cmdlets like  Format-Table or  Format-List. 

 Get-Process |  Format-Table  -view Priority

 Get-Process |  Format-Table  -view StartTime

Unfortunately, there's nobody to inform you of the availability of the  Priority and  StartTime 

predefined views or of other views. You can look in the relevant XML files. The view shows that 

every view node contains the child nodes  Name,  ViewSelectedBy, and  TableControl. But the raw XML 

data of the view may look confusing and unclear at first:

 $xmldata  =  $file.  Configuration.ViewDefinitions.View | 

 Select-Object  -first 1

 $xmldata.  get_OuterXML()

A little re-formatting results in text that's easier to read:

 $xmldata.  get_OuterXML().  Replace( "<" ,  "`t<" ).  Replace( ">" ,  ">`t" )`

.  Replace( ">`t`t<" ,  ">`t<" ).  Split( "`t" ) | 

 ForEach-Object { $x= 0}{  If ( $_.  StartsWith( "</" )) { $x--} `

Table of Contents | About PowerShell Plus

416

Sponsors | Resources | © BBS Technologies

 ElseIf( $_.  StartsWith( "<" )) {  $x++}; ( " "   * ( $x))  +  $_; `

 if ( $_.  StartsWith( "</" )) {  $x--}  elseif `

( $_.  StartsWith( "<" )) { $x++} }

 <View> 

    <Name> 

     System.Reflection.Assembly

    </Name> 

   <ViewSelectedBy> 

      <TypeName> 

       System.Reflection.Assembly

      </TypeName> 

    </ViewSelectedBy> 

    <TableControl> 

      <TableHeaders> 

        <TableColumnHeader> 

          <Label> 

           GAC

          </Label> 

          <Width> 

           6

          </Width> 

        </TableColumnHeader> 

        <TableColumnHeader> 

          <Label> 

           Version

          </Label> 

         <Width> 

           14

          </Width> 

        </TableColumnHeader> 

        <TableColumnHeader /> 

       </TableHeaders> 

        <TableRowEntries> 

          <TableRowEntry> 

            <TableColumnItems> 

              <TableColumnItem> 

                <PropertyName> 

                GlobalAssemblyCache

                </PropertyName> 

             </TableColumnItem> 

              <TableColumnItem> 

                <PropertyName> 

                 ImageRuntimeVersion

                </PropertyName> 

             </TableColumnItem> 

              <TableColumnItem> 

                <PropertyName> 

                 Location

                </PropertyName> 

              </TableColumnItem> 

            </TableColumnItems> 

         </TableRowEntry> 

Table of Contents | About PowerShell Plus

417

Sponsors | Resources | © BBS Technologies

        </TableRowEntries> 

     </TableControl> 

    </View> 

Each view consists of a  Name, a .NET type in  ViewSelectedBy for which the view is valid, as well as the  TableControl node specifying how the object is supposed to be converted into text. Just use 

 Format-Table to output the data if you want to output all the views specified in the XML file in 

columns, . Then, select the properties that you want to show in the summary:

[ xml] $file  =  Get-Content  "$pshome\dotnettypes.format.ps1xml" 

 $file.  Configuration.ViewDefinitions.View | 

 Format-Table Name, { $_.  ViewSelectedBy.TypeName}

 Name                                          $_.ViewSelectedBy.TypeName

 ----                                          --------------------------

 System.Reflection.Assembly                    System.Reflection.Assembly

 System.Reflection.AssemblyName                System.Reflection.AssemblyName

 System.Globalization.CultureInfo              System.Globalization.CultureInfo

 System.Diagnostics.FileVersionInfo            System.Diagnostics.FileVersionInfo

 System.Diagnostics.EventLogEntry              System.Diagnostics.EventLogEntry

 System.Diagnostics.EventLog                   System.Diagnostics.EventLog

 System.Version                                System.Version

 System.Drawing.Printing.PrintDocument 

 System.Drawing.Printing.PrintDocument

 Dictionary                                    System.Collections.DictionaryEntry

 ProcessModule                                 System.Diagnostics.ProcessModule

 process                                       {System.Diagnostics.Process, 

 Deserialized.Sy... 

 PSSnapInInfo 

 System.Management.Automation.PSSnapInInfo

 PSSnapInInfo 

 System.Management.Automation.PSSnapInInfo

 Priority                                      System.Diagnostics.Process

 StartTime                                     System.Diagnostics.Process

 service 

 System.ServiceProcess.ServiceController

 System.Diagnostics.FileVersionInfo            System.Diagnostics.FileVersionInfo

 System.Diagnostics.EventLogEntry              System.Diagnostics.EventLogEntry

 System.Diagnostics.EventLog                   System.Diagnostics.EventLog

 System.TimeSpan                               System.TimeSpan

 System.TimeSpan                               System.TimeSpan

 System.TimeSpan                               System.TimeSpan

 System.AppDomain                              System.AppDomain

 System.ServiceProcess.ServiceController 

 System.ServiceProcess.ServiceController

 System.Reflection.Assembly                    System.Reflection.Assembly

 System.Collections.DictionaryEntry            System.Collections.DictionaryEntry

 process                                       System.Diagnostics.Process

 DateTime                                      System.DateTime

 System.Security.AccessControl.ObjectSecurity 

 System.Security.AccessControl.ObjectSecurity

Table of Contents | About PowerShell Plus

418

Sponsors | Resources | © BBS Technologies



 System.Security.AccessControl.ObjectSecurity 

 System.Security.AccessControl.ObjectSecurity

 System.Management.ManagementClass             System.Management.ManagementClass

Here you see all of the views defined in this XML file. The object types for which the views are 

defined are in the second column. The  Priority and  StartTime views, which we just used, are also on the list. After a look at the second column, it should be clear that the views are intended for 

 System.Diagnostics.Process objects, precisely the objects that  Get-Process retrieves:

( Get-Process |  Select-Object  -first 1).  GetType().  FullName

 System.Diagnostics.Process

Surprisingly, doubles of some names crop up. The reason is that, along with the  TableControl node 

in the last example, other nodes convert objects:  ListControl,  WideControl and  CustomControl. 

These nodes weren't displayed in the first overview simply because only one node of this kind is 

allowed for each view. A  TableControl was output more or less randomly since PowerShell bases its 

text conversion of unknown objects on the first record. 

You are now in a position to extract all required information from the XML file. First, sort the views 

by  ViewSelectedBy.TypeName, and then group them by this criterion. You can sort out all the views 

that match only once for a particular object type. You need only those views of which several exist 

for an object type, making it worthwhile to use the  -view parameter for the selection. 

[ xml] $file  =  Get-Content  "$pshome\dotnettypes.format.ps1xml" 

 $file.  Configuration.ViewDefinitions.View | 

 Sort-Object { $_.  ViewSelectedBy.TypeName} | 

 Group-Object { $_.  ViewSelectedBy.TypeName} | 

 Where-Object {  $_.  Count  -gt 1} | 

 ForEach-Object {  $_.  Group} | 

 Format-Table Name, { $_.  ViewSelectedBy.TypeName}, `

@{expression ={ if ( $_.  TableControl) {  "Table"  }  elseif `

( $_.  ListControl) {  "List"  }  elseif ( $_.  WideControl) {  "Wide"  } `

 elseif ( $_.  CustomControl) {  "Custom"  }};label ="Type" }  -wrap If you're wondering about the formatting of these lines, take a look 

again at Chapter 5,  which covered formatting. What's important 

about formatting cmdlets like  Format-Table and others is that they 

make it possible for you to specify object properties or scriptblocks 

as columns. Sub-expressions are mandatory as long as what you 

want to display in a column is not the direct but subordinate property of the 

object. Because you aren't interested in the direct property  ViewSelectedBy 

but rather in its sub-property  TypeName,  the column would have to be 

defined as a scriptblock. The third column is also a scriptblock. Because its 

length conflicts with the column heading, a formatting hash table should be 

applied here to permit you to select the column heading. 

Table of Contents | About PowerShell Plus

419

Sponsors | Resources | © BBS Technologies

The result is an edited list that provides you with the names of all the views in the first column. The view that is appropriate for a respective object type is in the second column. The third column shows 

whether a view is meant for  Format-Table,  Format-List,  Format-Wide or  Format-Custom. 

 Name                   $_.ViewSelectedBy.TypeName           Type

 ----                   --------------------------           ----

 Dictionary             System.Collections.DictionaryEntry   Table

 System.Collections.    System.Collections.DictionaryEntry   List

 DictionaryEntry

 System.Diagnostics.    System.Diagnostics.EventLog          Table

 EventLog

 System.Diagnostics.    System.Diagnostics.EventLog          List

 EventLog

 System.Diagnostics.    System.Diagnostics.EventLogEntry     List

 EventLogEntry

 System.Diagnostics.    System.Diagnostics.EventLogEntry     Table

 EventLogEntry

 System.Diagnostics.    System.Diagnostics.FileVersionInfo   Table

 FileVersionInfo

 System.Diagnostics.    System.Diagnostics.FileVersionInfo   List

 FileVersionInfo

 Priority               System.Diagnostics.Process           Table

 process                System.Diagnostics.Process           Wide

 StartTime              System.Diagnostics.Process           Table

 PSSnapInInfo           System.Management.Automation.        List

                        PSSnapInInfo

 PSSnapInInfo           System.Management.Automation.        Table

                        PSSnapInInfo

 System.Reflection.     System.Reflection.Assembly           Table

 Assembly

 System.Reflection.     System.Reflection.Assembly           List

 Assembly

 System.Security.       System.Security.AccessControl.       List

 AccessControl.         ObjectSecurity

 ObjectSecurity        

 System.Security.       System.Security.AccessControl.       Table

 AccessControl.         ObjectSecurity

 ObjectSecurity        

 service                System.ServiceProcess.               Table

                        ServiceController

 System.ServiceProcess. System.ServiceProcess.               List

 ServiceController      ServiceController

 System.TimeSpan        System.TimeSpan                      List

 System.TimeSpan        System.TimeSpan                      Wide

 System.TimeSpan        System.TimeSpan                      Table

Remember that there are several XML files containing formatting information. You'll only get a full 

overview of them when you generate a list for all formatting XML files. 

Table of Contents | About PowerShell Plus

420

Sponsors | Resources | © BBS Technologies

CHAPTER 15. 

 The File System

The file system has special importance within the PowerShell console. One obvious reason is that 

administrators perform many tasks that involve the file system. Another is that the file system is the 

prototype of a hierarchically structured information system. In coming chapters, you'll see that 

PowerShell controls other hierarchical information systems on this basis. You can easily apply what 

you have learned about drives, directories, and files in PowerShell to other areas, including the 

registry or Microsoft Exchange. 

Topics Covered:

•

T

  able 15.1: Overview of the most important file system commands  

•

A

  ccessing Files and Directories  

•

L isting Directory Contents  

•

R

  ecursively Searching the Entire File System  

•

F ilter and Exclusion Criterion  

•

G

  etting File and Directory Contents  

•

P

  assing Files to Cmdlets, Functions, or Scripts  

•

N

  avigating the File System  

•

R

  elative and Absolute Paths  

•

T

  able 15.2: Important special characters used for relative path specifications  

•

C

  onverting Relative Paths into Absolute Paths  

•

F igure 15.1: Using Resolve-Path to select several files and opening them  

by querying 

•

S

  aving Directory Locations  

•

F inding Special Directories  

•

T

  able 15.3: Important Windows directories that are stored in environment  

variables 

•

C

  onstructing Paths  

•

T

  able 15.4: Methods for constructing paths  

•

W

  orking with Files and Directories  

•

C

  reating New Directories  

•

C

  reating New Files  

•

C

  reating New Drives  

•

R

  eading the Contents of Text Files  

•

P

  rocessing Comma-Separated Lists  

•

P

  arsing Text Contents and Extracting Information  

•

R

  eading Binary Contents  

•

M

  oving and Copying Files and Directories  

•

R

  enaming Files and Directories  

•

N

  umerous Renames  

•

C

  hanging File Extensions  

•

S

  orting Out File Names  

•

De

  leting Files and Directories  

•

D

  eleting Directory Contents  

•

D

  eleting Directories and Their Contents  

•

M

  anaging Access Permissions  

•

C

  hecking Effective Security Settings  

•

E

  stablishing the Identity of the Owner  

Table of Contents | About PowerShell Plus

421

Sponsors | Resources | © BBS Technologies

•

L isting Access Permissions  

•

C

  reating New Permissions  

•

" Cloning" Permissions  

•

F igure 15.2: Modifying security settings of the directory using a dialog  

box 

•

U

  sing SDDL to Set Permissions  

•

M

  anually Creating New Permissions  

A number of cmdlets in Table 15.1 do the main work as they are rarely accessed under their real names. Aliases are much more useful and the aliases of cmdlets come from both the Windows and 

the UNIX worlds. This makes it easy for new learners to find the right cmdlets quickly. 

Alias

Description

Cmdlet

 ac

Adds the contents of a file

 Add-Content

 cls, clear

Clears the console window

 Clear-Host

Clears file of its contents, but not the file 

 cli

 Clear-Item

itself

 copy, cp, cpi

Copies file or directory

 Copy-Item

 Dir, ls, gci

Lists directory contents

 Get-Childitem

 type, cat, gc

Reads contents of text-based file

 Get-Content

 gi

Accesses specific file or directory

 Get-Item

 gp

Reads property of a file or directory

 Get-

 ItemProperty

Invokes file or directory using allocated 

 ii

 Invoke-Item

Windows program

 -

Joins two parts of a path into one path, for   Join-Path

example, a drive and a file name

 mi, mv, move

Moves files and directories

 Move-Item

 ni

Creates new file or new directory

 New-Item

Table of Contents | About PowerShell Plus

422

Sponsors | Resources | © BBS Technologies



 ri, rm, rmdir, 

Deletes empty directory or file

 Remove-Item

 del, erase, rd

 rni, ren

Renames file or directory

 Rename-Item

 rvpa

Resolves relative path or path including 

 Resolve-Path

wildcard characters

 Set-

 sp

Sets property of file or directory

 ItemProperty

 Cd, chdir, sl

Changes to specified directory

 Set-Location

 -

Extracts a specific part of a path like the 

 Split-Path

parent path, drive, or file name

 -

Returns True if the specified path exists

 Test-Path

Table 15.1: Overview of the most important file system commands

Accessing Files and Directories

Use  Get-ChildItem to list the contents of a directory. The predefined aliases for this are  Dir and  ls. 

 Get-ChildItem perform a number of important tasks:

•

Making directory contents visible 

•

Searching through the file system recursively and finding certain files 

•

Getting files and directory objects 

•

Passing files to other cmdlets, functions, or scripts 

Because Windows administrators use the alias  Dir in practice, not 

the cmdlet  Get-ChildItem by its name,  Dir is used in the following 

examples.  Dir can also be replaced by  ls (UNIX) or  Get-ChildItem 

in all examples. 

Table of Contents | About PowerShell Plus

423

Sponsors | Resources | © BBS Technologies



Listing Directory Contents

In rudimentary cases, you may simply want to know which files are in a certain directory. If you 

don't specify another one,  Dir lists the contents of the current directory. If you specify a directory after  Dir, its contents will be listed. Also, if you use the  -recurse parameter,  Dir will list the contents of all subdirectories. Wildcard characters are also allowed. 

For example, if you want to get a list of all PowerShell script files stored in the current directory, 

type this command:

Dir  *.  ps1

 Dir even accepts arrays, which allow you to list different drives at the same time. The following 

instruction lists all the PowerShell scripts in the PowerShell root directory, as well as all log files in the Windows directory:

Dir  $pshome\ *.  ps1,  $env:windir\ *.  log

If you're interested only in the names of items in one directory, use the parameter  -name.  Dir will not retrieve objects (files and directories), but just their names in plain text. 

Dir  -name

Some characters have a special meaning in PowerShell, such as 

square brackets. Square brackets always designate array elements 

(see Chapter 4). That's why using file names can cause confusion. 

All special characters will be evaluated as path segments and won't 

be interpreted by PowerShell if you use the  -literalPath parameter 

to specify file names. 

Recursively Searching the Entire File System

Use the  -recurse parameter if you want your search to include every subdirectory. However, note 

the failure of the following invocation:

Dir  *.  ps1  -recurse

You need to know a few more details about how  -recurse works to understand why this happens,. 

 Dir always retrieves directory contents as file and directory objects. If you set the  -recurse switch, Dir will invoke directory objects recursively. Because you instructed  Dir in the last example to retrieve only those files that had the  .ps1 extension,  Dir found no directories that  -recurse could have stepped through. The concept may be hard to get used to at first, but it explains why in the 

following example you get a recursive directory listing, even when you use wildcards:

Dir  $home\d *  -recurse

Table of Contents | About PowerShell Plus

424

Sponsors | Resources | © BBS Technologies

Here,  Dir retrieves all the items from your root directory that begin with the letter "  D". The directories are searched recursively as well because directories are among them. 

Filter and Exclusion Criterion

But let's return to our initial problem: how to get a recursive listing of all files of one type, such as 

PowerShell scripts. The answer is to instruct  Dir to list the directory contents completely and to specify a filter additionally.  Dir then filters the files you want out of all the files:

Dir  $home  -filter  *.  ps1  -recurse

In addition to  -filter, there is a parameter that at first glance works in a very similar way:  -include: Dir  $home  -include  *.  ps1  -recurse

You'll see some dramatic speed differences:  -filter is much quicker than  -include. 

( Measure-Command {Dir  $home  -filter  *.  ps1  -recurse}).  TotalSeconds 4,6830099

( Measure-Command {Dir  $home  -include  *.  ps1  -recurse}).  TotalSeconds 28,1017376

The reason is that  -include supports regular expressions, which are fundamentally more 

complicated, while  -filter only understands simple wildcard characters. That's why you could use 

 -include to make even more complex filters than the following ones, which find all script files 

beginning with one of the letters from "A" to "F". That's beyond the capacity of  -filter:

 # -filter looks for all files that begin with "[A-F]" and finds none:

Dir  $home  -filter [ a-f] *.  ps1  -recurse

 # -include understands regular expressions and looks for files that begin with a-f 

 and end with .ps1:

Dir  $home  -include [ a-f] *.  ps1  -recurse

     Directory: Microsoft.PowerShell.Core\FileSystem::C:\Users\Tobias 

 Weltner\Documents

 Mode                LastWriteTime     Length Name

 ----                -------------     ------ ----

 -a---        28.09.2007     23:59       1442 finddouble3.ps1

     Directory: Microsoft.PowerShell.Core\FileSystem::C:\Users\Tobias 

 Weltner\Downloads\PowerShell

     CX-24134\Branches\Developer\rlehrbaum\Src\Pscx\Profile

 Mode                LastWriteTime     Length Name

 ----                -------------     ------ ----

 -a---        30.07.2007     08:40       6225 Cd.ps1

 -a---        30.07.2007     08:40       2083 Debug.ps1

 -a---        30.07.2007     08:40       1930 Dir.ps1

 -a---        30.07.2007     08:40       2279 Environment.ps1

Table of Contents | About PowerShell Plus

425

Sponsors | Resources | © BBS Technologies



 -a---        30.07.2007     08:40       2898 Environment.VisualStudio2005.ps1

 -a---        30.07.2007     08:40       1588 EyeCandy.Jachym.ps1

 -a---        30.07.2007     08:40       2096 EyeCandy.Keith.ps1

 -a---        30.07.2007     08:40       2254 EyeCandy.ps1

 -a---        30.07.2007     08:40        591 FileSystem.ps1

The counterpart to  -include is  -exclude. Use  -exclude if you would like to suppress certain files. 

Unlike  -filter, the  -include and  -exclude parameters accept arrays, which enables you to get a list of all image files in your profile:

Dir  $home  -recurse  -include  *.  bmp,  *.  png,  *.  jpg,  *.  gif Avoid just one thing: don't combine  -filter and  -include. Choose one of the two parameters. 

Specifically you should use  -filter when you don't need any regular expressions or arrays because of its enormous speed advantage. 

You can't use  Dir to list files that have a certain size because with 

its filters,  Dir can apply restrictions only at the level of file and 

directory names. If you want to filter results returned by  Dir using 

other criteria, use  Where-Object (Chapter 5). 

The next example retrieves the biggest memory hogs in your user profile, 

specifically files that are at least 100 MB large:

Dir  $home  -recurse |  Where-Object {  $_.  length  -gt 100MB }

If you want to know just how many items  Dir found, instruct  Dir to retrieve 

its result as an array and set its  Count property. The next instruction will tell 

you how many images are stored in your user profile (an operation that can 

take a long time):

@(Dir  $home  -recurse  -include  *.  bmp,  *.  png,  *.  jpg,  *.  gif).  Count 6386

Getting File and Directory Contents

You can use  Dir to directly access individual files because  Dir returns the contents of a directory in the form of file and directory objects. This enables you to obtain the  FileInfo object of each file: $file  = Dir c:\ autoexec.bat

 $file |  Format-List  *

 PSPath            : Microsoft.PowerShell.Core\FileSystem::C:\autoexec.bat

 PSParentPath      : Microsoft.PowerShell.Core\FileSystem::C:\

 PSChildName       : autoexec.bat

 PSDrive           : C

 PSProvider        : Microsoft.PowerShell.Core\FileSystem

Table of Contents | About PowerShell Plus

426

Sponsors | Resources | © BBS Technologies

 PSIsContainer     : False

 Mode              : -a---

 Name              : autoexec.bat

 Length            : 24

 DirectoryName     : C:\: C:\

 IsReadOnly        : False

 Exists            : True

 FullName          : C:\autoexec.bat

 Extension         : .bat

 CreationTime      : 11.02.2006 11:23:09

 CreationTimeUtc   : 11.02.2006 10:23:09

 LastAccessTime    : 11.02.2006 11:23:09

 LastAccessTimeUtc : 11.02.2006 10:23:09

 LastWriteTime     : 09.18.2006 23:43:36

 LastWriteTimeUtc  : 09.18.2006 21:43:36

 Attributes        : Archive

This is how you could read the properties of single files as well as modify them if their properties 

allow modification:

 $file.  Attributes

 Archive

 $file.  Mode

 -a---

 Get-Item uses another approach to access the file object. All three commands return the same 

result, which is the file object of the specified file. 

 $file  = Dir c:\ autoexec.bat

 $file  =  Get-Childitem c:\ autoexec.bat

 $file  =  Get-Item c:\ autoexec.bat

However,  Get-Childitem and  Get-Item act very differently when accessing directories instead of files:

 # Dir or Get-Childitem retrieve the CONTENTS of a directory:

 $directory  = Dir c:\windows

 $directory  =  Get-Childitem c:\windows

 $directory



 Directory: Microsoft.PowerShell.Core\FileSystem::C:\windows

 Mode                LastWriteTime     Length Name

 ----                -------------     ------ ----

 d----         11.02.2006     13:35            addins

 d----         10.11.2007     03:18            AppPatch

 d-r-s         08.31.2007     13:42            assembly

 (...)

Table of Contents | About PowerShell Plus

427

Sponsors | Resources | © BBS Technologies



 # Get-Item retrieves the directory object itself:

 $directory  =  Get-Item c:\windows

 $directory



 Directory: Microsoft.PowerShell.Core\FileSystem::C:\

 Mode                LastWriteTime     Length Name

 ----                -------------     ------ ----

 d----        11.10.2007     03:07            windows

 $directory |  Format-List  *

 PSPath            : Microsoft.PowerShell.Core\FileSystem::C:\windows

 PSParentPath      : Microsoft.PowerShell.Core\FileSystem::C:\

 PSChildName       : windows

 PSDrive           : C

 PSProvider        : Microsoft.PowerShell.Core\FileSystem

 PSIsContainer     : True

 Mode              : d----

 Name              : windows

 Parent            :

 Exists            : True

 Root              : C:\

 FullName          : C:\windows

 Extension         :

 CreationTime      : 02.11.2006 12:18:34

 CreationTimeUtc   : 02.11.2006 11:18:34

 LastAccessTime    : 11.10.2007 03:07:30

 LastAccessTimeUtc : 11.10.2007 01:07:30

 LastWriteTime     : 11.10.2007 03:07:30

 LastWriteTimeUtc  : 11.10.2007 01:07:30

 Attributes        : 65552

Passing Files to Cmdlets, Functions, or Scripts

Because  Dir returns individual file and directory objects in its result,  Dir can pass these objects directly to other cmdlets or to your own functions and scripts. This makes  Dir an important selection command, which you can very conveniently use to recursively find all files having the type you're 

looking for on the entire hard disk drive or even on several drives. 

To do so, process the result of  Dir in the pipeline either by using  Where-Object and then  ForEach-Object (Chapter 5), or write your own pipeline filter (Chapter 9). 

You can also combine the results of several separate  Dir commands. In the 

following example, two separate  Dir commands generate two separate file 

listings, which PowerShell combines into a total list and sends on for further 

processing in the pipeline. The example takes all the DLL files from the Windows 

system directory and all program installation directories, and then returns a list 

Table of Contents | About PowerShell Plus

428

Sponsors | Resources | © BBS Technologies

with the name, version, and description of DLL files:

 $list1  = Dir  $env:windir\system32\ *.  dll

 $list2  = Dir  $env:programfiles  -recurse  -filter  *.  dll $totallist  =  $list1  +  $list2

 $totallist |  ForEach-Object {

 $info  = 

[ system.diagnostics.fileversioninfo]:: GetVersionInfo( $_.  FullName); 

 "{0,-30} {1,15} {2,-20}"   -f  $_.  Name, `

 $info.  ProductVersion,  $info.  FileDescription 

}

 aaclient.dll          6.0.6000.16386 Anywhere access client

 accessibilitycpl.dll  6.0.6000.16386 Ease of access control panel

 acctres.dll           6.0.6000.16386 Microsoft Internet Account... 

 acledit.dll           6.0.6000.16386 Access Control List Editor

 aclui.dll             6.0.6000.16386 Security Descriptor Editor

 (...)

Because  Dir retrieves directories as well as files, it can sometimes be important to limit the result of Dir only to files or only to directories. There are several ways to do this. You can either validate the attribute of the returned object, the PowerShell  PSIsContainer property, or the object type:

 # List directories only::

Dir |  Where-Object {  $_  -is [ System.IO.DirectoryInfo] }

Dir |  Where-Object {  $_.  PSIsContainer }

Dir |  Where-Object {  $_.  Mode.Substring(0,1)  -eq  "d"  }

 # List files only:

Dir |  Where-Object {  $_  -is [ System.IO.FileInfo] }

Dir |  Where-Object {  $_.  PSIsContainer  -eq  $false}

Dir |  Where-Object {  $_.  Mode.Substring(0,1)  -ne  "d"  }

The first variant (controlling object types) is the fastest by far while the latter (text comparison) is 

more complex and slower as a result of it complexity. 

 Where-Object can filter files according to other criteron as well. 

For example, use the following pipeline filter if you'd like to locate only files that were created after 

May 12, 2007:

Dir |  Where-Object {  $_.  CreationTime  -gt [ datetime]:: Parse( "May 12, 2007" ) }

You can use relative data if all you want to see are files that have been changed in the last two 

weeks:

Dir |  Where-Object {  $_.  CreationTime  -gt ( Get-Date).  AddDays( - 14) }

Table of Contents | About PowerShell Plus

429

Sponsors | Resources | © BBS Technologies

Navigating the File System

Unless you changed your prompt in the way described in Chapter 9,  the current directory in which you are working inside the PowerShell console is named at the command line prompt. You can find 

out what the current directory is by using  Get-Location:

 Get-Location

 Path

 ----

 C:\Users\Tobias Weltner\Sources

If you want to navigate to another location in the file system, use  Set-Location or the  Cd alias:

 # One directory higher (relative):

Cd .. 

 # In the parent directory of the current drive (relative):

Cd \

 # In a specified directory (absolute):

Cd c:\windows

 # Take directory name from environment variable (absolute):

Cd  $env:windir

 # Take directory name from variable (absolute):

Cd  $home

Relative and Absolute Paths

Path specifications can be either relative or absolute. In the last example you used both types. 

Relative path specifications depend on the current directory, and the  .\test.txt specification always refers to the  test.txt file in the current directory while  ..\test.txt refers to the  test.txt file in the parent directory. Relative path specifications are useful, for example, if you want to use library 

scripts that are located in the same directory as your work script. Your work script will then be able 

to locate library scripts under relative paths—no matter what the directory is called. Absolute paths 

are always unique and are independent of your current directory. 

Character Meaning

Example Result

Current 

Opens the current directory in Windows 

. 

 ii . 

directory

Explorer

.. 

Parent 

 Cd .. 

Changes to the parent directory

directory

\

Root 

 Cd \

Changes to the topmost directory of a 

Table of Contents | About PowerShell Plus

430

Sponsors | Resources | © BBS Technologies

directory

drive

Home 

Changes to the directory that PowerShell 

~

 Cd ~

directory

initially creates automatically

Table 15.2: Important special characters used for relative path specifications

Converting Relative Paths into Absolute Paths

Whenever you use relative paths, PowerShell must convert these relative paths into absolute paths. 

That occurs automatically when you invoke a file or a command using relative paths. You can resolve 

them yourself by using  Resolve-Path. 

 Resolve-Path .\ test.txt

 Path

 ----

 C:\Users\Tobias Weltner\test.txt

 Resolve-Path, however, only works for files that actually exist. If there is no file in your current directory that's called  test.txt,  Resolve-Path will report an error. 

 Resolve-Path can have more than one result if the path that you specify includes wildcard 

characters. The following invocation will retrieve the names of all the  ps1xml files in the PowerShell home directory:

 Resolve-Path  $pshome\ *.  ps1xml

 Path

 ----

 C:\Windows\System32\WindowsPowerShell\v1.0\Certificate.format.ps1xml

 C:\Windows\System32\WindowsPowerShell\v1.0\DotNetTypes.format.ps1xml

 C:\Windows\System32\WindowsPowerShell\v1.0\FileSystem.format.ps1xml

 C:\Windows\System32\WindowsPowerShell\v1.0\Help.format.ps1xml

 C:\Windows\System32\WindowsPowerShell\v1.0\PowerShellCore.format.ps1xml

 C:\Windows\System32\WindowsPowerShell\v1.0\PowerShellTrace.format.ps1xml

 C:\Windows\System32\WindowsPowerShell\v1.0\Registry.format.ps1xml

 C:\Windows\System32\WindowsPowerShell\v1.0\types.ps1xml

Like  Dir,  Resolve-Path can act as a selection filter for a downstream function. The following example shows opening a file in Notepad for processing. The command calls Notepad to open a file by using 

 Resolve-Path. 

Table of Contents | About PowerShell Plus

431

Sponsors | Resources | © BBS Technologies





Figure 15.1: Using Resolve-Path to select several files and opening them by querying

If there are no files at all that conform to the criterion,  Resolve-Path will throw an error, which will be noted in the  $?  variable (Chapter 11). The expression  !$?  is always satisfied when an error occurs, and in such a case the function reports that no file was found. 

The result is an array if  Resolve-Path finds more than one file. In this case, the function lists the files that were found so not too many files will be unexpectedly opened in the event of a faulty entry. The 

function uses the internal PowerShell function  PromptForChoice() that we saw in Chapter 6 to request the user for confirmation. 

The  Call operator we saw in Chapter 12 launches the file(s). Of course, this will only work if an application is allocated to the respective file type. 

 function  edit-file([ string] $path=$(Throw  "Specify a relative path!" ))

{

 # Resolve relative path and suppress error:

 $files  =  Resolve-Path  $path  -ea SilentlyContinue

 # Verify whether an error was generated:

 if ( !$?)

{

 # If yes, no file met the criterion, give notification and stop:

 "No file met your criterion." ;  break

}

 # If several files are found, $files is an array:

 if ( $files  -is [ array])

{

 # In this case, list all found files:

 Write-Host  -foregroundColor  "Red"   -backgroundColor  "White"  `

 "Do you want to open these files?" 

 foreach ( $file  in  $files)

{

Table of Contents | About PowerShell Plus

432

Sponsors | Resources | © BBS Technologies



 "- "   +  $file.  Path

}

 # Then query whether all these files should really be opened:

 $yes  = ([ System.Management.Automation.Host.ChoiceDescription] "&yes" ) $no  = ([ System.Management.Automation.Host.ChoiceDescription] "&no" ) $choices  = [ System.Management.Automation.Host.ChoiceDescription[]]( $yes,  $no) $result  =  $host.  ui.PromptForChoice( 'Open files' ,  'Open these files?' ,  $choices,1)

 # If yes, invoke all files with the "&" call operator:

 if ( $result  -eq 0)

{

 foreach ( $file  in  $files)

{

 &   $file

}

}

}

 else

{

 # If there is only a single file, this is directly located 

 # in $files and can be started using "&":

 &   $files

}

}

Saving Directory Locations

The current directory where you are working can be "pushed" to the top of a list of locations, called a "stack," by using  Push-Location. Each  Push-Location adds a new directory to the top of the stack. 

Use  Pop-Location to get it back again. 

So, to perform a task that forces you to leave your current directory, first type  Push-Location to store your current location. Then, you can complete your task and when ready, use  Pop-Location to 

retrieve your stored location. 

 Cd $home will always take you back to your home directory. 

Moreover, both  Push-Location and  Pop-Location support the  -stack 

parameter. This enables you to create as many stacks as you want, 

such as one for each task.  Push-Location -stack job1 puts the 

current directory not on the standard stack, but on the stack called 

"job1"; you can use  Pop-Location -stack job1 to restore the initial directory 

from this stack. 

Table of Contents | About PowerShell Plus

433

Sponsors | Resources | © BBS Technologies

Finding Special Directories

Windows uses a number of special directories which, depending on installation, may be found at 

different locations. The paths of the most important directories are located in the Windows 

environment variables so that PowerShell can clearly allocate these special directories. You can find 

many other special directories through the  Environment class of the .NET framework. 

Special directory Description

Access

Application data locally stored 

Application data

 $env:localappdata

on the machine

User profile

User directory

 $env:userprofile

Data used in 

Directory for data used by all 

 $env:commonprogramfil

common

programs

 es

Common directory of all local 

Public directory

 $env:public

users

Program directory

Directory in which programs are   $env:programfiles

installed

Application data for roaming 

Roaming Profiles

 $env:appdata

profiles

Temporary files 

Directory for temporary files of   $env:tmp

(private)

the user

Temporary files

Directory for temporary files

 $env:temp

Directory in which Windows is 

Windows directory

 $env:windir

installed

Table 15.3: Important Windows directories that are stored in environment variables

Environment variables return only a few, and by far not all, of the paths of special directories. For 

example, if you'd like to put a file directly on a user's Desktop, you'll need the path to the Desktop 

that the environment variables can't retrieve for you. However, The  GetFolderPath() method of the 

environment class of the .NET framework (Chapter 6) can do that. The following shows how you could put a link on the Desktop. 

Table of Contents | About PowerShell Plus

434

Sponsors | Resources | © BBS Technologies

[ Environment]:: GetFolderPath( "Desktop" )

C:\Users\Tobias Weltner\Desktop

 # Put a link on the Desktop:

 $path  = [ Environment]:: GetFolderPath( "Desktop" )  +  "\EditorStart.lnk" 

 $comobject  =  New-Object  -comObject  WScript.Shell

 $link  =  $comobject.  CreateShortcut( $path)

 $link.  targetpath  =  "notepad.exe" 

 $link.  IconLocation  =  "notepad.exe,0" 

 $link.  Save()

The types of directories that  GetFolderPath() can find are noted in the  SpecialFolder enumeration. 

You should use the following line to view its contents:

[ System.Environment+ SpecialFolder] |  Get-Member  -static  -memberType Property    TypeName: System.Environment+SpecialFolder

 Name                  MemberType Definition

 ----                  ---------- ----------

 ApplicationData       Property   static System.Environment+SpecialFolder 

 ApplicationData {get;}

 CommonApplicationData Property   static System.Environment+SpecialFolder 

 CommonApplicationData ... 

 CommonProgramFiles    Property   static System.Environment+SpecialFolder 

 CommonProgramFiles {get;}

 Cookies               Property   static System.Environment+SpecialFolder Cookies 

 {get;}

 Desktop               Property   static System.Environment+SpecialFolder Desktop 

 {get;}

 DesktopDirectory      Property   static System.Environment+SpecialFolder 

 DesktopDirectory {get;}

 Favorites             Property   static System.Environment+SpecialFolder 

 Favorites {get;}

 History               Property   static System.Environment+SpecialFolder History 

 {get;}

 InternetCache         Property   static System.Environment+SpecialFolder 

 InternetCache {get;}

 LocalApplicationData  Property   static System.Environment+SpecialFolder 

 LocalApplicationData {... 

 MyComputer            Property   static System.Environment+SpecialFolder 

 MyComputer {get;}

 MyDocuments           Property   static System.Environment+SpecialFolder 

 MyDocuments {get;}

 MyMusic               Property   static System.Environment+SpecialFolder MyMusic 

 {get;}

 MyPictures            Property   static System.Environment+SpecialFolder 

 MyPictures {get;}

 Personal              Property   static System.Environment+SpecialFolder Personal 

 {get;}

 ProgramFiles          Property   static System.Environment+SpecialFolder 

 ProgramFiles {get;}

 Programs              Property   static System.Environment+SpecialFolder Programs 

 {get;}

Table of Contents | About PowerShell Plus

435

Sponsors | Resources | © BBS Technologies

 Recent                Property   static System.Environment+SpecialFolder Recent 

 {get;}

 SendTo                Property   static System.Environment+SpecialFolder SendTo 

 {get;}

 StartMenu             Property   static System.Environment+SpecialFolder 

 StartMenu {get;}

 Startup               Property   static System.Environment+SpecialFolder Startup 

 {get;}

 System                Property   static System.Environment+SpecialFolder System 

 {get;}

 Templates             Property   static System.Environment+SpecialFolder 

 Templates {get;}

If you want an overview of all the directories that  GetFolderPath() can locate, you can retrieve that as follows:

[ System.Environment+ SpecialFolder] | 

 Get-Member  -static  -memberType Property | 

 ForEach-Object {  "{0,-25}= {1}"   -f  $_.  name, ` 

[ Environment]:: GetFolderPath( $_.  Name) }

 ApplicationData          = C:\Users\Tobias Weltner\AppData\Roaming

 CommonApplicationData    = C:\ProgramData

 CommonProgramFiles       = C:\Program Files\Common Files

 Cookies                  = C:\Users\Tobias 

 Weltner\AppData\Roaming\Microsoft\Windows\Cookies

 Desktop                  = C:\Users\Tobias Weltner\Desktop

 DesktopDirectory         = C:\Users\Tobias Weltner\Desktop

 Favorites                = C:\Users\Tobias Weltner\Favorites

 History                  = C:\Users\Tobias 

 Weltner\AppData\Local\Microsoft\Windows\History

 InternetCache            = C:\Users\Tobias 

 Weltner\AppData\Local\Microsoft\Windows\Temporary Internet Files

 LocalApplicationData     = C:\Users\Tobias Weltner\AppData\Local

 MyComputer               =

 MyDocuments              = C:\Users\Tobias Weltner\Documents

 MyMusic                  = C:\Users\Tobias Weltner\Music

 MyPictures               = C:\Users\Tobias Weltner\Pictures

 Personal                 = C:\Users\Tobias Weltner\Documents

 ProgramFiles             = C:\Program Files

 Programs                 = C:\Users\Tobias 

 Weltner\AppData\Roaming\Microsoft\Windows\Start Menu\Programs

 Recent                   = C:\Users\Tobias 

 Weltner\AppData\Roaming\Microsoft\Windows\Recent

 SendTo                   = C:\Users\Tobias 

 Weltner\AppData\Roaming\Microsoft\Windows\SendTo

 StartMenu                = C:\Users\Tobias 

 Weltner\AppData\Roaming\Microsoft\Windows\Start Menu

 Startup                  = C:\Users\Tobias 

 Weltner\AppData\Roaming\Microsoft\Windows\

                            Start Menu\Programs\Startup

 System                   = C:\Windows\system32

Table of Contents | About PowerShell Plus

436

Sponsors | Resources | © BBS Technologies

 Templates                = C:\Users\Tobias 

 Weltner\AppData\Roaming\Microsoft\Windows\Templates

Constructing Paths

Path names consist of text so you can construct them however you like. You saw above how you can 

construct the path of a file that is intended to be on a user's Desktop:

 $path  = [ Environment]:: GetFolderPath( "Desktop" )  +  "\file.txt" 

 $path

C:\Users\Tobias Weltner\Desktop\ file.txt

Be absolutely sure that you put the right number of backward slashes in your path. That's why a 

backward slash was specified in front of the file name in the last example. A more reliable way would 

be to put together paths using  Join-Path or the methods of the  Path .NET class:

 $path  =  Join-Path ([ Environment]:: GetFolderPath( "Desktop" ))  "test.txt" 

 $path

 C:\Users\Tobias Weltner\Desktop\test.txt

 $path  = [ System.IO.Path]:: Combine([ Environment]::`

GetFolderPath( "Desktop" ),  "test.txt" )

 $path

 C:\Users\Tobias Weltner\Desktop\test.txt

The  Path class includes a number of additionally useful methods that you can use to put together 

paths or extract information from paths. Just insert  [System.IO.Path]:: in front of the methods listed in Table 15.4,  for example:

[ System.IO.Path]:: ChangeExtension( "test.txt" ,  "ps1" ) test.ps1

Method

Description

Example

Changes the 

 ChangeExtension("test.txt", 

 ChangeExtension()

file extension

 "ps1")

Combines path 

strings; 

 Combine()

 Combine("C:\test", "test.txt")

corresponds to 

 Join-Path

 GetDirectoryName()

Returns the 

 GetDirectoryName("c:\test\file. 

Table of Contents | About PowerShell Plus

437

Sponsors | Resources | © BBS Technologies

directory; 

corresponds to   txt")

 Split-Path 

 -parent

 GetExtension()

Returns the 

 GetExtension("c:\test\file.txt")

file extension

Returns the 

 GetFileName()

file name; 

 GetFileName("c:\test\file.txt")

corresponds to 

 Split-Path -leaf

Returns the 

 GetFileNameWithoutExtensio  file name 

 GetFileNameWithoutExtension(

 n()

without the file   "c:\test\file.txt")

extension

Returns the 

 GetFullPath()

 GetFullPath(".\test.txt")

absolute path

Lists all 

characters that 

 GetInvalidFileNameChars()

are not 

 GetInvalidFileNameChars()

allowed in a 

file name

Lists all 

characters that 

 GetInvalidPathChars()

are not 

 GetInvalidPathChars()

allowed in a 

path

Gets the root 

directory; 

 GetPathRoot()

corresponds to   GetPathRoot("c:\test\file.txt")

 Split-Path 

 -qualifier

Returns a 

 GetRandomFileName()

random file 

 GetRandomFileName()

name

 GetTempFileName()

Returns a 

 GetTempFileName()

temporary file 

Table of Contents | About PowerShell Plus

438

Sponsors | Resources | © BBS Technologies

name in the 

 Temp directory

Returns the 

path of the 

 GetTempPath()

 GetTempPath()

directory for 

temporary files

 True, if the 

 HasExtension()

path includes a   HasExtension("c:\test\file.txt")

file extension

 True, if the 

path is 

absolute; 

 IsPathRooted()

 IsPathRooted("c:\test\file.txt")

corresponds to 

 Split-Path 

 -isAbsolute

Table 15.4: Methods for constructing paths

Working with Files and Directories

The cmdlets  Get-ChildItem and  Get-Item can get you file and directory items that already exist. You can also create your own new files and directories, rename them, fill them with content, copy them, 

move them, and, of course, delete them. 

Creating New Directories

The easiest way to create new directories is to use the  Md function, which invokes the cmdlet  New-Item internally and specifies as  -type parameter the  Directory value:

 # "md" is the predefined function and creates new directories:

md Test1



 Directory: Microsoft.PowerShell.Core\FileSystem::C:\users\Tobias Weltner

 Mode                LastWriteTime     Length Name

 ----                -------------     ------ ----

 d----        12.10.2007     17:14            Test1

 # "New-Item" can do that, too, but takes more effort:

 New-Item Test2  -type Directory    

Table of Contents | About PowerShell Plus

439

Sponsors | Resources | © BBS Technologies



 Directory: Microsoft.PowerShell.Core\FileSystem::C:\users\Tobias Weltner

 Mode                LastWriteTime     Length Name

 ----                -------------     ------ ----

 d----        12.10.2007     17:14            Test2

You can also create several subdirectories in one step as 

PowerShell automatically creates all the directories that don't exist 

yet in the specified path:

md test\subdirectory\somethingelse

Three subdirectories will be created as long as the directories  Test and 

 Subdirectory are not in the current directory. 

Creating New Files

You could also use  New-Item to create new files, but they would be completely empty:

 New-Item  "new file.txt"   -type File



 Directory: Microsoft.PowerShell.Core\FileSystem::C:\users\Tobias Weltner

 Mode                LastWriteTime     Length Name

 ----                -------------     ------ ----

 -a---        10.12.2007     17:16          0 new file.txt

Files are usually automatically created when you save data results because empty files are not 

particularly useful,. Redirection and the cmdlets  Out-File and  Set-Content can help you:

Dir >  info1.txt

.\ info1.txt

Dir |  Out-File  info2.txt

.\ info2.txt

Dir |  Set-Content  info3.txt

.\ info3.txt

 Set-Content  info4.txt ( Get-Date)

.\ info4.txt

As it turns out, redirection and  Out-File are very similar in operation: when PowerShell converts 

pipeline results, file contents look just like they would if you output the information in the console. 

 Set-Content works differently as it only returns directory listing names because when you use  Set-Content PowerShell doesn't turn objects into text automatically. Instead,  Set-Content takes out a standard property from an object. In this case, the property is  Name. 

Normally, you would use  Set-Content to write any text to a file. This last line shows how you could write a date to a file. For example, if you manually convert the pipeline result by using  ConvertTo-HTML,  Out-File and  Set-Content will behave alike. 

Table of Contents | About PowerShell Plus

440

Sponsors | Resources | © BBS Technologies



Dir |  ConvertTo-HTML |  Out-File  report1.htm

.\ report1.htm

Dir |  ConvertTo-HTML |  Set-Content  report2.htm

.\ report2.htm

If you want to determine which object properties are displayed on 

a HTML page, use  Select-Object, which was discussed in Chapter 5,  

to filter out the properties before conversion into HTML:

Dir |  Select-Object name, length, LastWriteTime | 

 ConvertTo-HTML |  Out-File  report.htm

.\ report.htm

During redirection, the encoding of the console is used automatically to 

specify how special characters will be displayed in text. You can manually set 

encoding for  Out-File.by using the  -encoding parameter. 

If you prefer to export the result as a comma-separated list, use the  Export-

 Csv cmdlet instead of  Out-File. 

You can use either double redirection or  Add-Content if you want to attach information to a text file: Set-Content  info.txt  "First line" 

 "Second line"  >>  info.txt

 Add-Content  info.txt  "Third line" 

 Get-Content  info.txt

 First Line

 S e c o n d  L i n e

 Third line

The result may surprise you: the double redirection arrow worked, but text was displayed in spaced 

characters. The redirection operations basically use the console encoding , and this can lead to 

unexpected results if you happen to mix together the ANSI and Unicode character sets. Instead, use 

the cmdlets  Set-Content,  Add-Content, and  Out-File without the redirections to avoid this risk. All three commands support the  -encoding parameter, which you can use to select a character set. 

Creating New Drives

It may surprise you that PowerShell allows you to create new drives. You're not limited to network 

drives only. You can also use drives as convenient shortcuts to other important locations in your file 

system and even beyond your file system. 

Use  New-PSDrive to create new drives. To set up a network drive, proceed as follows:

 New-PSDrive  -name network  -psProvider FileSystem  -root \\127.0.0.1\c$

Table of Contents | About PowerShell Plus

441

Sponsors | Resources | © BBS Technologies

 Name       Provider      Root 

 ----       --------      ----  

 network   FileSystem    \\127.0.0.1\c$

You can now access the network drive through the new virtual drive  network: like this:

Dir network:

It's also easy to create convenient shortcuts in working locations. The next lines create the drives 

 desktop: and  docs:, which represent your Desktop and the Windows folder "My Documents": New-PSDrive desktop FileSystem `

([ Environment]:: GetFolderPath( "Desktop" )) |  out-null

 New-PSDrive docs FileSystem `

([ Environment]:: GetFolderPath( "MyDocuments" )) |  out-null

If you want to change to your Desktop later on, type:

Cd desktop:

Use  Remove-PSDrive to remove a virtual drive you have created. You can't remove the drive if the 

drive is in use. Note that drive letters for New -PSDrive and  Remove-PSDrive are specified without colons. On the other hand, when working with drives using customary file system commands, you do 

have to specify a colon. 

 Remove-PSDrive desktop

Reading the Contents of Text Files

Use  Get-Content to retrieve the contents of a text-based file:

 Get-Content  $env:windir\ windowsupdate.log

There is a shortcut that uses variable notation if you know the absolute path of the file:

 ${c:\windows\ windowsupdate.log}

However, this notation usually isn't very practical because it doesn't allow any variables inside 

braces. In most cases, the file path can't be accessed through the same absolute path on all 

computer systems. 

 Get-Content reads the contents of a file line by line and passes on every line of text through the pipeline. So, you should add  Select-Object if you wanted to read only the first 10 lines of a very long file:

 Get-Content  $env:windir\ windowsupdate.log |  Select-Object  -first 10

Use  Select-String to filter out the information you want from text files. The next line gets only those lines from the  windowsupdate.log file that contain the phrase "added update":

Table of Contents | About PowerShell Plus

442

Sponsors | Resources | © BBS Technologies



 Get-Content  $env:windir\ windowsupdate.log |  Select-String  "Added update" 

Processing Comma-Separated Lists

You should use  Import-Csv if you want to process information from comma-separated lists in 

PowerShell. For test purposes, first create a comma-separated list:

 Set-Content  user.txt  "Username,Function,Passwordage" 

 Add-Content  user.txt  "Tobias,Normal,10" 

 Add-Content  user.txt  "Martina,Normal,15" 

 Add-Content  user.txt  "Cofi,Administrator,-1" 

 Get-Content  user.txt

 Username,Function,Passwordage

 Tobias,Normal,10

 Martina,Normal,15

 Cofi,Administrator,-1

Now, use  Import-Csv to input this comma-separated list:

 Import-Csv  user.txt

 Username             Function          Passwordage

 ------------         -----           -------------

 Tobias               Normal                     10

 Martina              Normal                     15

 Cofi                 Administrator              -1

As you see,  Import-Csv understands the comma format and displays the data column by column. 

Save yourself the substantial effort usually involved in parsing a comma-separated value file: 

 Import-Csv will do it for you. The first line is read as a column heading. You could then conveniently use the data in the comma-separated value as an input, such as to create user accounts. 

 Import-Csv  user.txt |  ForEach-Object {  $_.  Username }

Tobias

Martina

Cofi

Instead of a  ForEach-Object loop, you can use a scriptblock in 

braces. The scriptblock is invoked inside the pipeline for every 

pipeline object and must be bound to a cmdlet parameter. In the 

following example, every user name in a comma-separated file is 

returned by the parameter  -InputObject to echo and output. 

 Import-Csv  user.txt |  echo  -InputObject { $_.  Username }

Table of Contents | About PowerShell Plus

443

Sponsors | Resources | © BBS Technologies

Parsing Text Contents and Extracting Information

One frequent task is parsing raw data, such as log files , to get a structured readout of all the data. 

An example of such a log file is the  windowsupdate.log file, which keeps a record of all Windows 

updates details (and which was misused as a guinea pig in previous examples). This file contains 

numerous data that at first glance seems scarcely readable. Initial analysis shows that the file stores 

information line by line and separates each piece of data by tab characters. 

Regular expressions offer the easiest way to describe such a text format, which you already used in 

Chapter 13.  You could use regular expressions to correctly describe the windowsupdate.log file contents as follows:

 # The text pattern consists of six text arrays separated by tabs:

 $pattern  =  "(.*)\t(.*)\t(.*)\t(.*)\t(.*)\t(.*)"   (Enter)

 # Inputting log:

 $text  =  Get-Content  $env:windir\ windowsupdate.log  (Enter)

 # Take out any (here the 21st) line from the log and parse it:

 $text[20]  -match  $pattern

 True

 $matches

 Name   Value

 ----   -----

 6      * Added update {C14637DF-43D9-4201-9C0F-615D43943635}.101 to search result

 5      Agent

 4      2400

 3      1248

 2      09:18:02:087

 1      2007-05-19

 0      2007-05-19    09:18:02:087    1248    2400    Agent      * Added update... 

 $matches returns a hit here for every expression in parentheses so you could address each text 

array on every line through the index numbers. For example, if you are only interested in the date 

and the description in a line y, then format it as follows:

 "On {0} this took place: {1}"   -f  $matches[1],  $matches[6]

 On 2007-05-19 this took place:   

 * Added update {C14637DF-43D9-4201-9C0F-615D43943635}.101 

 to search result

Here, it is recommended that you give every subexpression its own name, which you can use later 

to query the result:

 # This time, subexpressions have their own name:

 $pattern  =  "(?<Datum> .*)\t(?<time> .*)\t(?<Code1> .*)"   + `

 "\t(?<Code2> .*)\t(?<Program> .*)\t(?<Text> .*)" 

 # Inputting log:

 $text  =  Get-Content  $env:windir\ windowsupdate.log

Table of Contents | About PowerShell Plus

444

Sponsors | Resources | © BBS Technologies

 # Take out any (here the 21st) line from the log and parse it:

 $text[20]  -match  $pattern

 True

 # You can retrieve the information in $matches 

 # directly through the assigned name:

 $matches.  time  +  $matches.  text

 09:18:02:087  * Added update {C14637DF-43D9-4201

 -9C0F-615D43943635}.101 to search result

You could now read in the entire log file, line by line, by using  Get-Content, and then parse every line just the way it was above. This means that you could collect all the information you need, even 

from a gigantic log file, quickly and relatively efficiently. The next example does exactly that by 

listing only those lines in whose description is the phrase "woken up". This helps you find out 

whether a computer was woken up from the standby or sleep mode by automatic updates:

 Get-Content  $env:windir\ windowsupdate.log | 

 ForEach-Object {  if ( $_  -match  "woken up" ) {  $_ } }

 2007-05-24  03:00:34:609  1276  1490  AU  The machine was woken up by

                                           Windows Update

 2007-05-24  03:00:34:609  1276  1490  AU  The system was woken up by 

                                           Windows Update, but found to be 

                                           running on battery power. Skip 

                                           the forcedinstall. 

 2007-06-28  03:00:11:563  1272  fe0   AU  The machine was woken up by 

                                           Windows Update

If the loop is successful, it will output the entire line that was stored in  $_. You now know how you could use a further regular expression to split up this line into arrays to output from it only certain 

pieces of information. 

However, there is a second, and a much more sophisticated, way to select individual text lines of the 

file:  Switch. Merely tell this statement which file you want to examine and how the pattern looks 

that you're looking for.  Switch will do the rest. The next statement gets all log entries showing 

installed automatic updates, and it does so considerably faster than if you had used  Get-Content and ForEach-Object. Just remember that in regular expressions ".*" can represent any number of any characters. 

 Switch  -regex  -file  $env:windir\ wu1.log { 

 'START.*Agent: Install.*AutomaticUpdates'  {  $_ }}

 2007-05-19      09:22:04:113    1248    1d0c    Agent   **START**

 Agent: Installing updates [CallerId = AutomaticUpdates]

 2007-05-24      22:31:51:046    1276    c38     Agent   **START**

 Agent: Installing updates [CallerId = AutomaticUpdates]

 2007-06-13      12:05:44:366    1252    228c    Agent   **START**

 Agent: Installing updates [CallerId = AutomaticUpdates]

 (...)

Table of Contents | About PowerShell Plus

445

Sponsors | Resources | © BBS Technologies

Just substitute "SMS" or "Defender" for "automatic updates" in your regular expression if you'd like to find out when other updating programs, such as  SMS or  Defender, have installed updates. In fact, Switch can look for more than one pattern, and depending on the pattern it finds, carry out the 

instructions in the braces that follow it. This means you need only a few lines of code to find out how 

many updates you received and from which service:

 # Create new hash table for the results:

result  = @{Defender = 0; AutoUpdate = 0; SMS = 0}

 # Parse update log and keep record of installations in hash table:

 Switch  -regex  -file  $env:windir\ wu1.log

{

 'START.*Agent: Install.*Defender'  {  $result.  Defender  += 1 }; 

 'START.*Agent: Install.*AutomaticUpdates'  {  $result.  AutoUpdate  += 1 }; 

 'START.*Agent: Install.*SMS'  {  $result.  SMS  += 1}

}

 # Output result:

 $result

 Name                           Value

 ----                           -----

 SMS                            0

 Defender                       1

 AutoUpdate                     8

Reading Binary Contents

Not all files contain text. Sometimes, it's necessary to read information from binary files. Normally, 

the visible file extension of a file plays the greatest role because it determines which program 

Windows uses to open the file. However, in many binary files, a header is also tightly integrated with 

the file. The header includes an internal type designation that provides information about what sort 

of file it is.  Get-Content can obtain these "magic bytes" with the help of the parameters  -readCount and  -totalCount. The parameter  -readCount indicates how many bytes are read in one step; 

 -totalCount determines the number of bytes that you want to read from the file. In this case, the 

bytes you're looking for are the first four bytes of the file:

 function  Get-MagicNumber ( $path)

{

 Resolve-Path  $path |  ForEach-Object {

 $magicnumber  =  Get-Content  -encoding  byte  $_  -read 4  -total 4

 $hex1  = ( "{0:x}"   -f ( $magicnumber[0]  * `

256  +  $magicnumber[1])).  PadLeft(4,  "0" )

 $hex2  = ( "{0:x}"   -f ( $magicnumber[2]  * `

256  +  $magicnumber[3])).  PadLeft(4,  "0" )

[ string]  $chars  =  $magicnumber|  %{  if ([ char]:: IsLetterOrDigit( $_))

{ [ char]  $_ }  else {  "."  }}

 "{0} {1} '{2}'"   -f  $hex1,  $hex2,  $chars

}

}

 Get-MagicNumber  "$env:windir\explorer.exe" 

4d5a 9000  'M Z . .' 

Table of Contents | About PowerShell Plus

446

Sponsors | Resources | © BBS Technologies



The first four bytes of the Explorer are 4d, 5a, 90, and 00—or are given as the text  MZ. Those are the initials of Mark Zbikowski, one of the developers of Microsoft DOS. The tag MZ represents 

executable programs. The tag looks different for graphics:

 Get-MagicNumber  "$env:windir\web\wallpaper\*.*" 

ffd8 ffe0  'Ã¿ Ã˜ Ã¿ Ã ' 

ffd8 ffe0  'Ã¿ Ã˜ Ã¿ Ã ' 

ffd8 ffe0  'Ã¿ Ã˜ Ã¿ Ã ' 

ffd8 ffe0  'Ã¿ Ã˜ Ã¿ Ã ' 

ffd8 ffe0  'Ã¿ Ã˜ Ã¿ Ã ' 

ffd8 ffe0  'Ã¿ Ã˜ Ã¿ Ã ' 

(...)

You've seen that  Get-Content can also read binary files, one byte 

at a time. Specify in the  -readCount parameter how many bytes 

should be read for each step.  -totalCount determines the total 

number of bytes that you want to read. If you assign the 

parameter  -1, the file will be read to the end. You can assemble a 

little viewer for yourself that outputs data in hexadecimal form because 

binary data doesn't particularly look good as text:

 function  Get-HexDump( $path,  $width= 10,  $bytes=- 1)

{

 $OFS="" 

 Get-Content  -encoding  byte  $path  -readCount  $width `

 -totalCount  $bytes |   ForEach-Object {

 $characters  =  $_

 if (( $characters  -eq 0).  count  -ne  $width)

{

 $hex  =  $characters |  ForEach-Object {

 " "   + ( "{0:x}"   -f  $_).  PadLeft(2,  "0" )}

 $char  =  $characters |  ForEach-Object {

 if ([ char]:: IsLetterOrDigit( $_))

{ [ char]  $_ }  else {  "."  }}

 "$hex $char" 

}

}

}

 Get-HexDump  $env:windir\ explorer.exe  -width 15  -bytes 150



 4d 5a 90 00 03 00 00 00 04 00 00 00 ff ff 00 MZ..........ÿÿ. 

  00 b8 00 00 00 00 00 00 00 40 00 00 00 00 00 ............... 

  d8 00 00 00 0e 1f ba 0e 00 b4 09 Cd 21 b8 01 Ø.....º....Í... 

  4c Cd 21 54 68 69 73 20 70 72 6f 67 72 61 6d LÍ.This.program

  20 63 61 6e 6e 6f 74 20 62 65 20 72 75 6e 20 .cannot.be.run. 

  69 6e 20 44 4f 53 20 6d 6f 64 65 2e 0d 0d 0a in.DOS.mode.... 

  24 00 00 00 00 00 00 00 ec 53 20 a3 a8 32 4e ........ìS...2N

  f0 a8 32 4e f0 a8 32 4e f0 8f f4 33 f0 ae 32 ð.2Nð.2Nð.ô3ð.2

Table of Contents | About PowerShell Plus

447

Sponsors | Resources | © BBS Technologies



Moving and Copying Files and Directories

 Move-Item and  Copy-Item perform moving and copying operations. You may use wildcard 

characters with them. The following statement copies all PowerShell scripts from your home 

directory to the Desktop:

 Copy-Item  $home\ *.  ps1 ([ Environment]:: GetFolderPath( "Desktop" )) However, only those scripts were copied that are directly available in the  $home directory. While 

 Copy-Item is familiar with the  -recurse parameter, the parameter, similar to  Dir, won't work if your initial path no longer contains any directories. 

 Copy-Item  -recurse  $home\ *.  ps1 ([ Environment]:: GetFolderPath( "Desktop" )) Use  Dir to copy all the  PowerShell scripts to your Desktop anyway. Let it find the PowerShell scripts for you, and then pass the result on to  Copy-Item:

Dir  -filter  *.  ps1  -recurse |  ForEach-Object {

 Copy-Item  $_.  FullName ([ Environment]:: GetFolderPath( "Desktop" )) }

You might be tempted to reduce this line because every file object 

has an integrated  CopyTo() method:

Dir  -filter  *.  ps1  -recurse |  ForEach-Object {

 $_.  CopyTo([ Environment]:: GetFolderPath( "Desktop" )) }

But the result would be an error.  CopyTo() is a low-level function and needs 

the destination path for the file that is to be copied. Because you just want to 

copy all the files to the Desktop, you specified the path of the destination 

directory.  CopyTo() will try to copy the file under precisely this name, which 

naturally cannot succeed because the Desktop already exists as a directory. 

 Copy-Item is smarter: the file will be copied to this directory if the 

destination is a directory. 

Because by now your Desktop is probably teeming with PowerShell scripts, it would be better to 

store them in their own subdirectory. You should create a new subdirectory on the Desktop, and 

move all your PowerShell scripts on the Desktop into this subdirectory:

 $desktop  = [ Environment]:: GetFolderPath( "Desktop" )

md ( $desktop  +  "\PS Scripts" )

 Move-Item ( $desktop  +  "\*.ps1" ) ( $desktop  +  "\PS Scripts" ) Your Desktop is now tidy again, and all your scripts are safely stored in a common directory on your 

Desktop. 

Table of Contents | About PowerShell Plus

448

Sponsors | Resources | © BBS Technologies

Renaming Files and Directories

Use  Rename-Item if you want to give a file or a directory another name. But be careful when you do this because Windows could be ruined if you rename system directories or files. Even if you rename 

the file extensions of files, you may not be able to open these files and display them properly any 

more. 

 Set-Content  testfile.txt  "Hello,this,is,an,enumeration" 

 # File is opened in editor:

.\ testfile.txt

 # File is opened in Excel:

 Rename-Item  testfile.txt  testfile.csv

.\ testfile.csv

Numerous Renames

Because  Rename-Item can be used as a building block in the pipeline, it provides surprisingly simple solutions to complex tasks. For example, if you want to remove the term "x86" from a directory and all its subdirectories, as well as all the included files, this instruction will suffice:

Dir |  ForEach-Object { 

 Rename-Item  $_.  Name  $_.  Name.replace( "-x86" ,  "" ) }

However, this command will now actually attempt to rename all the files and directories, even if the 

term you're looking for isn't even in the file name. That generates errors and is very time-

consuming. To greatly speed things up, sort out in advance all the files and directories that are in 

question by using Where-Object, which can increase speed by a factor of 50:

Dir |  Where-Object {  $_.  Name  -contains  "-x86"  } |  ForEach-Object { 

 Rename-Item  $_.  Name  $_.  Name.replace( "-x86" ,  "" ) }

Changing File Extensions

If you want to change the file extension, be aware first of the consequences: the file will 

subsequently be recognized as another file type, and possibly be opened by the wrong application 

program or perhaps not be able to be opened by any application at all. The next instruction renames 

all PowerShell scripts in the current directory and changes the file extension from ".ps1" to ".bak". 

Dir  *.  ps1 |  ForEach-Object {  Rename-Item  $_.  Name `

([ System.IO.Path]:: GetFileNameWithoutExtension( $_.  FullName)  + `

 ".bak" )  -whatIf }

 What if: Performing operation "Rename file" on Target 

 "Element: C:\Users\Tobias Weltner\tabexpansion.ps1 

 Destination: C:\Users\Tobias Weltner\tabexpansion.bak". 

Because of the  -whatIf parameter, initially the statement only indicates which renaming operation 

you could carry out. 

Table of Contents | About PowerShell Plus

449

Sponsors | Resources | © BBS Technologies

Sorting Out File Names

Data collections often grow over time. If you want to sort out a directory, you could give all the files 

it contains uniform names and sequential numbers, or you could synthesize file names from some 

specific properties of files. Remember that PowerShell script folder that we just created on your 

Desktop? Let's properly number the PowerShell scripts in the folder in sequence:

 $directory  = [ Environment]:: GetFolderPath( "Desktop" )  +  "\PS Scripts" 

Dir  $directory\ *.  ps1



 Directory: Microsoft.PowerShell.Core\FileSystem::C:\Users\Tobias Weltner\Desktop\

 PS Scripts

 Mode                LastWriteTime     Length Name

 ----                -------------     ------ ----

 -a---        02.08.2007     17:21         46 a.ps1

 -a---        02.08.2007     17:32        146 b.ps1

 -a---        20.06.2007     16:41        766 clearhost.ps1

 -a---        20.06.2007     14:47        768 clearhost2.PS1

 -a---        02.08.2007     18:51         46 d.PS1

 -a---        18.06.2007     13:32        869 findCommandName.ps1

 -a---        27.04.2007     23:39        200 getdlls.ps1

 -a---        10.05.2007     14:53       1138 installfont.ps1

 -a---        02.08.2007     18:53         15 k.PS1

 -a---        27.04.2007     13:19        264 myinvoke.ps1

 -a---        20.06.2007     12:08         27 junk.PS1

 -a---        21.06.2007     08:15       2742 prereqs.ps1

 -a---        27.06.2007     14:11        495 profile.ps1

 -a---        26.04.2007     21:59        250 progress.ps1

 -a---        15.06.2007     15:44       4366 tabexpansion.ps1

 -a---        08.06.2007     12:56        176 test - Copy (2).ps1

 -a---        08.06.2007     12:56        176 test - Copy (3).ps1

 -a---        08.06.2007     12:56        176 test - Copy (4).ps1

 -a---        08.06.2007     12:56        176 test - Copy (5).ps1

 -a---        08.06.2007     12:56        176 test - Copy.ps1

 -a---        08.06.2007     12:56        176 test.ps1

 -a---        27.04.2007     20:42        106 test2.ps1

 -a---        20.06.2007     14:42        766 Untitled.ps1

Dir  $directory\ *.  ps1 |  ForEach-Object { $x= 0} {

 Rename-Item  $_ ( "Script "   +  $x  +  ".ps1" );  $x++ } { "Finished!" }

Dir  $directory\ *.  ps1



 Directory: Microsoft.PowerShell.Core\FileSystem::C:\Users\Tobias Weltner\Desktop\

 PS Scripts

 Mode                LastWriteTime     Length Name

 ----                -------------     ------ ----

 -a---        08.02.2007     17:21         46 Script 0.ps1

 -a---        08.02.2007     17:32        146 Script 1.ps1

 -a---        06.08.2007     12:56        176 Script 10.ps1

 -a---        06.08.2007     12:56        176 Script 11.ps1

Table of Contents | About PowerShell Plus

450

Sponsors | Resources | © BBS Technologies

 -a---        06.20.2007     16:41        766 Script 12.ps1

 -a---        06.08.2007     12:56        176 Script 13.ps1

 -a---        04.27.2007     20:42        106 Script 14.ps1

 -a---        06.20.2007     14:42        766 Script 15.ps1

 -a---        06.20.2007     14:47        768 Script 16.ps1

 -a---        08.02.2007     18:51         46 Script 17.ps1

 -a---        06.18.2007     13:32        869 Script 18.ps1

 -a---        04.27.2007     23:39        200 Script 19.ps1

 -a---        06.20.2007     12:08         27 Script 2.ps1

 -a---        05.10.2007     14:53       1138 Script 20.ps1

 -a---        02.08.2007     18:53         15 Script 21.ps1

 -a---        04.27.2007     13:19        264 Script 22.ps1

 -a---        06.21.2007     08:15       2742 Script 3.ps1

 -a---        06.27.2007     14:11        495 Script 4.ps1

 -a---        04.26.2007     21:59        250 Script 5.ps1

 -a---        06.15.2007     15:44       4366 Script .ps1

 -a---        08.06.2007     12:56        176 Script 7.ps1

 -a---        08.06.2007     12:56        176 Script 8.ps1

 -a---        08.06.2007     12:56        176 Script 9.ps1

Deleting Files and Directories

Use  Remove-Item or the  Del alias to remove files and directories, which deletes files and directories irrevocably. If a file is write-protected, you'll have to specify the  -force parameter. 

 # Create an example file:

 $file  =  New-Item  testfile.txt  -type file

 # There is no write protection:

 $file.  isReadOnly

 False

 # Activate write protection:

 $file.  isReadOnly  =  $true

 $file.  isReadOnly

 True

 # Write-protected file may be deleted only by using the -Force parameter:

del  testfile.txt

 Remove-Item : Cannot remove item C:\Users\Tobias Weltner\testfile.txt: Not enough 

 permission to perform operation. 

 At line:1 char:4

 + del  <<<< testfile.txt

 del testfile.txt -force

Table of Contents | About PowerShell Plus

451

Sponsors | Resources | © BBS Technologies

Deleting Directory Contents

Use wildcard characters if all you want to do is to delete the contents of a directory, but still keep 

the directory. The following line, for example, will delete the contents of the  Recent directory, which corresponds to "My Recent Documents" on the start menu. Because deleting files and directories is not something to be taken lightly and can have serious consequences, you can just simulate their 

deletion first by using  -whatIf to see what happens:

 $recents  =  [ Environment]:: GetFolderPath( "Recent" )

del  $recents\ *.  *  -whatIf

If you are convinced that your command is correct, and that it will delete the correct files, repeat the 

statement without  -whatIf. On the other hand, if you're still unsure, you can also use  -confirm, which makes every deletion contingent on your approval. 

Deleting Directories and Their Contents

If a directory is deleted, its entire contents will be lost. PowerShell requests confirmation whenever 

you attempt to erase a directory along with its contents to prevent you from unintentionally 

destroying large quantities of data. Only the deletion of empty directories does not require 

confirmation:

 # Create a test directory:

md testdirectory



 Directory: Microsoft.PowerShell.Core\FileSystem::C:\Users\Tobias Weltner\Sources\

 docs

 Mode                LastWriteTime     Length Name

 ----                -------------     ------ ----

 d----        13.10.2007     13:31            testdirectory

 # Create a file in the directory:

 Set-Content .\testdirectory\ testfile.txt  "Hello" 

 # Delete directory:

del testdirectory

 Confirm

 The item at "C:\Users\Tobias Weltner\Sources\docs\testdirectory" has children 

 and the Recurse parameter was not specified. If you continue, all children 

 will be removed with the item. Are you sure you want to continue? 

 |Y| Yes  |A| Yes to All  |N| No  |L| No to All  |S| Suspend  |?| Help (default is 

 "Y"):

But if you had specified the  -recurse parameter, PowerShell would have deleted the directory, 

including its contents, immediately and without asking for confirmation:

del testdirectory  -recurse

Table of Contents | About PowerShell Plus

452

Sponsors | Resources | © BBS Technologies



Managing Access Permissions

For NTFS drives, access permissions determine which users may access files and directories. For 

each file and directory, security data is laid down in what is known as a "security descriptor" (SD). 

The  security descriptor determines whether security settings are valid only for the current directory or whether they can be passed on other files and directories. The real access permissions are on 

 access control lists (ACL). An  access control entry (ACE) for every single access permission is on the ACL. 

File and directory access permissions are equivalent to complex 

electronic locks. If used properly, you can make them into an 

effective security system. However if improperly used, you can just 

as easily lock yourself out, lose access to important data, or 

damage the Windows operating system (when you unintentionally 

block access to key system directories). As owner of a file or directory, you 

always have the option of correcting permissions, and as an administrator, 

you can always assume ownership of a file or directory. But that's a back 

door you can't rely on: you should change permissions only when you are 

fully aware of what will be the consequences. It's better to experiment 

initially with test directories and files. 

PowerShell uses the cmdlets  Get-Acl und  Set-Acl to manage permissions. In addition, traditionally proven commands like  cacls are available to you in the PowerShell console. Often, they can modify 

access permissions more quickly than PowerShell cmdlets, particularly when you're working with 

very many files and directories. Since Windows Vista was released,  cacls has been regarded as 

outdated. If possible, use its successor,  icacls. 

cacls  /? 

 NOTE: Cacls is now deprecated, please use Icacls. 

  Displays or modifies access control lists (ACLs) of files

  CACLS Filename  [/T] [/M] [/L] [/S[:SDDL]] [/E] [/C]

                  [/G user:perm] [/R user [...]]

                  [/P user:perm [...]]

                  [/D user [...]]

    Filename      Displays ACLs. 

    /T            Changes ACLs of specified files in

                  the current directory and all subdirectories. 

    /L            Performs the action on a symbolic link versus its destination. 

    /M            Changes ACLs of volumes mounted to a directory. 

    /S            Displays the SDDL string for the DACL. 

    /S:SDDL       Replaces the ACLs with those specified in the SDDL string

                  (not valid with /E, /G, /R, /P, or /D). 

    /E            Edit ACL instead of replacing it. 

    /C            Continue on access denied errors. 

    /G user:perm  Grant specified user access permissions. 

                  Perm can be:  R  Read

                                W  Write

Table of Contents | About PowerShell Plus

453

Sponsors | Resources | © BBS Technologies

                                C  Change (write)

                                F  Full control

    /R user       Revoke specified user's access permissions (only valid with /E). 

    /P user:perm  Replace specified user's access permissions

                  Perm can be:  N  None

                                R  Read

                                W  Write

                                C  Change (write)

                                F  Full control

     /D user      Deny specified user access. 

                  

 Wildcards can be used to specify more than one file in a command. 

 You can specify more than one user in a command. 

 Abbreviations:

  CI - Container Inherit. 

Checking Effective Security Settings

Effective security settings of directories and files are on the access control list, and PowerShell 

retrieves the contents of this list when you use  Get-Acl. So, if you would like to find out who has access to a certain file or a certain directory, proceed as follows:

 # list permissions for Windows directory:

 Get-Acl  $env:windir

     Directory: Microsoft.PowerShell.Core\FileSystem::C:\

 Path     Owner                        Access

 ----     -----                        ------

 Windows  NT SERVICE\TrustedInstaller  CREATOR OWNER Allow  268435... 

Establishing the Identity of the Owner

The owner of a file or directory has special rights. For example, the owner can always get access and 

you can find the owner in the  Owner property:

( Get-Acl  $env:windir).  Owner

 NT SERVICE\TrustedInstaller

Listing Access Permissions

Actual access permissions—who may do what—are output in the  Access property:

( Get-Acl  $env:windir).  Access |  Format-Table  -wrap

   FileSystem Access  IdentityReference IsInhe InheritanceFlags PropagationFlags

       Rights Control                   rited 

              Type

Table of Contents | About PowerShell Plus

454

Sponsors | Resources | © BBS Technologies



   ---------- ------- ----------------- ------ ---------------- ----------------

    268435456 Allow   CREATOR OWNER     False ContainerInherit, InheritOnly

                                              ObjectInherit

    268435456 Allow   NT AUTHORITY\     False ContainerInherit, InheritOnly

                      SYSTEM                  ObjectInherit

 Modify, Sync Allow   NT AUTHORITY\     False None              None

      hronize         SYSTEM

    268435456 Allow   BUILTIN\Admi      False ContainerInherit, InheritOnly

                      nistrators              ObjectInherit

 Modify, Sync Allow   BUILTIN\Admi      False None              None

      hronize         nistrators

  -1610612736 Allow   BUILTIN\Users     False ContainerInherit, InheritOnly

                                              ObjectInherit

 ReadAndExecu Allow   BUILTIN\Users     False None              None

 te, Synchron

 ize

    268435456 Allow   NT SERVICE\Truste False ContainerInherit  InheritOnly

                      dInstaller

  FullControl Allow   NT SERVICE\Truste False None              None

                      dInstaller

The  IdentityReference column of this overview tells you who has special permission; the 

 FileSystemRights column also tell you the type of permission. The  AccessControlType column is particularly important because if it shows  Deny instead of  Allow,  you will know who is restricted and who has access. 

Creating New Permissions

The object returned by  Get-Acl contains a number of methods that you can use to modify 

permissions or assume ownership. If you'd like to set permissions yourself, you don't necessarily 

have to delve deeply into the world of security descriptors. Often, it suffices either to read the 

security descriptor of an existing file and to transfer it to another or to specify the security 

information in the form of a text in the special SDDL language. 

Whether you want to modify the structure of the security descriptor yourself or acquire a complete 

security descriptor: use  Set-Acl to assign the security descriptor to a new object. 

The below examples will acquaint you with all the usual 

procedures. Note two aspects: don't forget proven tools, like  cacls, 

because you may be able to do your work more quickly with it than 

with PowerShell. Moreover, the  Get-Acl and  Set-Acl team work not 

only on the file level, but also everywhere where security 

descriptors control access, such as in the Windows registry (see next 

chapter). 

Table of Contents | About PowerShell Plus

455

Sponsors | Resources | © BBS Technologies





"Cloning" Permissions

In a rudimentary case, you wouldn't create any new permissions but would "clone" permissions by 

transferring the access control list of an existing directory (or a file) to another. The advantage is 

that this enables you to use a graphic interface to set permissions, which are often complex. 

Because the manual adjustment of security settings is a job for 

professionals, non-commercial Windows versions like  Windows XP 

 Home do not have this option. Nevertheless, you can use 

PowerShell to modify file and directory permissions used in these 

Windows versions as well. 

To begin, create two directories as a test:

md Prototype |  out-null

md Protected |  out-null

Now, open Explorer, and change the security settings of the  Prototype directory. 

explorer . 

In Explorer, right-click the  Prototype directory and select  Properties. Then, click the  Security tab. 



Figure 15.2: Modifying security settings of the directory using a dialog box

Click  Modify and add additional people to change the security settings of the test directory. Set 

permissions for the new persons in the lower area of the dialog box. 

Table of Contents | About PowerShell Plus

456

Sponsors | Resources | © BBS Technologies





You may also deny users permission by putting a check mark after 

permission in the  Deny column. You have to be very careful when 

doing this since restrictions always have priority over permissions. 

For example, if you were to grant yourself full access but deny 

access for the  Everyone group, you would shut yourself out of your 

own system. You also belong to the  Everyone group, and since restrictions 

have priority, the restrictions also apply to you—even though you granted 

yourself full access. 

After you've changed permissions, take a look at the permissions of the second test directory, 

 Protected, in Explorer. This directory is still assigned default permissions. In the next step, the new permissions of the  Prototype directory will be transferred to the  Protected directory:

 $acl  =  Get-Acl Prototype

 Set-Acl Protected  $acl

You need special rights to set permissions. If you're operating 

PowerShell using the Windows Vista operating system and User 

Account Control is active, you won't have these permissions and 

you'll get an error message. Run PowerShell as administrator to 

obtain the permissions. 

That's all there is to it. The  Protected directory is now just as secure as the  Prototype directory, and when you check their security settings in Explorer, you'll see that all their settings are identical. 

Using SDDL to Set Permissions

The previous example was very simple because all you did was transfer the security settings of an 

existing directory to another. In your daily work, you'll always require a  Prototype directory, and that's often unwanted. But you can also summarize the security settings of a security descriptor as 

text. Each security setting is defined in the special  Security Descriptor Description Language (SDDL). 

It enables you to read out the security information of the  Prototype directory as text and use it later without having to resort to the  Prototype directory. 

Let's delete the old  Protected test directory, and then save the security information of the  Prototype directory in the SDDL:

Del Protected

 $acl  =  Get-Acl Prototype

 $sddl  =  $acl.  Sddl

 $sddl

 O:S-1-5-21-3347592486-2700198336-2512522042-1000G:S-1-5-21-3347592486-

 2700198336-2512522042-513D:AI(A;OICI;0x1200a9;;;WD)(A;OICI;FA;;;LA)(A;ID; 

Table of Contents | About PowerShell Plus

457

Sponsors | Resources | © BBS Technologies



 FA;;;S-1-5-21-3347592486-2700198336-2512522042-1000)(A;OICIIOID;GA;;;S-1-

 5-21-3347592486-2700198336-2512522042-1000)(A;ID;FA;;;SY)(A;OICIIOID;GA;; 

 ;SY)(A;ID;FA;;;BA)(A;OICIIOID;GA;;;BA)

You could now include the SDDL text in a second script and assign its security settings to any 

directory . 

 # Create new directory

Md Protected

 # Security description in SDDL (one line):

 $sddl  =  "O:S-1-5-21-3347592486-2700198336-2512522042-1000G:"   + `

 "S-1-5-21-3347592486-2700198336-2512522042-513D:"   + `

 "AI(A;OICI;0x1200a9;;;WD)(A;OICI;FA;;;LA)"   + `

 "(A;ID;FA;;;S-1-5-21-3347592486-2700198336-2512522042-1000)"   + `

 "(A;OICIIOID;GA;;;S-1-5-21-3347592486-2700198336-2512522042-1000)"   + `

 "(A;ID;FA;;;SY)(A;OICIIOID;GA;;;SY)(A;ID;FA;;;BA)(A;OICIIOID;GA;;;BA)" 

 # Get security description of the directory:

 $acl  =  Get-Acl Protected

 # Replace security description with the SDDL definition:

 $acl.  SetSecurityDescriptorSddlForm( $sddl)

 # Write back modification

 Set-Acl Protected  $acl

Your second script is completely independent of your  Prototype 

directory. What you've done is use the  Prototype directory only 

temporarily to generate the SDDL definition of your security 

settings with the help of the user interface. 

However, the SDDL cannot be simply transferred to other computers. If you 

take a second look, you'll see that each authorized person is not identified by 

name, but by a security identifier (SID). This SID differs from person to 

person so even if there were accounts on several computers that have the 

same name, they would be different accounts, in reality, with different SIDs. 

However inside a domain, the SIDs of user accounts is the same on all 

computers because the domain centrally manages them. As a result, the 

SDDL solution is ideal for domain-based company networks. Nevertheless, if 

you're working in a small peer-to-peer network, SDDL can be useful. You just 

have to use "copy & paste" to replace the SIDs of respective accounts. It 

would be even simpler, though, to use the commands  cacls or  icacls in peer-

to-peer networks. 

Manually Creating New Permissions

Permissions can also be created manually. The advantage is that you specify authorized users by 

name so that this approach would work on any computer in the same way—even if there is no 

central domain. 

Table of Contents | About PowerShell Plus

458

Sponsors | Resources | © BBS Technologies

But note that this involves extra effort because then you would have to create the security descriptor entirely on your own. The next example will show you how to do this. However in practice, this 

procedure is usually too time-consuming. It's simpler in this case to use commands like  cacls or 

 icacls. Now, let's delete the  Protected test directory again and create a new one so that the directory is again assigned default access rights:

Del Protected

Md Protected

Ultimately, this directory should have general read access permission for the  Everyone group and full access to the  Administrator account. To accomplish this, use  AddAccessRule() to add two new access rules to the security descriptor:

 $acl  =  Get-Acl Protected

 # Add first rule:

 $person  = [ System.Security.Principal.NTAccount] "Administrator" 

 $access  = [ System.Security.AccessControl.FileSystemRights] "FullControl" 

 $inheritance  = [ System.Security.AccessControl.InheritanceFlags] `

 "ObjectInherit,ContainerInherit" 

 $propagation  = [ System.Security.AccessControl.PropagationFlags] "None" 

 $type  = [ System.Security.AccessControl.AccessControlType] "Allow" 

 $rule  =  New-Object  System.Security.AccessControl.FileSystemAccessRule( `

 $person,  $access,  $inheritance,  $propagation,  $type)

 $acl.  AddAccessRule( $rule)

 # Add second rule:

 $person  = [ System.Security.Principal.NTAccount] "Everyone" 

 $access  = [ System.Security.AccessControl.FileSystemRights] "ReadAndExecute" 

 $inheritance  = [ System.Security.AccessControl.InheritanceFlags] `

 "ObjectInherit,ContainerInherit" 

 $propagation  = [ System.Security.AccessControl.PropagationFlags] "None" 

 $type  = [ System.Security.AccessControl.AccessControlType] "Allow" 

 $rule  =  New-Object  System.Security.AccessControl.FileSystemAccessRule( `

 $person,  $access,  $inheritance,  $propagation,  $type)

 $acl.  AddAccessRule( $rule)

 # Write back changed permissions:

 Set-Acl Protected  $acl

Next, let's look at how each access rule is defined. Five details are required for each rule:

•

Person: Here the person or the group is specified to which the rule is supposed to apply. 

•

Access: Here permissions are selected that the rule controls. 

•

Inheritance: Here the objects are selected to which the rule applies. The rule can, and 

normally also is, granted to child objects, so it applies automatically to files that are in a 

directory. 

•

Propagation: Determines whether permissions are passed to child objects (such as 

subdirectories and files). Normally, the setting is  None and permissions are merely granted. 

•

Type: This enables you to set either a permission or restriction. If restriction, the permissions 

that were specified will expressly  not be granted. 

The next question is: which values are allowed for these specifications? The example shows that 

specifications are given in the form of special .NET objects (Chapter 6). You can list all the permitted values for access permissions by using the following trick:

Table of Contents | About PowerShell Plus

459

Sponsors | Resources | © BBS Technologies

[ System.Enum]:: GetNames([ System.Security.AccessControl.FileSystemRights]) ListDirectory

 ReadData

 WriteData

 CreateFiles

 CreateDirectories

 AppendData

 ReadExtendedAttributes

 WriteExtendedAttributes

 Traverse

 ExecuteFile

 DeleteSubdirectoriesAndFiles

 ReadAttributes

 WriteAttributes

 Write

 Delete

 ReadPermissions

 Read

 ReadAndExecute

 Modify

 ChangePermissions

 TakeOwnership

 Synchronize

 FullControl

You would actually have to combine the relevant values from the list if you want to set access 

permissions, such as like this:

 $access  = [ System.Security.AccessControl.FileSystemRights]:: Read `

 -bor [ System.Security.AccessControl.FileSystemRights]:: Write

 $access

 131209

The result is a number, the bitmask for permissions to read and write. In the above example, you 

achieved the same result more easily because you are allowed to specify wanted items, even if they 

are comma-separated items and enclosed in brackets, after a .NET enumeration:

 $access  = [ System.Security.AccessControl.FileSystemRights] "Read,Write" 

 $access

 Write, Read

[ int] $access

 131209

Because you didn't carry out any binary  -bor calculations here, the result is readable text. But in this case the bitmask is at work here, as the conversion to the  Integer data type proves. You can find out what the underlying value of a setting is at any time like this:

Table of Contents | About PowerShell Plus

460

Sponsors | Resources | © BBS Technologies

[ int][ System.Security.AccessControl.InheritanceFlags] `

 "ObjectInherit,ContainerInherit" 

 3

The significance of this for you is that you can now examine the permitted values for the other .NET 

enumerations and convert these into numbers. While it won't make your commands more readable, 

they will be shorter because the following lines do the same thing as the lines in the preceding 

example:

Del Protected

Md Protected

 $acl  =  Get-Acl Protected

 $rule  =  New-Object  System.Security.AccessControl.FileSystemAccessRule( `

 "Administrator" ,2032127,3,0,0)

 $acl.  AddAccessRule( $rule)

 $rule  =  New-Object  System.Security.AccessControl.FileSystemAccessRule( `

 "Everyone" ,131241,3,0,0)

 $acl.  AddAccessRule( $rule)

 # Write back changed permissions:

 Set-Acl Protected  $acl

Finally, let's look at how PowerShell specifies persons to whom permissions apply. In the above 

examples, you specified the names of users or of groups. Because permissions are not responsive to 

names, but to the unique SIDs of user accounts, names are changed internally to SIDs. You can also 

change names manually to see whether a specified user account in fact exists:

 $Account  = [ System.Security.Principal.NTAccount] "Administrators" 

 $SID  =  $Account.  translate([ System.Security.Principal.Securityidentifier]) $SID

  BinaryLength  AccountDomainSid         Value

  ------------  ----------------         -----

  16                              S-1-5-32-544

An  NTAccount object describes a security principal, which is something to which permissions can be granted. In practice, this is users and groups. The  NTAccount object can use  Translate() to output the information it contains through the principal into its SID. However, this will only work if the 

specified account in fact exists. Otherwise, you will get an error, so you should use  Translate() to validate the existence of the account. 

The unique SID that  Translate() retrieves is also useful. If you look closely, you'll discover that the SID of the  Administrators group clearly differs from the SID of your own user account:

([ System.Security.Principal.NTAccount] "$env:userdomain\$env:username" ).`

Translate([ System.Security.Principal.Securityidentifier]).  Value

 S-1-5-21-3347592486-2700198336-2512522042-1000

([ System.Security.Principal.NTAccount] "Administrators" ).`

Translate([ System.Security.Principal.Securityidentifier]).  Value

Table of Contents | About PowerShell Plus

461

Sponsors | Resources | © BBS Technologies

 S-1-5-32-544

The SID of the  Administrators group is not only much shorter, but also unique. For its integrated 

accounts, Windows uses so-called "well-known" SIDs, which are the same in all Windows systems. 

This is important because if you were to run your above script on a German system, it would fail 

since the  Administrators group is called "  Administratoren," and the "  Everyone" group is called 

"  Jeder" on systems localized for Germany. The SIDs of these groups are identical, and knowing this for integrated accounts, you should use SIDs instead of localized names. This is how you turn a SID 

into the name of a user account:

 $sid  = [ System.Security.Principal.SecurityIdentifier] "S-1-1-0" 

 $sid.  Translate([ System.Security.Principal.NTAccount])

 Value

 -----

 Everyone

And this is how your script could work flawlessly in international localizations:

Del Protected

Md Protected

 $acl  =  Get-Acl Protected

 # Full access for Administrators:

 $sid  = [ System.Security.Principal.SecurityIdentifier] "S-1-5-32-544" 

 $access  = [ System.Security.AccessControl.FileSystemRights] "FullControl" 

 $rule  =  New-Object  System.Security.AccessControl.FileSystemAccessRule( `

 $sid,  $access,3,0,0)

 $acl.  AddAccessRule( $rule)

 # Read access for all:

 $sid  = [ System.Security.Principal.SecurityIdentifier] "S-1-1-0" 

 $access  = [ System.Security.AccessControl.FileSystemRights] "ReadAndExecute" 

 $rule  =  New-Object  System.Security.AccessControl.FileSystemAccessRule( `

 $sid,  $access,3,0,0)

 $acl.  AddAccessRule( $rule)

 # Write back changed permissions:

 Set-Acl Protected  $acl

Table of Contents | About PowerShell Plus

462

Sponsors | Resources | © BBS Technologies

CHAPTER 16. 

 The Registry

You can navigate the Windows registry just as you would the file system because PowerShell treats 

the file system concept discussed in Chapter 15 as a prototype for all hierarchical information systems. 

Topics Covered:

•

T

  able 16.1: The most important commands for working with the registry  

•

" Provider": Locations Outside the File System  

•

A

  vailable Providers  

•

T

  able 16.2: Default providers  

•

C

  reating Drives  

•

F igure 16.1: Roots in the registry  

•

S

  earching the Registry  

•

R

  ecursive Search  

•

In

  dividual Registry Keys  

•

T

  able 16.3: Properties of a Microsoft.Win32.Registry object (registry key)  

•

H

  ow PowerShell Addresses Registry Keys  

•

F igure 16.2: PowerShell settings in the registry editor  

•

V

  alues of Keys  

•

S

  ubkey of a Key  

•

C

  reating and Deleting Keys and Values  

•

T

  able 16.4: Permitted ItemTypes in the registry  

•

De

  leting Keys with Contents  

•

S

  etting, Changing, and Deleting Values of Keys  

•

A

  dding New Values  

•

F igure 16.3: Writing various data types in the registry  

•

R

  eading Values  

•

D

  eleting Values  

•

D

  efault Entry  

•

E

  xample: Extending the Context Menu  

•

E

  xecuting and Editing PowerShell Scripts  

•

P

  ermissions in the Registry  

•

T

  aking Ownership  

•

S

  etting New Access Permissions  

•

R

  emoving an Access Rule  

•

C

  ontrolling Access to Subkeys  

•

R

  evealing Inheritance  

•

C

  ontrolling Your Own Inheritance  

You can navigate the Windows registry just as you would the file system because PowerShell treats 

the file system concept discussed in Chapter 15 as a prototype for all hierarchical information systems:

Cd HKCU:Dir

 SKC  VC Name                  Property

Table of Contents | About PowerShell Plus

463

Sponsors | Resources | © BBS Technologies

 ---  -- ----                  --------

   2   0 AppEvents             {}

  17   1 Console               {CurrentPage}

  15   0 Control Panel         {}

   0   3 Environment           {PATH, TEMP, TMP}

   4   0 EUDC                  {}

   1   6 Identities            {Identity Ordinal, Migrated7, Last Username, Last 

 User ID...}

   3   0 Keyboard Layout       {}

   0   0 Network               {}

   4   0 Printers              {}

  55   1 Software              {(default)}

   2   0 System                {}

   0   1 SessionInformation    {ProgramCount}

   1   8 Volatile Environment  {LOGONSERVER, USERDOMAIN, USERNAME, USERPROFILE...}

The keys in the registry correspond to directories in the file system. However, key values don't quite 

behave analogously to files in the file system. Instead, they are managed as properties of keys and 

are displayed in the  Property column.  Table 16.1 lists all the commands that you require for access to the registry. 

Command

Description

 Dir, Get-ChildItem

Lists the contents of a key

 Cd, Set-Location

Changes current directory (key)

 HKCU:, HKLM:

Predefined drives for the two most important roots of 

the registry

 Get-ItemProperty

Reads the value of a key

 Set-ItemProperty

Modifies the value of a key

 New-ItemProperty

Creates a new value for a key

 Clear-ItemProperty

Deletes the value contents of a key

 Remove-

Removes the value of a key

 ItemProperty

 New-Item, md

Creates a new key

 Remove-Item, Del

Deletes a key

Table of Contents | About PowerShell Plus

464

Sponsors | Resources | © BBS Technologies



 Test-Path

Verifies whether a key exists

Table 16.1: The most important commands for working with the registry

The registry stores nearly all central Windows settings. That's why 

it's an important location for reading information and modifying the 

Windows configuration. Incorrect entries or erroneous deletion and 

modification represent a serious risk and can damage Windows or 

make it unbootable. 

You'll find the most important settings in the  HKEY_LOCAL_MACHINE root 

key, which Windows protects by requiring administrator rights to make 

changes there. 

"Provider": Locations Outside the File System

PowerShell has a modular structure and uses what are called "providers," Which are responsible for a particular information store. In the last chapter,  you used a file system provider so you'll need a registry provider if you want to access the Windows registry instead of the file system. In other 

respects, everything works the way it did in the last chapter.  You use the same commands in the registry that you use in the file system. 

Available Providers

 Get-PSProvider retrieves a list of all installed providers. Your list could be longer than in the 

following example, because providers can be added later on. For example, PowerShell doesn't have 

its own provider for Active Directory. 

 Get-PSProvider

 Name                 Capabilities                 Drives

 ----                 ------------                 ------

 Alias                ShouldProcess                {Alias}

 Environment          ShouldProcess                {Env}

 FileSystem           Filter, ShouldProcess        {C, E, S, D}

 Function             ShouldProcess                {Function}

 Registry             ShouldProcess                {HKLM, HKCU}

 Variable             ShouldProcess                {Variable}

 Certificate          ShouldProcess                {cert}

Table of Contents | About PowerShell Plus

465

Sponsors | Resources | © BBS Technologies

What's interesting here is the "Drives" column, which names the drives that are managed by respective providers. As you see, the registry provider mounts the drives  HKLM: (for the registry 

root  HKEY_LOCAL_MACHINE) and  HKCU: (for the registry root  HKEY_CURRENT_USER). These drives work just like traditional file system drives. Try this out:

Cd HKCU:

Dir



 Hive: Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_USER

 SKC  VC Name                           Property

 ---  -- ----                           --------

   2   0 AppEvents                      {}

   7   1 Console                        {CurrentPage}

  15   0 Control Panel                  {}

   0   2 Environment                    {TEMP, TMP}

   4   0 EUDC                           {}

   1   6 Identities                     {Identity Ordinal, Migrated7, Last ... 

   3   0 Keyboard Layout                {}

   0   0 Network                        {}

   4   0 Printers                       {}

 38   1 Software                       {(default)}

   2   0 System                         {}

   0   1 SessionInformation             {ProgramCount}

   1   8 Volatile Environment           {LOGONSERVER, USERDOMAIN, USERNAME,... 

From this location, you could navigate through the "subdirectory" in exactly the same way you did through a genuine file system. The same special characters apply here as well. The symbol for the 

root directory "~" is unknown in the registry and generates an error. 

While the other providers do not have a role in this chapter since we will be focusing on the registry, 

they are listed in Table 16.2 for reference. 

Provider

Description

Example

Manages aliases, which enable you to address a   Dir Alias:

Alias

command under another name. You'll learn 

 $alias:Dir

more about aliases in Chapter 2. 

Environmen Provides access to the environment variables of   Dir env:

t

the system. More in Chapter 3. 

 $env:windir

Lists all defined functions. Functions operate 

much like macros and can combine several 

 Dir function:

Function

commands under one name. Functions can also   $function:tabex

be an alternative to aliases and will be 

 pansion

described in detail in Chapter 9. 

Table of Contents | About PowerShell Plus

466

Sponsors | Resources | © BBS Technologies

 Dir c:

FileSystem

Provides access to drives, directories and files. 

 $

 (c:\autoexec.ba

 t)

Registry

Provides access to branches of the Windows 

 Dir HKCU:

registry. 

 Dir HKLM:

Manages all the variables that are defined in 

 Dir variable:

Variable

the PowerShell console. Variables are covered 

 $variable:psho

in Chapter 3. 

 me

Provides access to the certificate store with all   Dir cert:

Certificate

its digital certificates. These are examined in 

 Dir cert: 

detail in Chapter 10. 

 -recurse

Table 16.2: Default providers

Creating Drives

Registry provider provides access to the registry. You address them through drives. If you would like 

to see which drives are already used by registry provider, use  Get-PSDrive with  -PSProvider: Get-PSDrive  -PSProvider Registry

 Name       Provider      Root

 ----       --------      ---- 

 HKCU       Registry      HKEY_CURRENT_USER

 HKLM       Registry      HKEY_LOCAL_MACHINE

Here it might have struck your attention that the registry consists of more roots than just these two. 

Table of Contents | About PowerShell Plus

467

Sponsors | Resources | © BBS Technologies







Figure 16.1: Roots in the registry

The root  HKEY_CLASSES_ROOT is actually not an independent root but corresponds to 

 HKEY_LOCAL_MACHINE\SOFTWARE\Classes. That means you could use  New-PSDrive to create a 

new drive that has its starting point there:

 New-PSDrive  -name HKCR  -PSProvider registry  -root HKLM:\SOFTWARE\Classes

Dir HKCR:

You already have access to this registry branch. In fact, you could get direct access to any of the 

roots listed in Figure 16.1. 

 Remove-PSDrive HKCR

 New-PSDrive  -name HKCR  -PSProvider registry  -root HKEY_CLASSES_ROOT

Dir HKCR:

You could create any additional drives you like when you're working 

extensively in a specific registry area:

 New-PSDrive job1 registry `

 "HKLM:\Software\Microsoft\Windows NT\CurrentVersion" 

Dir job1:



 Hive: Microsoft.PowerShell.Core\Registry::

 HKEY_LOCAL_MACHINE\Software\Microsoft\Windows NT\CurrentVersion

 SKC  VC Name                   Property

 ---  -- ----                   --------

   1   0 Accessibility          {}

   1   3 AeDebug                {UserDebuggerHotKey, Auto, 

 Debugger}

   0  10 APITracing             {LogFileDirectory, 

 InstalledManifests, 

                                 LogApiNamesOnly, ... 

   4   1 AppCompatFlags         {ApphelpUIExe}

Table of Contents | About PowerShell Plus

468

Sponsors | Resources | © BBS Technologies

   1   0 ASR                    {}

   0 174 Compatibility          {_3DPC, _BNOTES, _LNOTES, ACAD...}

   0   1 Compatibility32        {winword}

   3   0 Console                {}

   1   2 CorruptedFileRecovery  {RunCount, TraceLevel}

   0   3 DefaultProductKey      {ProductId, DigitalProductId, 

                                 DigitalProductId4}

   2   1 DiskDiagnostics        {DFDCollectorInvokeTimes}

 (...)

Searching the Registry

Using  Dir, you can search the registry just like you did the file system in Chapter 15.  Simply use the new drives that the registry provider uses. The drive  HKCU: provides an overview of the contents of the  HKEY_CURRENT_USER root key:

Cd HKCU:

Dir

Redirect the result to  Format-List if you'd rather list contents below each other:

Dir |  Format-List

Dir |  Format-List Name

Dir |  Format-List  *

Recursive Search

The registry provider doesn't support any filters so you may not use the  Dir parameter  -filter when you search the registry. However, the parameters  -recurse,  -include, and  -exclude are supported; you used them in the last chapter to search the file system recursively. This works in the registry as well. For example, if you wanted to know the location of registry entries that include the word 

"PowerShell", you could search using:

Dir HKCU:, HKLM:  -recurse  -include  * PowerShell *

This instruction searches the  HKEY_CURRENT_USER root first and then the  HKEY_LOCAL_MACHINE 

root. It finds all the keys that contain the word "PowerShell." Because there could be a large number of these, search for registry keys that have the word "PowerShell" in their names without using any wildcard characters. Search operations of this kind usually generate error messages because when 

you search, segments of the registry are read to which you may have no access authorization. To 

filter the messages out of the result, use the parameter  -ErrorAction and set its value to 

 SilentlyContinue:

Dir HKCU:, HKLM:  -recurse  -include PowerShell  -ErrorAction SilentlyContinue

Table of Contents | About PowerShell Plus

469

Sponsors | Resources | © BBS Technologies

 Hive: Microsoft.PowerShell.Core\Registry::

 HKEY_LOCAL_MACHINE\SOFTWARE\Classes\Directory\shell

 SKC  VC Name         Property

 ---  -- ----         --------

   1   1 PowerShell   {(default)}

 Hive: Microsoft.PowerShell.Core\Registry::

 HKEY_LOCAL_MACHINE\SOFTWARE\Classes\Drive\shell

 SKC  VC Name         Property

 ---  -- ----         --------

   1   1 PowerShell   {(default)}

 Hive: Microsoft.PowerShell.Core\Registry::

 HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft

 SKC  VC Name         Property

 ---  -- ----         --------

   1   0 PowerShell   {}

Individual Registry Keys

Every element that  Dir retrieves corresponds to a registry key ( Microsoft.Win32.Registry object) that includes these important properties:

 $key  = Dir HKCU: |  Select-Object  -first 1

 $key.  GetType().  FullName

 Microsoft.Win32.RegistryKey

 $key |  Get-Member  -memberType  * Property   

 TypeName: Microsoft.Win32.RegistryKey

 Name          MemberType   Definition

 ----          ----------   ----------

 Property      NoteProperty System.String[] Property=System.String[]

 PSChildName   NoteProperty System.String PSChildName=AppEvents

 PSDrive       NoteProperty System.Management.Automation.PSDriveInfo PSDrive=HKCU

 PSIsContainer NoteProperty System.Boolean PSIsContainer=True

 PSParentPath  NoteProperty System.String 

 PSParentPath=Microsoft.PowerShell.Core\Registry::HKEY_... 

 PSPath        NoteProperty System.String 

 PSPath=Microsoft.PowerShell.Core\Registry::HKEY_CURREN... 

 PSProvider    NoteProperty System.Management.Automation.ProviderInfo 

 PSProvider=Microsoft.Power... 

 Name          Property     System.String Name {get;}

 SubKeyCount   Property     System.Int32 SubKeyCount {get;}

 ValueCount    Property     System.Int32 ValueCount {get;}

Property

Description

 Name

Path of a key as displayed in the registry editor

Table of Contents | About PowerShell Plus

470

Sponsors | Resources | © BBS Technologies

 Property

Array including names of values stored in a key

 PSChildName

Name of current key

 PSDrive

Registry root for a key

 PSParentPath

Parent key

PowerShell path of a key. Use  Dir to view contents of a key 

 PSPath

under this path

 PSProvider

Name of provider:  Registry

 SubKeyCount 

Number of keys stored in a key

 (SKC)

 ValueCount  (VC)

Number of values stored in a key

 PSIsContainer

Always  True

Table 16.3: Properties of a Microsoft.Win32.Registry object (registry key)

How PowerShell Addresses Registry Keys

Let's take a closer look at the allocation of individual properties to a real key. In the example, the 

 HKLM:\Software\Microsoft\PowerShell\1 key is used and in Figure 16.2 shown as displayed in the registry editor. This is the registry location where PowerShell stores its internal settings. 

Table of Contents | About PowerShell Plus

471

Sponsors | Resources | © BBS Technologies





Figure 16.2: PowerShell settings in the registry editor

Use  Get-Item from within PowerShell to access the key:

 $key  =  Get-Item HKLM:\Software\Microsoft\PowerShell\1

 $key.  Name

 HKEY_LOCAL_MACHINE\Software\Microsoft\PowerShell\1

 # Read PowerShell properties:

 $key |  Format-List ps *

 PSPath        : 

 Microsoft.PowerShell.Core\Registry::HKEY_LOCAL_MACHINE\Software\Microsoft\PowerSh

 ell\1

 PSParentPath  : 

 Microsoft.PowerShell.Core\Registry::HKEY_LOCAL_MACHINE\Software\Microsoft\PowerSh

 ell

 PSChildName   : 1

 PSDrive       : HKLM

 PSProvider    : Microsoft.PowerShell.Core\Registry

 PSIsContainer : True

As expected, the  Name property retrieves the complete name of the key. Of greater interest are the properties that begin with "PS" and which PowerShell subsequently adds. They split the path of the registry key into various segments. 

Values of Keys

Values of keys are in Figure 16.2 in the right column of the registry editor. There are three values. 

PowerShell reports just two values:

 $key.  ValueCount

 2

Table of Contents | About PowerShell Plus

472

Sponsors | Resources | © BBS Technologies

One value seems to be missing. You'll see which values PowerShell records if you look more closely at the  Property property:

 $key.  Property

 Install

 PID

These names correspond to the names of values in Figure 16.2.  The value ( Default) is missing, and rightly so, because as you can see in Figure 16.2, the default value is empty. The registry editor, Regedit, reports:  (value not set). 

If you want to retrieve the contents of values, use  Get-ItemProperty and pass the path from the 

 PSPath property:

 Get-ItemProperty  $key.  PSPath

 PSPath       : 

 Microsoft.PowerShell.Core\Registry::HKEY_LOCAL_MACHINE\Software\Microsoft\PowerSh

 ell\1

 PSParentPath : 

 Microsoft.PowerShell.Core\Registry::HKEY_LOCAL_MACHINE\Software\Microsoft\PowerSh

 ell

 PSChildName  : 1

 PSProvider   : Microsoft.PowerShell.Core\Registry

 Install      : 1

 PID          : 89383-100-0001260-04309

In this way, all the values of the registry key are automatically retrieved and displayed. As you see, 

along with usual properties, the value contains other properties added by PowerShell. You should 

access their corresponding properties if you want to retrieve only some particular values:

 # Retrieve all values of a registry key

 $values  =  Get-ItemProperty  $key.  PSPath

 # Obtain value for Install:

 $values.  Install

 1

 # Obtain value for PID:

 $values.  PID

 89383-100-0001260-04309

If you want to retrieve all the values of a key, without including the properties added by PowerShell, 

you could proceed as follows:

 $key  =  Get-Item HKLM:\Software\Microsoft\PowerShell\1

 $values  =  Get-ItemProperty  $key.  PSPath

 foreach ( $value  in  $key.  Property) {  $value  +  "="   +  $values.  $value }

Table of Contents | About PowerShell Plus

473

Sponsors | Resources | © BBS Technologies



 Install=1

 PID=89383-100-0001260-04309

Once you have navigated through the registry to the key whose values you want 

to examine, you can list values using a second method:

Cd HKLM:\Software\Microsoft\PowerShell\1

( Get-ItemProperty .).  PID

 89383-100-0001260-04309

Here "." was used to pass  Get-ItemProperty to the relative path of the registry key. For this to work, you should use  Cd first to switch to the key so your current directory must 

correspond to the registry key that you are interested in:

 Get-ItemProperty

You should use  Dir if you'd like to output the values of several keys. The result of  Dir can be passed along in the pipeline to  ForEach-Object. In this way, you could evaluate all the 

subkeys of a key one after the other and, for example, access the respective values of the 

key. The next line lists all the subkeys of  Uninstall and then reports the values  DisplayName 

and  MoreInfoURL. This provides you with a rough list of installed programs:

Dir hklm:\software\microsoft\windows\currentversion\uninstall | 

 ForEach-Object {  Write-Host  -ForegroundColor Yellow  "Installed 

 Products:"  }{

 $values  =  Get-ItemProperty  $_.  PSPath; 

 "{0:-30} {1:20}"   -f  $values.  DisplayName,  $values.  MoreInfoURL

}{ Write-Host  -ForegroundColor Yellow  "Finished!" }

Subkey of a Key

In Figure 16.2,  you can see in the left column that this key contains four subkeys. PowerShell also reports four subkeys:

 $key.  SubKeyCount

 4

 Dir retrieves the names of subkeys. To accomplish this, pass to  Dir the PowerShell path of the key that you find in the  PSPath property:

Dir  $key.  PSPath

 Hive: 

 Microsoft.PowerShell.Core\Registry::HKEY_LOCAL_MACHINE\Software\Microsoft\PowerSh

 ell\1

Table of Contents | About PowerShell Plus

474

Sponsors | Resources | © BBS Technologies

 SKC  VC Name                 Property

 ---  -- ----                 --------

   0   1 1033                 {Install}

   0   5 PowerShellEngine     {ApplicationBase, RuntimeVersion, 

 ConsoleHostAssemblyNam... 

   1   0 PowerShellSnapIns    {}

   1   0 ShellIds             {}

Creating and Deleting Keys and Values

Use  New-item or the  md function to create new keys. Keys in the registry behave like directories in the file system. 

 New-Item  -type Directory HKCU:\Software\Test1



 Hive: Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_USER\Software

 SKC  VC Name                           Property

 ---  -- ----                           --------

   0   0 Test1                          {}

md HKCU:\Software\Test2



 Hive: Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_USER\Software

 SKC  VC Name                           Property

 ---  -- ----                           --------

   0   0 Test2                          {}

But the two statements create a key that is completely empty: its default value is not defined. If you 

want to define the default value of a key, use  New-Item instead of  md, and specify one of the values in Table 16.4 as  -itemType. Set the value of the default entry using the  -value parameter: New-Item  -itemType  String HKCU:\Software\Test3  -value  "A default value" 



 Hive: Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_USER\Software

 SKC  VC Name                           Property

 ---  -- ----                           --------

   0   1 Test3                          {(default)}

If you want to delete a key, proceed the way you did in the file system and use  Remove-Item or the short  Del:

 Remove-Item HKCU:\Software\Test1

Del HKCU:\Software\Test2

Del HKCU:\Software\Test3

ItemType

Description

DataType

Table of Contents | About PowerShell Plus

475

Sponsors | Resources | © BBS Technologies

 String

A string

 REG_SZ

 ExpandStrin

A string with environment variables that are 

 REG_EXPAND

 g

resolved when invoked

 _SZ

 Binary

Binary values

 REG_BINARY

 DWord

Numeric values

 REG_DWORD

 MultiString

Text of several lines

 REG_MULTI_S

 Z

 QWord

64-bit numeric values

 REG_QWORD

Table 16.4: Permitted ItemTypes in the registry

Deleting Keys with Contents

If a key name includes blank characters, enclose the path in quotation marks. Unfortunately, you 

can't create more than one key in one step the way you could in the file system. The parent key has 

to exist. That's why this statement has caused an error; the parent key,  First key, was missing:

md  "HKCU:\Software\First key\Second key" 

 New-Item : The registry key at the specified path does not exist. 

 At line:1 char:34

 + param([string[]]$paths); New-Item  <<<< -type directory -path $paths

You have to split up the statement into several steps:

md  "HKCU:\Software\First key"  |  Out-Null

md  "HKCU:\Software\First key\Second key"  |  Out-Null

If you try to delete the  First key now, you'll be queried, like you were in the file system, because the key includes subkeys and isn't empty:

Del  "HKCU:\Software\First key" 

 Confirm

 The item at "HKCU:\Software\First key" has children and the Recurse 

 parameter was not specified. If you continue, all children will be 

Table of Contents | About PowerShell Plus

476

Sponsors | Resources | © BBS Technologies

 removed with the item. Are you sure you want to continue? 

 |Y| Yes  |A| Yes to All  |N| No  |L| No to All  |S| Suspend

 |?| Help (default is "Y"):

Use the  -recurse parameter to explicitly delete keys that have contents:

Del  "HKCU:\Software\First key"   -recurse

Setting, Changing, and Deleting Values of Keys

The registry editor distinguishes between keys and values in a well-structured way: keys are in the 

left column with values in the right. The keys correspond to directories in the file system, and values 

correspond to files in the directory. If you want to create a new key, use  md as you did above or, even better,  New-Item, and then use  New-Item and the  -itemType and  -value parameters to assign a default value to your new key. 

 New-Item HKCU:\Software\Testkey  -itemType  String  -value  "A test value"  | 

 Out-Null

Adding New Values

Unfortunately, the file system analogy won't help you if you want to add additional values to a key, 

because normally you would use  Set-Content to create new files inside a directory. But the registry provider is not the right tool:

 Set-Content HKCU:\Software\Testkey\Value1  "Contents" 

 Set-Content : Cannot use interface. The IcontentCmdletProvider 

 interface is not implemented by this provider. 

 At line:1 char:12

 + Set-Content  <<<< HKCU:\Software\Testkey\Value1 "Contents" 

Instead, use  Set-ItemProperty to add new values to a key:

 Set-ItemProperty HKCU:\Software\Testkey  -name  "Entry1"   -value  "123" 

The values that you add in this way are automatically registered as REG_SZ values in the registry, 

that is, as a string. If you want to use another data type, use  New-ItemProperty and the 

 -propertyType parameter. It accepts the types listed in Table 16.4:

 # Create Testkey if you haven't done so already:

 if ( ! ( Test-Path HKCU:\Software\Testkey)) { md HKCU:\Software\Testkey }

 New-ItemProperty HKCU:\Software\Testkey  -name  "Entry2"  `

 -value  "123"   -propertyType dword

 PSPath       : Microsoft.PowerShell.Core\Registry::

                HKEY_CURRENT_USER\Software\Testkey

 PSParentPath : Microsoft.PowerShell.Core\Registry::

                HKEY_CURRENT_USER\Software

Table of Contents | About PowerShell Plus

477

Sponsors | Resources | © BBS Technologies



 PSChildName  : Testkey

 PSDrive      : HKCU

 PSProvider   : Microsoft.PowerShell.Core\Registry

 Entry2       : 123

 New-ItemProperty HKCU:\Software\Testkey Entry3 `

 -value  "Windows is in %windir%"   -propertyType  string

 New-ItemProperty HKCU:\Software\Testkey Entry4 `

 -value  "Windows is in %windir%"   -propertyType expandstring

 New-ItemProperty HKCU:\Software\Testkey Entry5 `

 -value  "One" ,  "Two" ,  "Three"   -propertyType multistring New-ItemProperty HKCU:\Software\Testkey Entry6 `

 -value 1,2,3,4,5  -propertyType binary

 New-ItemProperty HKCU:\Software\Testkey Entry7 `

 -value 100  -propertyType dword

 New-ItemProperty HKCU:\Software\Testkey Entry8 `

 -value 100  -propertyType qword

The registry editor shows the result in Figure 16.3. 



Figure 16.3: Writing various data types in the registry

If you have the  Microsoft.Win32.Registry object of a key available, you can add and read out 

additional values easily by using the  SetValue() and  GetValue() methods. When you use  md or  New-Item to create a new key, this object is what you will get as a result, and all you have to do is to save it so that you can add additional values to it in the next step:

 # Creating key having several values:

 $key  = md HKCU:\Software\Test2

 $key.  SetValue( "Entry1" ,  "123" )

 $key.  SetValue( "Entry2" ,  "123" ,  "Dword" ) $key.  SetValue( "Entry3" ,  "%windir%" ,  "ExpandString" ) $key.  GetValue( "Entry3" )

 C:\Windows

Table of Contents | About PowerShell Plus

478

Sponsors | Resources | © BBS Technologies



The  SetValue() method works only for keys that you created again 

using  New-Item or  md because PowerShell will open only those 

keys that have write permissions. Existing keys that you get by 

using  Get-Item will be opened in read-only mode. You can't use 

 SetValue() to change values in this instance. Instead, use S et-

 ItemProperty(see below). 

Reading Values

Reading registry values is the only area in which the rules are not particularly clear. Normally, you 

would assume that values created using  Set-ItemProperty could be read using  Get-ItemProperty. 

Unfortunately, that's only partly true because when you use  Get-ItemProperty, PowerShell retrieves not only the value you're looking for but also an object with extraneous PowerShell properties:

 Get-ItemProperty HKCU:\Software\Testkey Entry3

 PSPath       : Microsoft.PowerShell.Core\Registry::

                HKEY_CURRENT_USER\Software\Testkey

 PSParentPath : Microsoft.PowerShell.Core\Registry::

                HKEY_CURRENT_USER\Software

 PSChildName  : Testkey

 PSDrive      : HKCU

 PSProvider   : Microsoft.PowerShell.Core\Registry

 Entry3       : Windows is in %windir%

You'll get the information you want only when you explicitly retrieve the right property from the 

object that That is,  Get-ItemProperty retrieves the name of the value that interests you. An 

incidental consequence is that the difference between the file types  REG_SZ and  REG_EXPAND_SZ 

becomes clear. 

( Get-ItemProperty HKCU:\Software\Testkey Entry3).  Entry3

 Windows is in %windir%

( Get-ItemProperty HKCU:\Software\Testkey Entry4).  Entry4

 Windows is in C:\Windows

Because  Entry3 was stored as a  REG_SZ value, you will get the precise string value that was stored there when you read it.  Entry4 is of the  REG_EXPAND_SZ type. Windows automatically resolves environment variables contained in the string when they are retrieved. That's why the Windows 

directory was retrieved, instead of the environment variable. 

Table of Contents | About PowerShell Plus

479

Sponsors | Resources | © BBS Technologies





Perhaps you're wondering why in the last examples the name of 

the value that you want to read out occurred twice:

( Get-ItemProperty HKCU:\Software\Testkey Entry3).  Entry3

In this example,  Get-ItemProperty retrieves the  Entry3 value. However, 

you've seen that what  Get-ItemProperty retrieves is an object that has 

several properties. You can enclose your invocation in parentheses so that 

your subexpression will be evaluated first since you're only interested in the 

 Entry3 value.,. Finally, get the property you want from the returned object, 

 Entry3. 

The following statement seems to do exactly that or at least it returns the 

same result:

( Get-ItemProperty HKCU:\Software\Testkey).  Entry3

Here, however, you should instruct  Get-ItemProperty to get all the values of 

the key, which will be far more than you'll actually need. 

Deleting Values

Use  Remove-ItemProperty to remove a value. The next instruction deletes the  Entry5 value that you created in the previous example:

 Remove-ItemProperty HKCU:\Software\Testkey Entry5

 Clear-ItemProperty deletes only the contents of a value, but not 

the value itself. 

Default Entry

The default entry of the key plays a special role. It is always shown in the right column under the 

name (default). But this entry is actually unnamed: it is the only value of a key that has no name. 

The default value of a key doesn't have to be defined. If the value isn't set, the registry editor will 

display "value not set." Normally, you would set a value when using  New-Item and the  -value parameter to create new keys. But you can also directly address the value by the name  (default):

 # Create an empty Testkey

md HKCU:\Software\Test3

 # Verify creation of the default value:

Table of Contents | About PowerShell Plus

480

Sponsors | Resources | © BBS Technologies



 Get-ItemProperty HKCU:\Software\Test3  "(default)" 

 Get-ItemProperty : Property (default) does not exist 

 at path HKEY_CURRENT_USER\Software\Test3. 

 At line:1 char:17

 + Get-ItemProperty  <<<< HKCU:\Software\Test3 "(default)" 

 # Create default value:

 New-ItemProperty HKCU:\Software\Test3  "(default)"   -value  "A value" 

 # Verify creation of the default value:

 Get-ItemProperty HKCU:\Software\Test3  "(default)" 

 PSPath       : Microsoft.PowerShell.Core\Registry::

                HKEY_CURRENT_USER\Software\Test3

 PSParentPath : Microsoft.PowerShell.Core\Registry::

                HKEY_CURRENT_USER\Software

 PSChildName  : Test3

 PSDrive      : HKCU

 PSProvider   : Microsoft.PowerShell.Core\Registry

 (default)    : A value

 # Read contents of the default value

( Get-ItemProperty HKCU:\Software\Test3  "(default)" ).  "(default)" 

 A value

 # Delete default value:

 # Owing to a PowerShell bug you can set the default value

 # to "empty" only. Remove-ItemProperty will not function here:

 Clear-ItemProperty HKCU:\Software\Test3  "(default)" 

Be sure to delete your test key in the registry asthe registry is no 

place to leave irrelevant entries behind:

Del HKCU:\Software\Testkey  -recurse

Del HKCU:\Software\Test2  -recurse

Del HKCU:\Software\Test3  -recurse

Example: Extending the Context Menu

Entries in the registry can have widely varying consequences. Among others, this is where Windows 

sets the entries for the Explorer context menu. In the next example, you will, as a test, add three 

new commands to the context menu for PowerShell scripts: "  Execute and Leave Open," "  Execute and Close," and "  Edit". 

Table of Contents | About PowerShell Plus

481

Sponsors | Resources | © BBS Technologies

Executing and Editing PowerShell Scripts

To do this, you have to know first how to launch PowerShell scripts outside the PowerShell console. 

It's easy. First, create a little example script:

Cd  $home

 # Create an example script

 '"Hello world!"'  |  Out-File  test.ps1

Inside the PowerShell console, invoke the script by typing its relative or absolute path:

.\ test.ps1

But how to invoke PowerShell scripts outside the PowerShell console? Start  powershell.exe and 

specify the  -NoExit option so that the console will stay open after the script has been processed, allowing you to see and evaluate the results of the script. After the  -Command parameter, specify 

the command line that PowerShell is supposed to execute. Enclose the path in single quotation 

marks and put the call operator in front of it because you don't know whether the path of the script 

contains blank characters. Put this command inside double quotation marks:

 powershell.exe  -NoExit  -Command  "& '.\test.ps1'" 

If you would like to edit a script, the command is much simpler: invoke the editor of your choice and 

pass the script to it:

 notepad.exe  ".\test.ps1" 

The context menu extension will be entered into the registry next. This requires administrator 

privileges:

 # Create shortcut for HKEY_CLASSES_ROOT:

 New-PSDrive  -Name HKCR  -PSProvider registry  -root HKEY_CLASSES_ROOT |  Out-Null

 # Find out key name that is assinged to the PS1 file:

 $keyname  = ( Get-ItemProperty HKCR:\.  ps1).  "(default)" 

 # Add three new commands:

 New-Item ( "HKCR:\$keyname\shell\execute1" )  -value `

 'Execute and Leave Open'   -type  String

 New-Item ( "HKCR:\$keyname\shell\execute1\command" )  -value `

 "powershell.exe -NoExit -Command `"&   '%L' ` ""   -type  String New-Item ( "HKCR:\$keyname\shell\execute2" )  -value `

 'Execute and Close'   -type  String

 New-Item ( "HKCR:\$keyname\shell\execute2\command" )  -value `

 "powershell.exe -Command `"&   '%L' ` ""   -type  String New-Item ( "HKCR:\$keyname\shell\editnotepad" )  -value `

 'Edit with Notepad'   -type  String

 New-Item ( "HKCR:\$keyname\shell\editnotepad\command" )  -value `

 'notepad.exe "%L"'   -type  String

 # Set icon

 # Delete if it already exists:

 if ( Test-Path ( "HKCR:\$keyname\DefaultIcon" )) { 

Del ( "HKCR:\$keyname\DefaultIcon" ) }

 $icon  =  '%windir%\System32\WindowsPowerShell\v1.0\powershell.exe,0' 

Table of Contents | About PowerShell Plus

482

Sponsors | Resources | © BBS Technologies

 New-Item ( "HKCR:\$keyname\DefaultIcon" )  -value  $icon  -type ExpandString Permissions in the Registry

In Chapter 15,  you learned in detail how to control permissions for files and directories. The same mechanisms also work in the registry as you could use  Get-Acl to show current permissions of a key: md HKCU:\Software\Testkey

 Get-Acl HKCU:\Software\Testkey

 Path                         Owner                          Access

 ----                         -----                          ------

 Microsoft.PowerShell.Core... TobiasWeltne-PC\Tobias Weltner TobiasWeltne-

 PC\Tobias Weltner A... 

Because you manage permissions exactly the way you do in the file system, you should take another 

look at Chapter 15 and review the basics before assigning new permissions to a registry key. 

The .NET classes that are required for permissions in the registry are a little different from the ones 

in the file system. Instead of a  FilesystemAccessRule, you will need a  RegistryAccessRule, and the fundamental difference between them is the diverging access rights that can be set in them. In a 

 RegistryAccessRule, permissions do not correpond to the  FilesystemRights enumeration, but to RegistryRights:

[ System.Enum]:: GetNames([ System.Security.AccessControl.RegistryRights])

 QueryValues

 SetValue

 CreateSubKey

 EnumerateSubKeys

 Notify

 CreateLink

 Delete

 ReadPermissions

 WriteKey

 ExecuteKey

 ReadKey

 ChangePermissions

 TakeOwnership

 FullControl

Taking Ownership

Make sure that you are the "owner" of the key before modifying key permissions as a test. Only if you are the owner you will be able to undo possible mistakes. This is how to take ownership of a 

registry key (to the extent that your permissions allow it):

 $acl  =  Get-Acl HKCU:\Software\Testkey

 $acl.  Owner

Table of Contents | About PowerShell Plus

483

Sponsors | Resources | © BBS Technologies



 scriptinternals\TobiasWeltner

 $me  = [ System.Security.Principal.NTAccount] "$env:userdomain\$env:username" 

 $acl.  SetOwner( $me)

Setting New Access Permissions

The next step is to assign new permissions to the key. The group "Everyone" is prohibited from 

making changes to this key:

 $acl  =  Get-Acl HKCU:\Software\Testkeys

 $person  = [ System.Security.Principal.NTAccount] "Everyone" 

 $access  = [ System.Security.AccessControl.RegistryRights] "WriteKey" 

 $inheritance  = [ System.Security.AccessControl.InheritanceFlags] "None" 

 $propagation  = [ System.Security.AccessControl.PropagationFlags] "None" 

 $type  = [ System.Security.AccessControl.AccessControlType] "Deny" 

 $rule  =  New-Object  System.Security.AccessControl.RegistryAccessRule( `

 $person,  $access,  $inheritance,  $propagation,  $type)

 $acl.  AddAccessRule( $rule)

 Set-Acl HKCU:\Software\Testkey  $acl

The modifications immediately go into effect.Try creating new subkeys in the registry editor or from 

within PowerShell to check and you'll get an error message:

md HKCU:\Software\Testkey\subkey

 New-Item : Requested registry access is not allowed. 

 At line:1 char:34

 + param([string[]]$paths); New-Item  <<<< -type directory -path $paths

If you're asking yourself why the restriction also applies to you 

because as administrator you're supposed to have full access: 

restrictions always have priority over permissions, and because 

everyone is a member of the  Everyone group, the restriction 

applies to you as well. 

Removing an Access Rule

The new rule for  Everyone was a complete waste of time and didn't stand the test. So, how do you 

go about removing a rule? You can use  RemoveAccessRule() to remove a particular rule, and 

 RemoveAccessRuleAll() to remove all rules of the same type (permission or restriction) for the user named in the specified rule.  ModifyAccessRule() changes an existing rule, and  PurgeAccessRules() removes all rules for a certain user. 

To remove the rule that was just inserted, proceed as follows:

Table of Contents | About PowerShell Plus

484

Sponsors | Resources | © BBS Technologies



 $acl  =  Get-Acl HKCU:\Software\Testkey

 $person  = [ System.Security.Principal.NTAccount] "Everyone" 

 $access  = [ System.Security.AccessControl.RegistryRights] "WriteKey" 

 $inheritance  = [ System.Security.AccessControl.InheritanceFlags] "None" 

 $propagation  = [ System.Security.AccessControl.PropagationFlags] "None" 

 $type  = [ System.Security.AccessControl.AccessControlType] "Deny" 

 $rule  =  New-Object  System.Security.AccessControl.RegistryAccessRule( `

 $person,  $access,  $inheritance,  $propagation,  $type)

 $acl.  RemoveAccessRule( $rule)

 Set-Acl HKCU:\Software\Testkey  $acl  -force

However, removing your access rule may not work the way you expect because you have now 

locked yourself out. Because you no longer have the right to modify the key, that also applies to 

changes to your security settings. You can correct the problem only if you take ownership of the key. 

If this occurs, open the registry editor, navigate to the key, and by right-clicking and then selecting 

 Permissions open the security dialog box and manually remove the entry for  Everyone. 

You've just seen how easy it is to lock yourself out. Be especially 

careful when you work with the  Everyone group, where, if at all 

possible, you should employ no restrictions because they often 

have far greater consequences than you would like. 

Controlling Access to Subkeys

In the next example, you can do things better and use rules not on restrictions but on permissions. 

In the following test key, only administrators are supposed to be able to modify the values of the 

key. However, all others, may read the key:

md HKCU:\Software\Testkey2

 $acl  =  Get-Acl HKCU:\Software\Testkey2

 # Admins may do everything:

 $person  = [ System.Security.Principal.NTAccount] "Administrators" 

 $access  = [ System.Security.AccessControl.RegistryRights] "FullControl" 

 $inheritance  = [ System.Security.AccessControl.InheritanceFlags] "None" 

 $propagation  = [ System.Security.AccessControl.PropagationFlags] "None" 

 $type  = [ System.Security.AccessControl.AccessControlType] "Allow" 

 $rule  =  New-Object  System.Security.AccessControl.RegistryAccessRule( `

 $person,  $access,  $inheritance,  $propagation,  $type)

 $acl.  ResetAccessRule( $rule)

 # Everyone may only read and create subkeys:

 $person  = [ System.Security.Principal.NTAccount] "Everyone" 

 $access  = [ System.Security.AccessControl.RegistryRights] "ReadKey" 

 $inheritance  = [ System.Security.AccessControl.InheritanceFlags] "None" 

 $propagation  = [ System.Security.AccessControl.PropagationFlags] "None" 

 $type  = [ System.Security.AccessControl.AccessControlType] "Allow" 

 $rule  =  New-Object  System.Security.AccessControl.RegistryAccessRule( `

 $person,  $access,  $inheritance,  $propagation,  $type)

 $acl.  ResetAccessRule( $rule)

Table of Contents | About PowerShell Plus

485

Sponsors | Resources | © BBS Technologies

 Set-Acl HKCU:\Software\Testkey2  $acl

Note that in this case the new rules were not entered by using  AddAccessRule() but by 

 ResetAccessRule(). This results in removal of all existing permissions for respective users. 

Nevertheless, the result still isn't right because normal users can still create subkeys in the key and 

write values:

md hkcu:\software\Testkey2\Subkey

 Hive: Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_USER\software\Testkey2

 SKC  VC Name                   Property

 ---  -- ----                   --------

   0   0 Subkey                 {}

 Set-ItemProperty HKCU:\Software\Testkey2 Value1  "Here is text" 

Revealing Inheritance

Look at the current permissions of the key: to determine why your permissions may not be working 

the way you planned:

( Get-Acl HKCU:\Software\Testkey2).  Access |  Format-Table  -wrap

 Registry Access  IdentityReference IsInhe  InheritanceFlags  Propagat

 Rights   Control                   rited                     ionFlags  

          Type

 -------- ------- ----------------- ------ -----------------  --------

  ReadKey   Allow Everyone           False              None      None

 FullCont   Allow BUILT-IN\          False              None      None

      rol         Administrators

 FullCont   Allow TobiasWeltner-PC\   True ContainerInherit,      None

      rol         Tobias Weltner               ObjectInherit

 FullCont   Allow NT AUTHORITY\       True ContainerInherit,      None

      rol         SYSTEM                       ObjectInherit

 FullCont   Allow BUILT-IN\           True ContainerInherit,      None

      rol         Administrators               ObjectInherit

  ReadKey   Allow NT AUTHORITY\       True ContainerInherit,      None

                  RESTRICTED ACCESS            ObjectInherit

The key includes many more permissions than what you assigned to it so it gets these additional 

permissions by inheritance from parent keys. If you want to turn off inheritance, use 

 SetAccessRuleProtection():

 $acl  =  Get-Acl HKCU:\Software\Testkey2

 $acl.  SetAccessRuleProtection( $true,  $false)

 Set-Acl HKCU:\Software\Testkey2  $acl

Now, when you look at the permissions, the key will contain only the permissions that you explicitly 

set so it no longer inherits any permissions from parent keys:

Table of Contents | About PowerShell Plus

486

Sponsors | Resources | © BBS Technologies

( Get-Acl HKCU:\Software\Testkey2).  Access |  Format-Table  -wrap Registry Access  IdentityReference IsInhe  InheritanceFlags  Propagat

 Rights   Control                   rited                     ionFlags  

          Type

 -------- ------- ----------------- ------ -----------------  --------

  ReadKey   Allow Everyone           False              None      None

 FullCont   Allow BUILT-IN\          False              None      None

      rol         Administrators

Controlling Your Own Inheritance

Inheritance is a sword that cuts both ways. You have just turned off the inheritance of permissions 

from parent keys, but what about your own inheritance permissions? Launch a PowerShell console 

with administrator privileges so that you can create additional subkeys for your protected key:

md HKCU:\Software\Testkey2\Subkey1

md HKCU:\Software\Testkey2\Subkey1\Subkey2

Then take a look at the permissions for these new subkeys:

( Get-Acl HKCU:\Software\Testkey2\Subkey1\Subkey2).  Access |  Format-Table  -wrap Registry Access  IdentityReference IsInhe  InheritanceFlags  Propagat

 Rights   Control                   rited                     ionFlags  

          Type

 -------- ------- ----------------- ------ -----------------  --------

 FullCont   Allow NT AUTHORITY\      False              None      None

      rol         SYSTEM

 FullCont   Allow BUILT-IN\          False              None      None

      rol         Administrators

 CreateLi   Allow S-1-5-5-0-344927   False              None      None

 nk, Read

 Key

The result doesn't correspond to the access permissions that you set. The reason: you specified 

 None as inheritance. If you want to pass on your permissions to subdirectories, change the setting: del HKCU:\Software\Testkey2

md HKCU:\Software\Testkey2

 $acl  =  Get-Acl HKCU:\Software\Testkey2

 # Admins may do anything:

 $person  = [ System.Security.Principal.NTAccount] "Administrators" 

 $access  = [ System.Security.AccessControl.RegistryRights] "FullControl" 

 $inheritance  = [ System.Security.AccessControl.InheritanceFlags]`

 "ObjectInherit,ContainerInherit" 

 $propagation  = [ System.Security.AccessControl.PropagationFlags] "None" 

 $type  = [ System.Security.AccessControl.AccessControlType] "Allow" 

 $rule  =  New-Object  System.Security.AccessControl.RegistryAccessRule( `

 $person,  $access,  $inheritance,  $propagation,  $type)

Table of Contents | About PowerShell Plus

487

Sponsors | Resources | © BBS Technologies

 $acl.  ResetAccessRule( $rule)

 # Everyone may only read and create subkeys:

 $person  = [ System.Security.Principal.NTAccount] "Everyone" 

 $access  = [ System.Security.AccessControl.RegistryRights] "ReadKey" 

 $inheritance  = [ System.Security.AccessControl.InheritanceFlags]`

 "ObjectInherit,ContainerInherit" 

 $propagation  = [ System.Security.AccessControl.PropagationFlags] "None" 

 $type  = [ System.Security.AccessControl.AccessControlType] "Allow" 

 $rule  =  New-Object  System.Security.AccessControl.RegistryAccessRule( `

 $person,  $access,  $inheritance,  $propagation,  $type)

 $acl.  ResetAccessRule( $rule)

 Set-Acl HKCU:\Software\Testkey2  $acl

Table of Contents | About PowerShell Plus

488

Sponsors | Resources | © BBS Technologies

CHAPTER 17. 

 Processes, Services, Event Logs

In your daily work as an administrator, you often have to deal with programs (processes), services, 

and innumerable entries in event logs so this is a good opportunity to put into practice the basic 

knowledge you gained from the first 12 chapters. The examples and topics covered in this chapter 

are meant to give you an idea of the full range of options. 

In the course of your reading, you will no doubt rack your brains occasionally and find yourself 

flipping back pages to the introductory chapters. What's really astonishing are the many and diverse 

options you have in using the PowerShell pipeline (as discussed in Chapter 5) and associated formatting cmdlets to wring out every last bit of data from pipeline objects. What was just dry 

theory in Chapter 5 will now become very interesting in the following. 

Topics Covered:

•

P

  rocesses  

•

S

  tarting Processes  

•

M

  onitoring Processes  

•

F iltering and Clearly Displaying Processes  

•

C

  ounting Processes  

•

A

  ccessing Process Objects  

•

S

  topping Processes  

•

S

  ervices  

•

T

  able 17.1: Cmdlets for managing services  

•

L isting Services  

•

S

  tarting, Stopping, Suspending, Resuming Services  

•

F igure 17.1: Use the services snap-in to check your modifications  

•

E

  vent Log  

•

F igure 17.2: Picking out PowerShell events and exporting them to Excel  

•

W

  riting Entries to the Event Log  

•

F igure 17.3: Events you make may look a little strange  

Processes

Processes are basically running programs as most routine tasks can be mastered using the cmdlets 

 Get-Process and  Stop-Process. In addition, processes can also be controlled directly by the objects and methods of the .NET framework. 

Starting Processes

Starting processes is inherent in the console. You can launch any executable program in a directory 

named in the PATH environment variable simply by typing its name:

notepad

regedit

Table of Contents | About PowerShell Plus

489

Sponsors | Resources | © BBS Technologies

explorer . 

But note how PowerShell loses control over Windows applications. After applications start, they are 

left to their own devices since PowerShell can't directly access these processes once they've started. 

Direct control of a process is only possible if you start the process using the  Start() .NET method, which enables you to check whether a process still responds or is terminated. You can also force a 

process to stop running:

 $process  = [ System.Diagnostics.Process]:: Start( "notepad" ) $process.  Responding

 True

 $process.  HasExited

 False

 $process.  Kill()

You can even use  WaitForExit() to get PowerShell to wait until the process exits, which comes in 

handy inside PowerShell scripts when you want to make sure that a process has completed its task 

before you go on to the next step:

 $process  = [ System.Diagnostics.Process]:: Start( "notepad" ) $process.  WaitForExit()

Monitoring Processes

 Get-Process retrieves all running processes. What applies here applies in general to PowerShell: the cmdlet retrieves  Process objects as result, not text. Text will appear only if you output the result of Get-Process to the console:

 # Output all processes beginning with "P":

 Get-Process p *

 Handles  NPM(K)  PM(K)  WS(K)  VM(M)  CPU(s)    Id ProcessName

 -------  ------  -----  -----  -----  ------    -- -----------

     377       8  21224  13344    167    1,84  7144 powershell

     184       7  10328   9528     85    2,28  5652 PSDrt

Each  Process object contains more information than is displayed in the console. To view all 

properties, send the result to a formatting cmdlet like  Format-List and append with an asterisk:

 Get-Process powershell |  Format-List  *

 __NounName                 : Process

 Name                       : powershell

 Handles                    : 377

 VM                         : 175292416

 WS                         : 13664256

Table of Contents | About PowerShell Plus

490

Sponsors | Resources | © BBS Technologies

 PM                         : 21733376

 NPM                        : 8268

 Path                       : C:\WINDOWS\system32\WindowsPowerShell\

                              v1.0\powershell.exe

 Company                    : Microsoft Corporation

 CPU                        : 1,8408118

 FileVersion                : 6.0.6000.16386 (winmain(wmbla).070112-1312)

 ProductVersion             : 6.0.6000.16386

 Description                : PowerShell.EXE

 Product                    : Microsoft® Windows® PowerShell

 Id                         : 7144

 PriorityClass              : Normal

 HandleCount                : 377

 WorkingSet                 : 13664256

 PagedMemorySize            : 21733376

 PrivateMemorySize          : 21733376

 VirtualMemorySize          : 175292416

 TotalProcessorTime         : 00:00:01.8408118

 BasePriority               : 8

 ExitCode                   :

 HasExited                  : False

 ExitTime                   :

 Handle                     : 1648

 MachineName                : . 

 MainWindowHandle           : 1774772

 MainWindowTitle            : Windows PowerShell

 MainModule                 : System.Diagnostics.ProcessModule 

                              (powershell.exe)

 MaxWorkingSet              : 1413120

 MinWorkingSet              : 204800

 Modules                    : {powershell.exe, ntdll.dll, kernel32.dll, 

                              ADVAPI32.dll...}

 NonpagedSystemMemorySize   : 8268

 NonpagedSystemMemorySize64 : 8268

 PagedMemorySize64          : 21733376

 PagedSystemMemorySize      : 137688

 PagedSystemMemorySize64    : 137688

 PeakPagedMemorySize        : 43565056

 PeakPagedMemorySize64      : 43565056

 PeakWorkingSet             : 32870400

 PeakWorkingSet64           : 32870400

 PeakVirtualMemorySize      : 195878912

 PeakVirtualMemorySize64    : 195878912

 PriorityBoostEnabled       : True

 PrivateMemorySize64        : 21733376

 PrivilegedProcessorTime    : 00:00:00.5928038

 ProcessName                : powershell

 ProcessorAffinity          : 3

 Responding                 : True

 SessionId                  : 1

 StartInfo                  : System.Diagnostics.ProcessStartInfo

 StartTime                  : 16.10.2007 13:32:55

 SynchronizingObject        :

Table of Contents | About PowerShell Plus

491

Sponsors | Resources | © BBS Technologies

 Threads                    : {6584, 6816, 7032, 6412}

 UserProcessorTime          : 00:00:01.2480080

 VirtualMemorySize64        : 175292416

 EnableRaisingEvents        : False

 StandardInput              :

 StandardOutput             :

 StandardError              :

 WorkingSet64               : 13664256

 Site                       :

 Container                  :

Filtering and Clearly Displaying Processes

As described in Chapter 5,  you can use pipeline filters to work on lists of processes. If you were only interested in processes that have been running for less than three hours, you could find them like 

this:

 Get-Process |  Where-Object {  $_.  StartTime  -gt `

( Get-Date).  AddMinutes( - 180) } |  Format-Table

 Handles  NPM(K)  PM(K)   WS(K)  VM(M)  CPU(s)    Id  ProcessName

 -------  ------  -----   -----  -----  ------    --  -----------

     671      75  50944   41392    316   13,96  4408  devenv

     571      29  60180   40824    213   71,09  8076  iexplore

      51       3   1248    5468     56    0,19  5932  notepad

     411      17  69892   54936    291   27,42  7224  PowerShellPlus.vshost

     110       3   3072    5320     54    0,06  1508  SearchFilterHost

     303       6   5136    8668     69    0,09  7096  SearchProtocolHost

     844      35  50480  107004    381  141,02  6460  WINWORD

If you want start times displayed, append the property you seek to  Format-Table. As shown in 

Chapter 5,  the next statement adds a new  Minutes column that calculates the elapsed time in minutes since a program began running:

 Get-Process |  Where-Object {  $_.  StartTime  -gt ( Get-Date).  AddMinutes( - 180) } | 

 Format-Table Name, Id, StartTime, @{expression ={ [ int]( New-TimeSpan `

 $_.  StartTime ( get-date) ).  TotalMinutes }; label ="Minutes"  }  -autosize Name                    Id StartTime           Minutes

 ----                    -- ---------           -------

 devenv                4408 10.16.2007 16:06:42     129

 iexplore              8076 10.16.2007 16:15:48     119

 notepad               5932 10.16.2007 17:35:16      40

 PowerShellPlus.vshost 7224 10.16.2007 16:32:26     103

 SearchFilterHost      4584 10.16.2007 18:14:21       1

 SearchProtocolHost    7884 10.16.2007 18:14:21       1

 taskeng               2864 10.16.2007 18:11:55       3

 WINWORD               6460 10.16.2007 17:29:01      46

Table of Contents | About PowerShell Plus

492

Sponsors | Resources | © BBS Technologies



Use the option described in Chapter 5: with  Format-Table or  Format-List to output calculated columns. This allows you to select from 

current properties of a  Process object, as well as properties of child 

objects, and you can also obtain or calculate entirely new data. 

In the following example,  Get-Process returns for each process not only its name 

but also the directory from which the process was started, as well as a 

description of the process. The start directory is a property of a child object in 

 MainModule. The static .NET method  GetVersionInfo() will obtain a description of 

the process if it is given the path of the process. That can be found in the  Path 

property:

 Get-Process |  Format-Table Name, @{ex ={  $_.  MainModule.FileName }; la ="StartDirectory" }, 

@{ex ={([ system.diagnostics.fileversioninfo]::`

GetVersionInfo( $_.  Path)).  FileDescription}; la ="Description" }  -wrap Name           StartDirectory             Description

 ----           -----------                ------------

 agrsmsvc       C:\Windows\system32\       Agere Soft Modem Call 

                agrsmsvc.exe               Progress Service

 AppSvc32       C:\Program Files\Common    Symantec Application 

                Files\Symantec Shared\App  Core Service

                Core\AppSvc32.exe

 Ati2evxx       C:\Windows\system32\       ATI External Event 

                Ati2evxx.exe               Utility EXE Module

 ATSwpNav       C:\Program Files\Finger    ATSwpNav Application

                print Sensor\ATSwpNav

                .exe

 BatteryMiser5  C:\Program Files\LG        Battery Miser

                Software\Battery Miser\

                BatteryMiser5.exe

 ccApp          C:\Program Files\Common    Symantec User Session

                Files\Symantec Shared\

                ccApp.exe

 (...)

Counting Processes

Processes can be counted rather easily because the result of  Get-Process is (nearly) always an array, which comes with the  Count property.  Get-Process won't necessarily return the result as an array; only if the result is a single process or no process at all. That's why you should always first convert 

the result into an array before you determine the number of array elements:

 # Determine the number of notepads:

@( Get-Process notepad).  Count

1

Table of Contents | About PowerShell Plus

493

Sponsors | Resources | © BBS Technologies



Another sort of "measurement" is carried out by  Measure-Object. It makes a statistical evaluation of a particular object property. For example, if you wanted to know what the minimum, maximum, and 

average values of the  PagedSystemMemorySize property are, proceed as follows:

 Get-Process |  Measure-Object  -Average  -Maximum `

 -Minimum  -Property PagedSystemMemorySize

 Count    : 112

 Average  : 86227,2857142857

 Sum      :

 Maximum  : 369472

 Minimum  : 0

 Property : PagedSystemMemorySize

Accessing Process Objects

Each  Process object contains methods and properties. As discussed in detail in Chapter 6,  many properties may be read as well as modified, and methods can be executed like commands. This 

allows you to control many fine settings of processes. For example, you can specifically raise or 

lower the priority of a process. The next statement lowers the priority of all Notepads:

 Get-Process notepad | 

 ForEach-Object {  $_.  PriorityClass  =  "BelowNormal"  }

Stopping Processes

You can use  Stop-Process to stop running processes, but that can be risky because PowerShell 

makes it so very easy to do. The following statement closes all opened Notepads and does so 

without asking for confirmation—even when the Notepads contain unsaved text:

 Stop-Process  -name Notepad

However, a small safety measure is integrated that forces you to specify the  -name parameter. The 

standard parameter that you can use even without a parameter name is for  Stop-Process the 

process ID. 

Use the  -whatif option for  Stop-Process to check in advance what 

the command would do. Use  -confirm when you want to have each 

step confirmed to avoid risks. 

Table of Contents | About PowerShell Plus

494

Sponsors | Resources | © BBS Technologies

Services

Services are special programs, which are executed unsupervised and require no interactive logon 

session. Services provide functions usually not linked to any individual user. You should use the 

following PowerShell cmdlets to manage services:

Cmdlet

Description

 Get-Service

Lists services

 New-Service

Registers a service

 Restart-

Stops a service and then restarts it. For example, to allow 

 Service

modifications of settings to take effect

 Resume-

Resumes a stopped service

 Service

 Set-Service

Modifies settings of a service

 Start-Service  Starts a service

 Stop-Service

Stops a service

 Suspend-

Suspends a service

 Service

Table 17.1: Cmdlets for managing services

Listing Services

 Get-Service works like  Get-Process and  Get-ChildItem: it returns service objects that meet your criterion. All services will be listed if you don't specify any criterion. Use  Where-Object in the pipeline if you want to filter the result:

 # List all services beginning with "A":

 Get-Service a *

 # Only running services beginning with "A":

 Get-Service a * |  Where-Object {  $_.  status  -eq  'Running'  }

 Status   Name               DisplayName

Table of Contents | About PowerShell Plus

495

Sponsors | Resources | © BBS Technologies





 ------   ----               -----------

 Running  AeLookupSvc        Application Experience Lookup

 Running  AgereModemAudio    Agere Modem Call Progress Audio

 Running  Appinfo            Application information

 Running  Ati External Ev... Ati External Event Utility

 Running  AudioEndpointBu... Windows Audio Endpoint Builder

 Running  Audiosrv           Windows Audio

Starting, Stopping, Suspending, Resuming Services

To start, stop, temporarily suspend, or restart a service, all you have to do is to clearly identify the 

service.  Get-Service will retrieve the service for you, which you can then pass on to one of the other cmdlets listed in Table 17.1. 

Most services perform important tasks. Be cautious when you stop 

or start services. Pick out a harmless service, and if you're not sure 

whether a service is harmless, it's wiser not to experiment. 

For example, the following statement stops the service called  Parental Controls on Windows Vista. Of course, this will only work if you have administrator rights (and the service has to be running as 

well):

 Get-Service |  Where-Object {  $_.  DisplayName  -eq `

 'Parental Controls'  } |  Stop-Service

 Stop-Service : Service "Parental Controls (WPCSvc)" 

 cannot be stopped due to the following error: Cannot 

 stop WPCSvc service on computer '.'. 

 At line:1 char:79

 + Get-Service | Where-Object { $_.DisplayName -eq 

 'Parental Controls' } | Stop-Service <<<< 

Use the  DisplayName property if you want to identify a service by 

its language-localized name. Be absolutely sure that the service 

name is enclosed in single and not double quotation marks, 

because some service names include the "$" character. If the 

character is in text wrapped in double quotation marks, PowerShell 

will automatically recognize it as identifying a variable and remove it. Start it 

if you want to track the consequences of your Windows services snap-in 

modifications:

 services.msc

But don't forget to refresh your display because it lags behind and will not 

display your current changes. 

Table of Contents | About PowerShell Plus

496

Sponsors | Resources | © BBS Technologies





Figure 17.1: Use the services snap-in to check your modifications

Event Log

Windows makes records of all malfunctions, warnings, and other information in its event logs. You 

can use the  Get-Eventlog cmdlet to access log entries. That's a prudent thing to do because event 

logs are jam-packed with information, and PowerShell is absolutely the right tool to extract the 

important information they contain. 

Use the  -list parameter to find out what event logs are on your system. The  Entries column should already give you a rough idea of how much information is being collected in some of your event 

logs:

 Get-EventLog  -List

   Max(K) Retain OverflowAction        Entries Name

   ------ ------ --------------        ------- ----

      512      7 OverwriteOlder            659 ACEEventLog

   20,480      0 OverwriteAsNeeded      21,032 Application

   15,168      0 OverwriteAsNeeded           0 DFS Replication

   20,480      0 OverwriteAsNeeded           0 Microsoft-Windows-

                                               Forwarding/Operational

      512      7 OverwriteOlder              0 Internet Explorer

      512      7 OverwriteOlder              0 Key Management Service

    8,192      0 OverwriteAsNeeded           0 Media Center

   16,384      0 OverwriteAsNeeded           8 Microsoft Office 

Table of Contents | About PowerShell Plus

497

Sponsors | Resources | © BBS Technologies

                                               Diagnostics

   16,384      0 OverwriteAsNeeded         524 Microsoft Office 

                                               Sessions

   20,480      0 OverwriteAsNeeded      61,829 System

   15,360      0 OverwriteAsNeeded      18,465 Windows PowerShell

If you wanted to get a display of all the entries in the  System log, you would no doubt agree that there's just too much information to be helpful:

 Get-EventLog System

 Index Time          Type Source       EventID Message

 ----- ----          ---- ------       ------- -------

 ...81 Oct 16 19:02  Info Service ...  7036 The description for... 

 ...80 Oct 16 18:59  Info Service ...  7036 The description for... 

 ...79 Oct 16 18:59  Info Tcpip        4201 Network adapter "wi... 

 ...78 Oct 16 18:59  Info Tcpip        4201 Network adapter "wi... 

 ...77 Oct 16 18:59  Info Dhcp         1103 Network address was... 

 ...76 Oct 16 18:59  Info BROWSER      8033 Search service has ... 

 ...75 Oct 16 18:45  Info Service ...  7036 The description for... 

 ...74 Oct 16 18:29  Info Service ...  7036 The description for... 

 ...73 Oct 16 18:29  Info Tcpip        4201 Network adapter "wi... 

That's why you should use the PowerShell filters. Use Where -Object to pass the information 

retrieved by  Get-Eventlog through the pipeline while allowing only those entries through that meet your criteria. The next statement reads only those events from the PowerShell event log that match 

the type, "Information", and have today's date. To do so, PowerShell compares the contents of the TimeWritten property with today's date. Since only the date, and not the time, are supposed to be 

compared, PowerShell compares the result of  Date(), a method of the  DateTime type that sets the time to zero. 

 Get-Eventlog  "Windows PowerShell"  | 

 Where-Object { $_.  EntryType  -eq  "Information" } | 

 Where-Object {( $_.  TimeWritten).  Date  -eq ( Get-Date).  Date}

 Index Time          Type Source      EventID Message

 ----- ----          ---- ------      ------- -------

 60339 Oct 16 16:32  Info PowerShell      400 Engine state is cha... 

 60338 Oct 16 16:32  Info PowerShell      600 Provider "Certifica... 

 60337 Oct 16 16:32  Info PowerShell      600 Provider "Variable"... 

 60336 Oct 16 16:32  Info PowerShell      600 Provider "Registry"... 

 60335 Oct 16 16:32  Info PowerShell      600 Provider "Function"... 

 60334 Oct 16 16:32  Info PowerShell      600 Provider "FileSyste... 

 60333 Oct 16 16:32  Info PowerShell      600 Provider "Environme... 

 60332 Oct 16 16:32  Info PowerShell      600 Provider "Alias" is... 

 60331 Oct 16 16:27  Info PowerShell      400 Engine state is cha... 

 60330 Oct 16 16:27  Info PowerShell      600 Provider "Certifica... 

 60329 Oct 16 16:27  Info PowerShell      600 Provider "Variable"... 

 (...)

Table of Contents | About PowerShell Plus

498

Sponsors | Resources | © BBS Technologies





Access to the event logs is easy, but it's a more difficult matter to find your way around the 

information in the logs and to create the right filters to extract the right information. However, once 

you have mastered that, you can process information in Excel by using  Export-Csv:

 Get-Eventlog  "System"  | 

 Where-Object { $_.  EntryType  -eq  "Warning" } | 

 Where-Object {( $_.  TimeWritten).  Date  -eq ( Get-Date).  Date} | 

 Select-Object EventID, Message | 

 Export-Csv  report2.csv

.\ report2.csv



Figure 17.2: Picking out PowerShell events and exporting them to Excel

For PowerShell, filtering event logs takes place mostly on the client 

side, so access is slow and ineffective. In the case of huge event 

logs, all their results have to pass through the PowerShell pipeline. 

The Windows Management Instrumentation (WMI) service, which 

you will use in another chapter, is better at managing event logs 

since it filters events on the server side. 

Writing Entries to the Event Log

PowerShell officially supports only the reading of events. However, since you can always resort to 

the methods of the .NET framework, making your own entries is no problem:

[ Diagnostics.EventLog]:: WriteEntry( "Application" ,  "PS Script started" ,  "Warning" ) The Event Viewer shows you that it was successful:

 eventvwr.msc

Table of Contents | About PowerShell Plus

499

Sponsors | Resources | © BBS Technologies





Figure 17.3: Events you make may look a little strange

What happened here is that the event you made was properly written, but because you aren't known 

as an event log source, the event display is hard to understand. 

Table of Contents | About PowerShell Plus

500

Sponsors | Resources | © BBS Technologies

CHAPTER 18. 

 WMI: Windows Management 

 Instrumentation

It might have escaped your attention, but the Windows Management Instrumentation (WMI) service 

introduced with Windows 2000 has been part of every Windows version since then. The WMI service 

is important because it can retrieve information about nearly every aspect of your system and can 

even make some modifications. However, it would be beyond the scope of this book to go into WMI 

in greater depth because that alone could fill another volume. For this reason, we will focus on how 

the WMI service basically works and how PowerShell handles it. 

Topics Covered:

•

W

  MI Classes and Instances  

•

In

  stances of a Class  

•

Di

  splaying All Properties  

•

F iltering Out PowerShell Properties  

•

S

  electing Particular Instances  

•

Di

  rectly Accessing Instances  

•

M

  odifying Properties  

•

V

  iewing Class Descriptions  

•

In

  voking WMI Methods  

•

In

  stance-based Methods  

•

L isting Methods  

•

S

  tatic Methods  

•

H

  elp with Classes and Methods  

•

F igure 18.1: WMI classes and their methods are documented in detail on the Internet  

•

W

  MI Events  

•

R

  emote Access and Namespaces  

•

A

  ccessing WMI Objects on another Computer  

•

N

  amespaces: WMI Extensions  

•

W

  MI and the Extended Type System  

•

C

  onverting the WMI Date Format  

•

A

  dding On a Type Converter  

WMI Classes and Instances

WMI represents the insides of your computer in the form of classes. WMI provides classes for nearly 

everything: processor, BIOS, memory, user accounts, services, etc. The name of a class usually 

consists of the "Win32" prefix and the English-language name of what that class is meant to 

describe. For example, the  Win32_Service describes services. 

Table of Contents | About PowerShell Plus

501

Sponsors | Resources | © BBS Technologies



Instances of a Class

If you already know the name of a WMI class,  Get-WmiObject will retrieve all instances of the class for you:

 Get-WmiObject Win32_BIOS

 SMBIOSBIOSVersion : RKYWSF21

 Manufacturer      : Phoenix Technologies LTD

 Name              : Phoenix TrustedCore(tm) NB Release SP1 1.0

 SerialNumber      : 701KIXB007922

 Version           : PTLTD  - 6040000

If you can't remember the name of a WMI class, use the  -list parameter:

 Get-WmiObject  -list

 (...)

 Win32_HeatPipe            CIM_Refrigeration

 Win32_Refrigeration       CIM_Fan

 Win32_Fan                 CIM_Printer

 Win32_Printer             CIM_Controller

 CIM_ManagementController  CIM_SCSIController

 Win32_SCSIController      CIM_InfraredController

 Win32_InfraredDevice      CIM_PCIController

 (...)

You'll then get a list of all the WMI classes of the current namespaces. The 

list can be very long. The class names don't all begin with "Win32_". Classes 

that begin with an underline character are designated for internal purposes 

and would seldom be useful to you. Classes that begin with "CIM" are 

usually basic classes. Specialized classes derived from these begin with 

"Win32" and are more appropriate. So, if you're looking for a particular class, focus on 

class names that begin with "Win32". Here's a simple way to find all WMI classes that 

have anything to do with the subject of "printing":

 Get-WmiObject  -list |  Select-String  -InputObject {  $_.  Name } 

Win32_Print *

 Win32_PrinterConfiguration

 Win32_PrinterSetting

 Win32_PrintJob

 Win32_Printer

 Win32_PrinterDriver

 Win32_PrinterShare

 Win32_PrinterDriverDll

 Win32_PrinterController

Table of Contents | About PowerShell Plus

502

Sponsors | Resources | © BBS Technologies

Displaying All Properties

Often, only the most important properties of instances are displayed. You may remember the reason 

why from Chapter 5 and only if you want to display all properties. Specify one of the formatting cmdlets with an asterisk:

 Get-WmiObject Win32_BIOS |  Format-List  *

 Status                : OK

 Name                  : Phoenix TrustedCore(tm) NB Release SP1 1.0

 Caption               : Phoenix TrustedCore(tm) NB Release SP1 1.0

 SMBIOSPresent         : True

 __GENUS               : 2

 __CLASS               : Win32_BIOS

 __SUPERCLASS          : CIM_BIOSElement

 __DYNASTY             : CIM_ManagedSystemElement

 __RELPATH             : Win32_BIOS.Name="Phoenix TrustedCore(tm) NB 

                         Release SP1 1.0",SoftwareElementID="Phoenix 

                         TrustedCore(tm) NB Release SP1 1.0",Software

                         ElementState=3,TargetOperatingSystem=0,Versi

                         on="PTLTD  - 6040000" 

 __PROPERTY_COUNT      : 27

 __DERIVATION          : {CIM_BIOSElement, CIM_SoftwareElement, CIM_L

                         ogicalElement, CIM_ManagedSystemElement}

 __SERVER              : JSMITH-PC

 __NAMESPACE           : root\cimv2

 __PATH                : \\JSMITH-PC\root\cimv2:Win32_BIOS.Name="Phoen

                         ix TrustedCore(tm) NB Release SP1 1.0",Softwa

                         reElementID="Phoenix TrustedCore(tm) NB Relea

                         se SP1 1.0",SoftwareElementState=3,TargetOper

                         atingSystem=0,Version="PTLTD  - 6040000" 

 BiosCharacteristics   : {4, 7, 8, 9...}

 BIOSVersion           : {PTLTD  - 6040000, Phoenix TrustedCore(tm) NB 

                         Release SP1 1.0, Ver 1.00PARTTBL}

 BuildNumber           :

 CodeSet               :

 CurrentLanguage       :

 Description           : Phoenix TrustedCore(tm) NB Release SP1 1.0

 IdentificationCode    :

 InstallableLanguages  :

 InstallDate           :

 LanguageEdition       :

 ListOfLanguages       :

 Manufacturer          : Phoenix Technologies LTD

 OtherTargetOS         :

 PrimaryBIOS           : True

 ReleaseDate           : 20061110000000.000000+000

 SerialNumber          : 701KIXB007922

 SMBIOSBIOSVersion     : RKYWSF21

 SMBIOSMajorVersion    : 2

 SMBIOSMinorVersion    : 4

 SoftwareElementID     : Phoenix TrustedCore(tm) NB Release SP1 1.0

Table of Contents | About PowerShell Plus

503

Sponsors | Resources | © BBS Technologies

 SoftwareElementState  : 3

 TargetOperatingSystem : 0

 Version               : PTLTD  - 6040000

Filtering Out PowerShell Properties

PowerShell binds to every WMI object a number of properties that begin with a double underline 

character but aren't actually part of the object. PowerShell uses these additional properties to 

manage WMI objects, something that will become very important a little later on in connection with 

the PowerShell  Extended Type System. You can filter out any additional properties that distract you: Get-WmiObject Win32_BIOS |  Format-List [ a-z] *

Now only those properties will be displayed that begin with a letter. 

Selecting Particular Instances

It's seldom that you'll find a real use for all instances of a class. That's why you should use filters. 

The simplest (and slowest) filter is PowerShell itself. By using  Where-Object, you can make sure that only those instances that have certain properties will be listed, such as all processes that have a 

specific name:

 Get-WmiObject Win32_Process | 

 Where-Object {  $_.  Name  -eq  'powershell.exe'  }

It would be more efficient to pass this filter directly to WMI so that WMI will return only the 

instances you wanted right from the outset. To do so, use the  -filter parameter. The filter that you specify with this parameter is not in PowerShell code but in the WMI query language (WQL), which in 

turn borrows a great deal from the SQL database query language. 

 Get-WmiObject Win32_Process  -filter  'name = "powershell.exe"' 

In addition, you can use the  -query parameter if you would like to choose which properties of the 

instance should be returned by WMI. The next line returns the  Caption and  Commandline properties for all processes beginning with the letter "  p":

 Get-WmiObject  -query `

 'select caption,commandline from Win32_Process where name like "p%"' 

The result is hard to understand because PowerShell supplements every WMI object with additional 

internal properties. For this reason, pass it to  Format-Table and specify the properties that you want to make visible:

 Get-WmiObject  -query `

 'select caption,commandline from Win32_Process where name like "p%"'  | 

 Format-Table [ a-z] *  -wrap

 Caption  CommandL Scope    Options  ClassPa Propert SystemP Qualifi

          ine                        th      ies     roperti ers    

Table of Contents | About PowerShell Plus

504

Sponsors | Resources | © BBS Technologies



                                                     es

 -------  -------- -----    -------  ------- ------- ------- -------

 PowerShe "C:\Prog System.M System.M Win32_P {Captio {__GENU {dynami

 llPlus.e ram File anagemen anagemen rocess  n, Comm S, __CL c, Loca

 xe       s\Idera\ t.Manage t.Object         andLine ASS, __ le, pro

          PowerShe mentScop GetOptio         }       SUPERCL vider, 

          llPlus\p e        ns                       ASS, __ UUID}

          owershel                                   DYNASTY

          lplus.ex                                   ...}

          e" 

PowerShell supports the  [WmiSearcher] type accelerator, which 

you can use to achieve basically the same thing you just did with 

the  -query parameter:

 $searcher  = [ WmiSearcher] "select caption,commandline from `

 Win32_Process where name like 'p%'" 

 $searcher.  Get() |  Format-Table [ a-z] *  -wrap

Directly Accessing Instances

Every WMI instance has its own unique path. This path is important if you want to access a 

particular instance directly. The path of a WMI object is located in the  __PATH property. First get a display of this property if you want to find out how the path of a specific object is structured:

 Get-WmiObject Win32_Service |  ForEach-Object {  $_.__PATH }

 \\JSMITH-PC\root\cimv2:Win32_Service.Name="AeLookupSvc" 

 \\JSMITH-PC\root\cimv2:Win32_Service.Name="AgereModemAudio" 

 \\JSMITH-PC\root\cimv2:Win32_Service.Name="ALG" 

 \\JSMITH-PC\root\cimv2:Win32_Service.Name="Appinfo" 

 \\JSMITH-PC\root\cimv2:Win32_Service.Name="AppMgmt" 

 \\JSMITH-PC\root\cimv2:Win32_Service.Name="Ati External Event Utility" 

 \\JSMITH-PC\root\cimv2:Win32_Service.Name="AudioEndpointBuilder" 

 \\JSMITH-PC\root\cimv2:Win32_Service.Name="Audiosrv" 

 \\JSMITH-PC\root\cimv2:Win32_Service.Name="Automatic LiveUpdate - Scheduler" 

 \\JSMITH-PC\root\cimv2:Win32_Service.Name="BFE" 

 \\JSMITH-PC\root\cimv2:Win32_Service.Name="BITS" 

 \\JSMITH-PC\root\cimv2:Win32_Service.Name="Browser" 

 (...)

The path consists basically of the class name as well as one or more key properties. For services, the 

key property is  Name and is the English-language name of the service. If you want to work directly with a particular service through WMI, specify its path and do a type conversion. Use either the 

 [wmi] type accelerator or the underlying  [System.Management.ManagementObject] .NET type:

[ wmi] "Win32_Service.Name='Fax'" 

Table of Contents | About PowerShell Plus

505

Sponsors | Resources | © BBS Technologies

 ExitCode  : 1077

 Name      : Fax

 ProcessId : 0

 StartMode : Manual

 State     : Stopped

 Status    : OK

In fact, you don't necessarily need to specify the name of the key property as long as you at least 

specify its value. This way, you'll find all the properties of a specific WMI instance right away. 

 $disk  = [ wmi] 'Win32_LogicalDisk="C:"' 

 $disk.  FreeSpace

 10181373952

[ int]( $disk.  FreeSpace  / 1MB)

 9710

 $disk |  Format-List [ a-z] *

 Status                       :

 Availability                 :

 DeviceID                     : C:

 StatusInfo                   :

 Access                       : 0

 BlockSize                    :

 Caption                      : C:

 Compressed                   : False

 ConfigManagerErrorCode       :

 ConfigManagerUserConfig      :

 CreationClassName            : Win32_LogicalDisk

 Description                  : Local hard drive

 DriveType                    : 3

 ErrorCleared                 :

 ErrorDescription             :

 ErrorMethodology             :

 FileSystem                   : NTFS

 FreeSpace                    : 10181373952

 InstallDate                  :

 LastErrorCode                :

 MaximumComponentLength       : 255

 MediaType                    : 12

 Name                         : C:

 NumberOfBlocks               :

 PNPDeviceID                  :

 PowerManagementCapabilities  :

 PowerManagementSupported     :

 ProviderName                 :

 Purpose                      :

 QuotasDisabled               :

 QuotasIncomplete             :

Table of Contents | About PowerShell Plus

506

Sponsors | Resources | © BBS Technologies

 QuotasRebuilding             :

 Size                         : 100944637952

 SupportsDiskQuotas           : False

 SupportsFileBasedCompression : True

 SystemCreationClassName      : Win32_ComputerSystem

 SystemName                   : JSMITH-PC

 VolumeDirty                  :

 VolumeName                   :

 VolumeSerialNumber           : AC039C05

Modifying Properties

Most of the properties that you find in WMI objects are read-only. There are few, though, that can 

be modified. For example, if you want to change the description of a drive, add new text to the 

 VolumeName property of the drive:

 $drive  = [ wmi] "Win32_logicaldisk='C:'" 

 $drive.  VolumeName  =  "My Harddrive" 

 $drive.  Put()

 Path          : \\.\root\cimv2:Win32_LogicalDisk.DeviceID="C:" 

 RelativePath  : Win32_LogicalDisk.DeviceID="C:" 

 Server        : . 

 NamespacePath : root\cimv2

 ClassName     : Win32_LogicalDisk

 IsClass       : False

 IsInstance    : True

 IsSingleton   : False

Three conditions must be met before you can modify a property:

•

The property must allow modifications in general. Most properties are read-only. 

•

You require the proper permissions for modifications. The drive description applies to all users 

of a computer so only administrators may modify them. 

•

You must use  Put() to save the modification. Without  Put(), the modification will not take effect. 

Viewing Class Descriptions

Nearly every WMI class has a built-in description that explains its purpose. You can view this 

description only if you first set a hidden option called  UseAmendedQualifiers to  $true. Once that's done, the WMI class will readily supply information about its function:

 $class  = [ wmiclass] 'Win32_LogicalDisk' 

 $class.  psbase.Options.UseAmendedQualifiers  =  $true

( $class.  psbase.qualifiers[ "description" ]).  Value

 The Win32_LogicalDisk class represents a data source 

 that resolves to an actual local storage device on a 

Table of Contents | About PowerShell Plus

507

Sponsors | Resources | © BBS Technologies

 Win32 system. The class returns both local as well as 

 mapped logical disks. However, the recommended approach 

 is to use this class for obtaining information on local 

 disks and to use the Win32_MappedLogicalDisk for 

 information on mapped logical disk. 

In a similarly thorough way, all the properties of the class are documented. Look it up if you want to 

know the intended aim of the  VolumeDirty property:

 $class  = [ wmiclass] 'Win32_LogicalDisk' 

 $class.  psbase.Options.UseAmendedQualifiers  =  $true

 $voldirty  =  $class.  psbase.properties[ "VolumeDirty" ]

 $voldirty.  Type

 Boolean

( $voldirty.  Qualifiers[ "Description" ]).  Value

 The VolumeDirty property indicates whether the disk 

 requires chkdsk to be run at next boot up time. The 

 property is applicable to only those instances of 

 logical disk that represent a physical disk in the 

 machine. It is not applicable to mapped logical 

 drives. 

Invoking WMI Methods

Basically, the same thing applies to WMI as it does to the .NET framework, and in Chapter 6 you learned that both classes and instances can provide methods, such as executable commands. 

Instance-Based Methods

The instances of the  Win32_Process class offer you, among other things, the  Terminate() method with which you can force a process to stop running. To use  Terminate(), you just need 

 Win32_Process instances.  Get-WmiObject can retrieve these for you. The next line ends all running Notepad instances. However, any unsaved work will be lost:

 Get-WmiObject Win32_Process  -filter  "name='notepad.exe'"  | 

 ForEach-Object {  $_.  Terminate() }

For every instance that  Terminate() closes, it retrieves an object that is displayed in the console and that reports in  ReturnValue whether the operation was carried out properly. If you want to verify its success, capture the object and inspect the  ReturnValue property:

 Get-WmiObject Win32_Process  -filter  "name='notepad.exe'"  | 

 ForEach-Object { "Close all Notepads." ;  $good= 0;  $bad= 0} {

 $result=$_.  Terminate(); 

 if( $result.  ReturnValue  -eq 0) { $good++}  else { $bad++} 

Table of Contents | About PowerShell Plus

508

Sponsors | Resources | © BBS Technologies



} {  "Have closed $good instances. Problems arose in thè

 case of $bad instances."  }

 Close all Notepads. 

 Have closed 2 instances. Problems arose in the case of 0 instances. 

If you already know the process ID of a process, you can work on 

the process directly just as you did in the last section because the 

process ID is the key property of processes. For example, you 

could terminate the process with the ID 1234 like this:

([ wmi] "Win32_Process='1234'" ).  Terminate()

If you'd rather check your hard disk drive C:\ for errors, the proper 

invocation is:

([ wmi] "Win32_LogicalDisk='C:'" ).  Chkdsk(... 

However, since this method requires additional arguments, the question here 

is what you should specify. Invoke the method without parentheses in order 

to get initial brief instructions:

([ wmi] "Win32_LogicalDisk='C:'" ).  Chkdsk

 MemberType          : Method

 OverloadDefinitions : {System.Management.ManagementBaseObject 

                       Chkdsk(System.Boolean FixErrors, 

 System. 

                       Boolean VigorousIndexCheck, 

 System.Boole

                       an SkipFolderCycle, System.Boolean 

 Force

                       Dismount, System.Boolean 

 RecoverBadSecto

                       rs, System.Boolean OkToRunAtBootUp)}

 TypeNameOfValue     : System.Management.Automation.PSMethod

 Value               : System.Management.ManagementBaseObject 

                       Chkdsk(System.Boolean FixErrors, 

 System. 

                       Boolean VigorousIndexCheck, 

 System.Boole

                       an SkipFolderCycle, System.Boolean 

 Force

                       Dismount, System.Boolean 

 RecoverBadSecto

                       rs, System.Boolean OkToRunAtBootUp)

 Name                : Chkdsk

 IsInstance          : True

Table of Contents | About PowerShell Plus

509

Sponsors | Resources | © BBS Technologies

Listing Methods

 Get-Member will tell you which methods a WMI object supports:

 $object  =  Get-WmiObject Win32_Process | 

 Select-Object  -first 1

 $object |  Get-Member  -memberType Method



 TypeName: System.Management.ManagementObject#

           root\cimv2\Win32_Process

 Name           MemberType Definition

 ----           ---------- ----------

 AttachDebugger Method     System.Management.Management

                           BaseObject AttachDebugger()

 GetOwner       Method     System.Management.Management

                           BaseObject GetOwner()

 GetOwnerSid    Method     System.Management.Management

                           BaseObject GetOwnerSid()

 SetPriority    Method     System.Management.Management

                           BaseObject SetPriority(System. 

                           Int32 Priority)

 Terminate      Method     System.Management.Management

                           BaseObject Terminate(System. 

                           UInt32 Reason)

Static Methods

A WMI class directly supplies static methods, very much like static methods of a .NET class. If you 

want to renew the IP addresses of all network cards, use the  Win32_NetworkAdapterConfiguration 

class and its static method  RenewDHCPLeaseAll():

([ wmiclass] "Win32_NetworkAdapterConfiguration" ).  RenewDHCPLeaseAll()

You get the WMI class by using type conversion. You can either use the  [wmiclass] type accelerator or the underlying  [System.Management.ManagementClass] .NET type.  Get-Member will again 

retrieve the methods of the class:

[ wmiclass] "Win32_NetworkAdapterConfiguration"  | 

 Get-Member  -memberType Method



 TypeName: System.Management.ManagementClass#

           ROOT\cimv2\Win32_NetworkAdapterConfiguration

 Name                            MemberType Definition

 ----                            ---------- ----------

 EnableDNS                       Method     System.Management.Management

                                            BaseObject EnableDNS(System. 

                                            String ... 

 EnableIPFilterSec               Method     System.Management.Management

Table of Contents | About PowerShell Plus

510

Sponsors | Resources | © BBS Technologies

                                            BaseObject EnableIPFilterSec

                                            (System... 

 EnableWINS                      Method     System.Management.Management

                                            BaseObject EnableWINS(System

                                            .Boolea... 

 ReleaseDHCPLeaseAll             Method     System.Management.Management

                                            BaseObject ReleaseDHCPLeaseA

                                            ll()

 RenewDHCPLeaseAll               Method     System.Management.Management

                                            BaseObject RenewDHCPLeaseAll

                                            ()

 SetArpAlwaysSourceRoute         Method     System.Management.Management

                                            BaseObject SetArpAlwaysSourc

                                            eRoute(... 

 SetArpUseEtherSNAP              Method     System.Management.Management

                                            BaseObject SetArpUseEtherSNA

                                            P(Syste... 

 SetDatabasePath                 Method     System.Management.Management

                                            BaseObject SetDatabasePath(S

                                            ystem.S... 

 SetDeadGWDetect                 Method     System.Management.Management

                                            BaseObject SetDeadGWDetect(S

                                            ystem.B... 

 SetDefaultTOS                   Method     System.Management.Management

                                            BaseObject SetDefaultTOS(Sys

                                            tem.Byt... 

 SetDefaultTTL                   Method     System.Management.Management

                                            BaseObject SetDefaultTTL(Sys

                                            tem.Byt... 

 SetDNSSuffixSearchOrder         Method     System.Management.Management

                                            BaseObject SetDNSSuffixSearc

                                            hOrder(... 

 SetForwardBufferMemory          Method     System.Management.Management

                                            BaseObject SetForwardBufferM

                                            emory(S... 

 SetIGMPLevel                    Method     System.Management.Management

                                            BaseObject SetIGMPLevel(Syst

                                            em.Byte... 

 SetIPUseZeroBroadcast           Method     System.Management.Management

                                            BaseObject SetIPUseZeroBroad

                                            cast(Sy... 

 SetIPXVirtualNetworkNumber      Method     System.Management.Management

                                            BaseObject SetIPXVirtualNetw

                                            orkNumb... 

 SetKeepAliveInterval            Method     System.Management.Management

                                            BaseObject SetKeepAliveInter

                                            val(Sys... 

 SetKeepAliveTime                Method     System.Management.Management

                                            BaseObject SetKeepAliveTime(

                                            System.... 

 SetMTU                          Method     System.Management.Management

                                            BaseObject SetMTU(System.UIn

                                            t32 MTU)

Table of Contents | About PowerShell Plus

511

Sponsors | Resources | © BBS Technologies

 SetNumForwardPackets            Method     System.Management.Management

                                            BaseObject SetNumForwardPack

                                            ets(Sys... 

 SetPMTUBHDetect                 Method     System.Management.Management

                                            BaseObject SetPMTUBHDetect(S

                                            ystem.B... 

 SetPMTUDiscovery                Method     System.Management.Management

                                            BaseObject SetPMTUDiscovery(

                                            System.... 

 SetTcpMaxConnectRetransmissions Method     System.Management.Management

                                            BaseObject SetTcpMaxConnectR

                                            etransm... 

 SetTcpMaxDataRetransmissions    Method     System.Management.Management

                                            BaseObject SetTcpMaxDataRetr

                                            ansmiss... 

 SetTcpNumConnections            Method     System.Management.Management

                                            BaseObject SetTcpNumConnecti

                                            ons(Sys... 

 SetTcpUseRFC1122UrgentPointer   Method     System.Management.Management

                                            BaseObject SetTcpUseRFC1122U

                                            rgentPo... 

 SetTcpWindowSize                Method     System.Management.Management

                                            BaseObject SetTcpWindowSize(

                                            System.... 

Help with Classes and Methods

The methods of a WMI class are also documented in detail inside WMI. For example, you get the 

description of the  Win32Shutdown() method of the  Win32_OperatingSystem class like this:

 $class  = [ wmiclass] 'Win32_OperatingSystem' 

 $class.  psbase.Options.UseAmendedQualifiers  =  $true

(( $class.  psbase.methods[ "Win32Shutdown" ]).  Qualifiers[ "Description" ]).  Value The Win32Shutdown method provides the full set of shutdown 

 options supported by Win32 operating systems. The method returns 

 an integer value that can be interpretted as follows:

 0 - Successful completion. 

 Other - For integer values other than those listed above, refer 

 to Win32 error code documentation. 

Moreover, nearly all WMI classes have excellent documentation on the Internet. That's a good thing, 

too, because it's not easy to find out what the method wants from you, especially when WMI 

methods require arguments. 

If you'd like to learn more about a WMI class or a method, navigate to an Internet search page like 

Google and specify as keyword the WMI class name, as well as the method. It's best to limit your 

search to the Microsoft MSDN pages:  Win32_NetworkAdapterConfiguration RenewDHCPLeaseAll 

 site:msdn2.microsoft.com. 

Table of Contents | About PowerShell Plus

512

Sponsors | Resources | © BBS Technologies





Figure 18.1: WMI classes and their methods are documented in detail on the Internet

WMI Events

WMI returns not only information but can also wait for certain events. If the events occur, an action 

will be started. In the process, WMI can alert you when one of the following things involving a WMI 

instance happens:

•

__InstanceCreationEvent: A new instance was added such as a new process was started or 

a new file created. 

•

__InstanceModificationEvent: The properties of an instance changed. For example, the 

FreeSpace property of a drive was modified. 

•

__InstanceDeletionEvent: An instance was deleted, such as a program was shut down or a 

file deleted. 

•

__InstanceOperationEvent: This is triggered in all three cases. 

You can use these to set up an alarm signal. For example, if you want to be informed as soon as 

Notepad is started, type:

 Select * from __InstanceCreationEvent WITHIN 1 

 WHERE targetinstance isa 'Win32_Process' AND 

 targetinstance.name = 'notepad.exe' 

Table of Contents | About PowerShell Plus

513

Sponsors | Resources | © BBS Technologies

 WITHIN specifies the time interval of the inspection and "WITHIN 1" means that you want to be informed no later than one second after the event occurs. The shorter you set the interval, the more 

effort involved, which means that WMI will require commensurately more computing power to 

perform your task. As long as the interval is kept at not less than one second, the computation effort 

will be scarcely perceptible. Here is an example:

 $alarm  =  New-Object  Management.EventQuery

 $alarm.  QueryString  =  "Select * from __InstanceCreationEvent `

 WITHIN 1 WHERE targetinstance isa 'Win32_Process' AND `

 targetinstance.name = 'notepad.exe'" 

 $watch  =  New-Object  Management.ManagementEventWatcher  $alarm

 #Start Notepad after issuing a wait command:

 $result  =  $watch.  WaitForNextEvent()

 #Get target instance of Notepad:

 $result.  targetinstance

 #Access the live instance:

 $path  =  $result.  targetinstance.__path

 $live  = [ wmi] $path

 # Close Notepad using the live instance

 $live.  terminate()

Remote Access and Namespaces

Maybe you have the impression that WMI intersects with some cmdlets. That is in fact correct. 

Whether you use  Get-WmiObject Win32_Process or better  Get-Process to inspect running processes is often just a matter of taste. Even  Get-WmiObject Win32_Service and  Get-Service can return similar results—at least, at first glance. 

WMI objects come from an entirely different source than the results of cmdlets, which is why they 

contain different, often additional information. Moreover, there are innumerable WMI classes for 

which cmdlets do not exist, because WMI is extensible and many third-party vendors create WMI 

extensions in additional namespaces. Finally, WMI works locally as well as remotely while most 

PowerShell cmdlets work only locally. 

Accessing WMI Objects on another Computer

Using WMI makes remote access very easy and convenient provided that you have a network 

connection to the target system, sufficient permissions on that system, and no firewall is operating 

between you and the target system. Use the  -ComputerName parameter of  Get-WmiObject to 

access another computer system using WMI. Then specify the name of the computer after it:

 Get-WmiObject  -computername pc023 Win32_Process

If you want to log on to the target system using another user account, use the  -Credential 

parameter to specify additional log on data as in this example:

 $credential  =  Get-Credential

 Get-WmiObject  -computername pc023  -credential  $credential Win32_Process

Table of Contents | About PowerShell Plus

514

Sponsors | Resources | © BBS Technologies

Namespaces: WMI Extensions

WMI has a hierarchical structure much like a file system does. Up to now, all the classes that you 

have used have come from the WMI "directory" root\cimv2. Third-party vendors can create 

additional WMI directories, known as  Namespaces, and put in them their own classes, which you can 

use to control software, like Microsoft Office or hardware like switches and other equipment. 

Because the topmost directory in WMI is always named  root, from its location you can inspect 

existing namespaces. Get a display first of the namespaces on this level:

 Get-WmiObject  -Namespace root __Namespace |  Format-Wide Name

 subscription      DEFAULT

 MicrosoftDfs      CIMV2

 Cli               nap

 SECURITY          RSOP

 Infineon          WMI

 directory         Policy

 ServiceModel      SecurityCenter

 MSAPPS12          Microsoft

 aspnet

As you can see, the  cimv2 directory is only one of them. What other directories are shown here 

depends on the software and hardware that you use. For example, if you use Microsoft Office, you 

may find a directory called  MSAPPS12. Take a look at the classes in it:

 Get-WmiObject  -Namespace root\msapps12  -list | 

 Where-Object {  $_.  Name.StartsWith( "Win32_" ) }

 Win32_PowerPoint12Tables               Win32_Publisher12PageNumber

 Win32_Publisher12Hyperlink             Win32_PowerPointSummary

 Win32_Word12Fonts                      Win32_PowerPointActivePresent... 

 Win32_OutlookDefaultFileLocation       Win32_Word12Document

 Win32_ExcelAddIns                      Win32_PowerPoint12Table

 Win32_ADOCoreComponents                Win32_Publisher12SelectedTable

 Win32_Word12CharacterStyle             Win32_Word12Styles

 Win32_OutlookSummary                   Win32_Word12DefaultFileLocation

 Win32_WordComAddins                    Win32_PowerPoint12AlternateSt... 

 Win32_OutlookComAddins                 Win32_ExcelCharts

 Win32_Word12Settings                   Win32_FrontPageActiveWeb

 Win32_OdbcDriver                       Win32_AccessProject

 Win32_Word12StartupFileLocation        Win32_ExcelActiveWorkbook

 Win32_FrontPagePageProperty            Win32_Publisher12MailMerge

 Win32_Language                         Win32_FrontPageAddIns

 Win32_Word12PageSetup                  Win32_Word12HeaderAndFooter

 Win32_ServerExtension                  Win32_Publisher12ActiveDocume... 

 Win32_Word12Addin                      Win32_WordComAddin

 Win32_PowerPoint12PageNumber           Win32_JetCoreComponents

 Win32_Publisher12Fonts                 Win32_Word12Table

 Win32_OutlookAlternateStartupFile      Win32_Word12Tables

 Win32_Access12ComAddins                Win32_Excel12AlternateStartup... 

 Win32_Word12FileConverters             Win32_Access12StartupFolder

Table of Contents | About PowerShell Plus

515

Sponsors | Resources | © BBS Technologies

 Win32_Word12ParagraphStyle             Win32_Access12ComAddin

 Win32_Excel12StartupFolder             Win32_PowerPointPresentation

 Win32_FrontPageWebProperty             Win32_Publisher12Table

 Win32_Publisher12StartupFolder         Win32_WebConnectionErrorText

 Win32_ExcelSheet                       Win32_Publisher12Tables

 Win32_FrontPageTheme                   Win32_PowerPoint12ComAddins

 Win32_Word12Template                   Win32_ExcelComAddins

 Win32_Access12AlternateStartupFileLoc  Win32_Word12ActiveDocument

 Win32_PublisherSummary                 Win32_Publisher12DefaultFileL... 

 Win32_Word12Field                      Win32_Publisher12Hyperlinks

 Win32_PowerPoint12ComAddin             Win32_PowerPoint12Hyperlink

 Win32_PowerPoint12DefaultFileLoc       Win32_Publisher12Sections

 Win32_OutlookStartupFolder             Win32_Access12JetComponents

 Win32_Word12ActiveDocumentNotable      Win32_Publisher12CharacterStyle

 Win32_Word12Hyperlinks                 Win32_Word12MailMerge

 Win32_Word12FileConverter              Win32_PowerPoint12Hyperlinks

 Win32_FrontPageActivePage              Win32_Word12Summary

 Win32_OleDbProvider                    Win32_Publisher12PageSetup

 Win32_Word12SelectedTable              Win32_PowerPoint12StartupFolder

 Win32_OdbcCoreComponent                Win32_PowerPoint12PageSetup

 Win32_FrontPageSummary                 Win32_AccessSummary

 Win32_Word12Hyperlink                  Win32_OfficeWatsonLog

 Win32_Publisher12Font                  Win32_WebConnectionErrorMessage

 Win32_AccessDatabase                   Win32_Publisher12Styles

 Win32_Publisher12ActiveDocument        Win32_Word12AlternateStartupF... 

 Win32_PowerPoint12Fonts                Win32_Word12Sections

 Win32_ExcelComAddin                    Win32_Excel12DefaultFileLoc

 Win32_Word12Fields                     Win32_ExcelActiveWorkbookNotable

 Win32_Publisher12COMAddIn              Win32_ExcelWorkbook

 Win32_OutlookComAddin                  Win32_PowerPoint12Font

 Win32_FrontPageAddIn                   Win32_ExcelChart

 Win32_WebConnectionError               Win32_Word12Font

 Win32_RDOCoreComponents                Win32_Word12PageNumber

 Win32_Publisher12ParagraphStyle        Win32_Publisher12COMAddIns

 Win32_Transport                        Win32_Access12DefaultFileLoc

 Win32_FrontPageThemes                  Win32_ExcelSummary

 Win32_ExcelAddIn                       Win32_Publisher12AlternateSta... 

 Win32_PowerPoint12SelectedTable

WMI and the Extended Type System

In Chapters 5 and 6,  you learned a few things about the PowerShell  Extended Type System. With its help, you can give objects new properties and methods. That is very useful in the case of WMI. The 

Extended Type System can do more: it can be used to add on type converters. You'll see later why 

that's useful. 

Table of Contents | About PowerShell Plus

516

Sponsors | Resources | © BBS Technologies

Converting the WMI Date Format

WMI includes some untypical date formats. Particularly, the date and time format looks very weird. 

For example, look at the example of the  Win32_OperatingSystem class:

 Get-WmiObject win32_Operatingsystem |  Format-List  * time *

 CurrentTimeZone : 120

 LastBootUpTime  : 20071016085609.375199+120

 LocalDateTime   : 20071016153922.498000+120

The date and time are given as a sequence of numbers, first the year, then the month, and finally 

the day. Following this is the time in hours, minutes, and milliseconds, and then the time zone. This 

is the so-called  DMTF, which is hard to read. However, you can use  ToDateTime() of the 

 ManagementDateTimeConverter.NET class to decipher this cryptic format:

 $boottime  = ( Get-WmiObject win32_Operatingsystem).  LastBootUpTime

 $boottime

 20071016085609.375199+120

 $realtime  = [ System.Management.ManagementDateTimeConverter]::`

ToDateTime( $boottime)

 $realtime

 Tuesday, October 16, 2007 8:56:09 AM

You only need to take one look to see what the date and the time are now. Moreover, you can also 

continue to work with the time indicator in various ways, such as using  New-TimeSpan to calculate 

current system uptime:

 New-TimeSpan  $realtime ( get-date)

 Days              : 0

 Hours             : 6

 Minutes           : 47

 Seconds           : 9

 Milliseconds      : 762

 Ticks             : 244297628189

 TotalDays         : 0.282751884478009

 TotalHours        : 6.78604522747222

 TotalMinutes      : 407.162713648333

 TotalSeconds      : 24429.7628189

 TotalMilliseconds : 24429762.8189

Adding On a Type Converter

It would be much more logical if you could convert the WMI date format by type conversion into a 

 DateTime format, such as like this:

Table of Contents | About PowerShell Plus

517

Sponsors | Resources | © BBS Technologies

[ datetime] "20071016085609.375199+120" 

 Cannot convert value "20071016085609.375199+120" to 

 type "System.DateTime". Error: "String was not recognized 

 as a valid DateTime." 

 At line:1 char:11

 + [datetime]" <<<< 20071016085609.375199+120" 

This fails because the standard type converter is not the right tool for this conversion. But the 

Extended Type System can add on not only properties and methods, but also type converters. To 

see how, make a type converter first:

notepad typeconverter.cs

Notepad offers to create a new file. Agree, and then type this code:

using  System.Management.Automation; 

using  System; 

using  System.IO; 

using  System.Management; 

namespace  WMItoDate

{ 

public class DateTimeTypeConverter : PSTypeConverter

{

public override  bool CanConvertFrom(Object sourceValue, Type destinationType)

{

 string src  = sourceValue as  string; 

 if (src  != null)

{

try

{

DateTime Date  =  ManagementDateTimeConverter.ToDateTime(src); 

 if (Date  != null)  return true; 

}

catch (Exception)

{

 return false; 

}

}

 return false; 

}

public override object ConvertFrom(object sourceValue, Type destinationType, 

IFormatProvider provider,  bool IgnoreCase)

{

 if (sourceValue  == null) throw new InvalidCastException( "Conversion error" ); if ( this.CanConvertFrom(sourceValue, destinationType))

{

try

{

 string src  = sourceValue as  string; 

DateTime Date  =  ManagementDateTimeConverter.ToDateTime(src); 

 return Date; 

Table of Contents | About PowerShell Plus

518

Sponsors | Resources | © BBS Technologies

    }

catch (Exception)

{

throw new InvalidCastException( "Conversion error" ); 

}

}

throw new InvalidCastException( "Conversion error" ); 

}

public override  bool CanConvertTo(object Value, Type destinationType)

{

 return false; 

}

public override object ConvertTo(object Value, Type destinationType, 

IFormatProvider provider,  bool IgnoreCase)

{

throw new InvalidCastException( "Conversion error" ); 

}

}

}

Save the code as the code has to be compiled in a DLL library. PowerShell can take care of this 

chore for you:

 $compiler  =  "$env:windir/Microsoft.NET/Framework/v2.0.50727/csc" 

 $ref  = [ PsObject].  Assembly.Location

 &$compiler  / target:library  / reference: $ref  typeconverter.cs

The result is the file  typeconverter.dll. Now all you have to do is load it in PowerShell:

 $path  =  resolve-path .\ typeconverter.dll

[ void][ System.Reflection.Assembly]:: LoadFrom( $path)

The Extended Type System must be informed that a new type converter is available. To do so, 

create a  ps1xml file that basically contains XML data:

notepad  typeconverter.wmi.ps1xml

Agree to creation of the file, and type this code:

 <Types> 

  <Type> 

   <Name>System.DateTime</Name> 

   <TypeConverter> 

    <TypeName>WMItoDate.DateTimeTypeConverter</TypeName> 

   </TypeConverter> 

  </Type> 

 </Types> 

Save the file and import the extension into the  Extended Type System:

 Update-TypeData  typeconverter.wmi.ps1xml

Table of Contents | About PowerShell Plus

519

Sponsors | Resources | © BBS Technologies



Finally, try out the extension. From now on, PowerShell can use type conversion to convert WMI 

dates into  DateTime specifications:

[ datetime] "20071016085609.375199+120" 

 Tuesday, October 16, 2007 8:56:09 AM

So that the extension automatically remains in operation, you have 

to load your DLL library into one of your PowerShell start profiles. 

You also have to load the type extension into the profile using 

U pdate-TypeData. 

Table of Contents | About PowerShell Plus

520

Sponsors | Resources | © BBS Technologies

CHAPTER 19. 

 User Management

For many administrators, managing users is an important part of their work. PowerShell V1 does not 

contain any cmdlets to manage users. However, you can add them from third-party vendors. But if 

you do not want any dependencies on third-party tools and snap-ins, you will learn in this chapter 

how to use native .NET framework methods for user management. 

Topics Covered:

•

C

  onnecting to a Domain  

•

L ogging On Under Other User Names  

•

A

  ccessing a Container  

•

L isting Container Contents  

•

A

  ccessing Individual Users or Groups  

•

U

  sing Filters and the Pipeline  

•

Di

  rectly Accessing Elements  

•

O

  btaining Elements from a Container  

•

S

  earching for Elements 

•

T

  able 19.1: Examples of LDAP queries  

•

A

  ccessing Elements Using GUID  

•

R

  eading and Modifying Properties  

•

J ust What Properties Are There? 

•

P

  ractical Approach: Look  

•

T

  heoretical Approach: Much More Thorough  

•

R

  eading Properties  

•

M

  odifying Properties  

•

De

  leting Properties 

•

T

  able 19.2: PutEx() operations  

•

T

  he Schema of Domains  

•

S

  etting Properties Having Several Values  

•

In

  voking Methods  

•

C

  hanging Passwords  

•

C

  ontrolling Group Memberships  

•

In

   Which Groups Is a User a Member? 

•

W

  hich Users Are Members of a Group? 

•

A

  dding Users to a Group  

•

C

  reating New Objects  

•

C

  reating New Organizational Units  

•

C

  reate New Groups 

•

T

  able 19.3: Group Types  

•

C

  reating New Users  

Connecting to a Domain

If your computer is a member of a domain, the first step in managing users is to connect to a logon 

domain. You can set up a connection like this:

Table of Contents | About PowerShell Plus

521

Sponsors | Resources | © BBS Technologies



 $domain  = [ ADSI] "" 

 $domain

 distinguishedName

 -----------------

 {DC=scriptinternals,DC=technet}

If your computer isn't a member of a domain, the connection setup will fail and generate an error 

message:

 out-lineoutput : Exception retrieving member 

 "ClassId2e4f51ef21dd47e99d3c952918aff9cd": "The specified 

 domain either does not exist or could not be contacted." 

If you want to manage local user accounts and groups, instead of 

LDAP: use the  WinNT: moniker. But watch out: case-sensitivity is 

in effect. For example, you can access the local administrator 

account like this:

 $user  = [ ADSI] "WinNT://./Administrator,user" 

 $user |  Format-List  *

We won't go into local user accounts in any more detail in the following 

examples. 

Logging On Under Other User Names

Behind the name  [ADSI] is a PowerShell type accelerator.  [ADSI] actually corresponds to the DirectoryServices.DirectoryEntry .NET type. That's why you could have set up the previous 

connection this way as well:

 $domain  = [ DirectoryServices.DirectoryEntry] "" 

 $domain

 distinguishedName

 -----------------

 {DC=scriptinternals,DC=technet}

This is important to know if you don't want to log on with your current user account but with another 

account. The  [ADSI] type accelerator always logs you on using your current identity. By comparison, the underlying  DirectoryServices.DirectoryEntry .NET type gives you the option of logging on with 

another identity. But why would anyone want to do something like that? Here are a few reasons:

•

External consultant: You may be visiting a company as an external consultant and have 

brought along your own notebook computer, which isn't a member of the company domain. 

This prevents you from setting up a connection to the company domain. But if you have a 

Table of Contents | About PowerShell Plus

522

Sponsors | Resources | © BBS Technologies



valid user account along with its password at your disposal, you can use your notebook and 

this identity to access the company domain. Your notebook doesn't have to be a domain 

member to access the domain. 

•

Several domains: Your company has several domains and you want to manage one of 

them, but it isn't your logon domain. More likely than not, you'll have to log on to the new 

domain with an identity known to it. 

Logging onto a domain that isn't your own with another identity works like this:

 $domain  =  New-Object  DirectoryServices.DirectoryEntry(

 "LDAP://10.10.10.1" ,  "domain\user" ,  "secret" )

 $domain.  name

 scriptinternals

 $domain.  distinguishedName

 DC=scriptinternals,DC=technet

Two things are important for ADSI paths. First, their names are 

case-sensitive. That's why the two following approaches are wrong:

 $domain  = [ ADSI] "ldap://10.10.10.1"                     # 

 Wrong! 

 $useraccount  = [ ADSI] "Winnt://./Administrator,user"     # Wrong! 

Second, surprisingly enough, ADSI paths use a normal slash. A backslash like 

the one commonly used in the file system would generate error messages:

 $domain  = [ ADSI] "LDAP:\\10.10.10.1"                     # Wrong! 

 $useraccount  = [ ADSI] "WinNT:\\.\Administrator,user"     # Wrong! 

If you don't want to put logon data in plain text in your code, use  Get-Credential. Since the 

password has to be given when logging on in plain text, and  Get-Credential returns the password in encrypted form, an intermediate step is required in which it is converted into plain text:

 $cred  =  Get-Credential

 $pwd  = [ Runtime.InteropServices.Marshal]:: PtrToStringAuto( 

[ Runtime.InteropServices.Marshal]:: SecureStringToBSTR( $cred.  Password))

 $domain  =  New-Object  DirectoryServices.DirectoryEntry( 

 "LDAP://10.10.10.1" ,  $cred.  UserName,  $pwd)

 $domain.  name

 scriptinternals

Table of Contents | About PowerShell Plus

523

Sponsors | Resources | © BBS Technologies



Logon errors are initially invisible. PowerShell reports errors only when you 

try to connect with a domain. This procedure is known as "binding." Calling 

the  $domain.Name property won't cause any errors because when the 

connection fails, there isn't even any property called  Name in the object in 

 $domain. 

So, how can you find out whether a connection was successful or not? Just invoke the 

 Bind() method, which does the binding.  Bind() always throws an exception and  Trap 

can capture this error. 

The code called by  Bind() must be in its own scriptblock, which means it must be 

enclosed in braces. If an error occurs in the block, PowerShell will cut off the block 

and execute the  Trap code, where the error will be stored in a variable. This is 

created using  script: so that the rest of the script can use the variable. Then  If 

verifies whether an error occurred. A connection error always exists if the exception 

thrown by  Bind() has the  -2147352570 error code. In this event,  If outputs the text of the error message and stops further instructions from running by using  Break. 

 $cred  =  Get-Credential

 $pwd  = [ Runtime.InteropServices.Marshal]:: PtrToStringAuto(

[ Runtime.InteropServices.Marshal]:: SecureStringToBSTR( $cred.  Password

))

 $domain  =  New-Object  DirectoryServices.DirectoryEntry(

 "LDAP://10.10.10.1" ,  $cred.  UserName,  $pwd)

 trap {  $script:err  =  $_ ;  continue }  & { 

 $domain.  Bind( $true);  $script:err  =  $null }

 if ( $err.  Exception.ErrorCode  -ne  - 2147352570)

{

 Write-Host  -Fore Red  $err.  Exception.Message

 break

}

 else

{

 Write-Host  -Fore Green  "Connection established." 

}

 Logon failure: unknown user name or bad password. 

By the way, the error code  -2147352570 means that although the connection was 

established,  Bind() didn't find an object to which it could bind itself. That's OK 

because you didn't specify any particular object in your LDAP path when the 

connection was being set up.. 

Table of Contents | About PowerShell Plus

524

Sponsors | Resources | © BBS Technologies

Accessing a Container

Domains have a hierarchical structure like the file system directory structure. Containers inside the 

domain are either predefined directories or subsequently created organizational units. If you want to 

access a container, specify the LDAP path to the container. For example, if you want to access the 

predefined directory  Users, you could access like this:

 $ldap  =  "/CN=Users,DC=scriptinternals,DC=technet" 

 $cred  =  Get-Credential

 $pwd  = [ Runtime.InteropServices.Marshal]:: PtrToStringAuto( 

[ Runtime.InteropServices.Marshal]:: SecureStringToBSTR( $cred.  Password))

 $users  =  New-Object  DirectoryServices.DirectoryEntry(

 "LDAP://10.10.10.1$ldap" ,  $cred.  UserName,  $pwd)

 $users

 distinguishedName

 -----------------

 {CN=Users,DC=scriptinternals,DC=technet}

The fact that you are logged on as a domain member naturally simplifies the procedure considerably 

because now you need neither the IP address of the domain controller nor logon data. The LDAP 

name of the domain is also returned to you by the domain itself in the  distinguishedName property. 

All you have to do is specify the container that you want to visit:

 $ldap  =  "CN=Users" 

 $domain  = [ ADSI] "" 

 $dn  =  $domain.  distinguishedName

 $users  = [ ADSI] "LDAP://$ldap,$dn" 

 $users

While in the LDAP language predefined containers use names including  CN=, specify  OU= for 

organizational units. So, when you log on as a user to connect to the  sales OU, which is located in the  company OU, you should type:

 $ldap  =  "OU=sales,OU=company" 

 $domain  = [ ADSI] "" 

 $dn  =  $domain.  distinguishedName

 $users  = [ ADSI] "LDAP://$ldap,$dn" 

 $users

Listing Container Contents

At some point, you'd like to know who or what the container contains to which you have set up a 

connection. The approach here is somewhat less intuitive because now you need the  PSBase object. 

PowerShell wraps Active Directory objects and adds new properties and methods while removing 

others. Unfortunately, PowerShell also in the process gets rid of the necessary means to get to the 

contents of a container.  PSBase returns the original (raw) object just like PowerShell received it before conversion, and this object knows the  Children property:

 $ldap  =  "CN=Users" 

Table of Contents | About PowerShell Plus

525

Sponsors | Resources | © BBS Technologies

 $domain  = [ ADSI] "" 

 $dn  =  $domain.  distinguishedName

 $users  = [ ADSI] "LDAP://$ldap,$dn" 

 $users.  PSBase.Children

 distinguishedName

 -----------------

 {CN=admin,CN=Users,DC=scriptinternals,DC=technet}

 {CN=Administrator,CN=Users,DC=scriptinternals,DC=technet}

 {CN=All,CN=Users,DC=scriptinternals,DC=technet}

 {CN=ASPNET,CN=Users,DC=scriptinternals,DC=technet}

 {CN=Belle,CN=Users,DC=scriptinternals,DC=technet}

 {CN=Consultation2,CN=Users,DC=scriptinternals,DC=technet}

 {CN=Consultation3,CN=Users,DC=scriptinternals,DC=technet}

 {CN=ceimler,CN=Users,DC=scriptinternals,DC=technet}

 (...)

Accessing Individual Users or Groups

There are various ways to access individual users or groups. For example, you can filter the contents 

of a container. You can also specifically select individual items from a container or access them 

directly through their LDAP path. And you can search for items across directories. 

Using Filters and the Pipeline

 Children gets back fully structured objects that, as shown in Chapter 5,  you can process further in the PowerShell pipeline. Among other things, if you want to list only users, not groups, you could 

query the  sAMAccountType property and use it as a filter criterion:

 $ldap  =  "CN=Users" 

 $domain  = [ ADSI] "" 

 $dn  =  $domain.  distinguishedName

 $users  = [ ADSI] "LDAP://$ldap,$dn" 

 $users.  PSBase.Children | 

 Where-Object {  $_.  sAMAccountType  -eq 805306368 }

Another approach makes use of the class that you can always find in the  objectClass property. 

 $users.  PSBase.Children | 

 Select-Object  -first 1 | 

 ForEach-Object {  $_.  sAMAccountName  +  $_.  objectClass }

 admin

 top

 person

 organizationalPerson

 user

Table of Contents | About PowerShell Plus

526

Sponsors | Resources | © BBS Technologies

As it happens, the  objectClass property contains an array with all the classes from which the object is derived. The listing process proceeds from the general to the specific so you can find only those 

elements that are derived from the  user class:

 $users.  PSBase.Children | 

 Where-Object {  $_.  objectClass  -contains  "user"  }

 distinguishedName

 -----------------

 {CN=admin,CN=Users,DC=scriptinternals,DC=technet}

 {CN=Administrator,CN=Users,DC=scriptinternals,DC=technet}

 {CN=ASPNET,CN=Users,DC=scriptinternals,DC=technet}

 {CN=Belle,CN=Users,DC=scriptinternals,DC=technet}

 (...)

Directly Accessing Elements

If you know the ADSI path to a particular object, you don't have to resort to a circuitous approach 

but can access it directly through the pipeline filter. You can find the path of an object in the 

 distinguishedName property:

 $users.  PSBase.Children | 

 Format-Table sAMAccountName, distinguishedName  -wrap

 sAMAccountName    distinguishedName

 --------------    -----------------

 {admin}           {CN=admin,CN=Users,DC=scriptinternals, 

                   DC=technet}

 {Administrator}   {CN=Administrator,CN=Users,DC=scriptin

                   ternals,DC=technet}

 {All}             {CN=All,CN=Users,DC=scriptinternals,DC

                   =technet}

 {ASPNET}          {CN=ASPNET,CN=Users,DC=scriptinternals

                   ,DC=technet}

 {Belle}           {CN=Belle,CN=Users,DC=scriptinternals, 

                   DC=technet}

 {consultation2}   {CN=consultation2,CN=Users,DC=scriptin

                   ternals,DC=technet}

 {consultation3}   {CN=consultation3,CN=Users,DC=scriptin

                   ternals,DC=technet}

 (...)

For example, if you want to access the  Guest account directly, specify its  distinguishedName. If you're a domain member, you don't have to go to the trouble of using the  distinguishedName of the 

domain:

 $ldap  =  "CN=Guest,CN=Users" 

 $domain  = [ ADSI] "" 

 $dn  =  $domain.  distinguishedName

 $guest  = [ ADSI] "LDAP://$ldap,$dn" 

 $guest |  Format-List  *

Table of Contents | About PowerShell Plus

527

Sponsors | Resources | © BBS Technologies

 objectClass            : {top, person, organizationalPerson, user}

 cn                     : {Guest}

 description            : {Predefined account for guest access to the 

                          computer or domain)

 distinguishedName      : {CN=Guest,CN=Users,DC=scriptinternals,DC=

                          technet}

 instanceType           : {4}

 whenCreated            : {12.11.2005 12:31:31 PM}

 whenChanged            : {06.27.2006 09:59:59 AM}

 uSNCreated             : {System.__ComObject}

 memberOf               : {CN=Guests,CN=Builtin,DC=scriptinternals,DC=

                          technet}

 uSNChanged             : {System.__ComObject}

 name                   : {Guest}

 objectGUID             : {240 255 168 180 1 206 85 73 179 24 192 164 

                          100 28 221 74}

 userAccountControl     : {66080}

 badPwdCount            : {0}

 codePage               : {0}

 countryCode            : {0}

 badPasswordTime        : {System.__ComObject}

 lastLogoff             : {System.__ComObject}

 lastLogon              : {System.__ComObject}

 logonHours             : {255 255 255 255 255 255 255 255 255 255 255 

                          255 255 255 255 255 255 255 255 255 255}

 pwdLastSet             : {System.__ComObject}

 primaryGroupID         : {514}

 objectSid              : {1 5 0 0 0 0 0 5 21 0 0 0 184 88 34 189 250 

                          183 7 172 165 75 78 29 245 1 0 0}

 accountExpires         : {System.__ComObject}

 logonCount             : {0}

 sAMAccountName         : {Guest}

 sAMAccountType         : {805306368}

 objectCategory         : {CN=Person,CN=Schema,CN=Configuration,DC=

                          scriptinternals,DC=technet}

 isCriticalSystemObject : {True}

 nTSecurityDescriptor   : {System.__ComObject}

Using the asterisk as wildcard character,  Format-List makes all the properties of an ADSI object 

visible so that you can easily see which information is contained in it and under which names. 

Obtaining Elements from a Container

You already know what to use to read out all the elements in a container:  PSBase.Children. 

However, by using  PSBase.Find() you can also retrieve individual elements from a container:

 $domain  = [ ADSI] "" 

 $users  =  $domain.  psbase.Children.Find( "CN=Users" )

 $useraccount  =  $users.  psbase.Children.Find( "CN=Administrator" ) $useraccount.  Description

Table of Contents | About PowerShell Plus

528

Sponsors | Resources | © BBS Technologies

 Predefined account for managing the computer or domain. 

Searching for Elements

You've had to know exactly where in the hierarchy of domain a particular element is stored to access 

it. In larger domains, it can be really difficult to relocate a particular user account or group. That's 

why a domain can be accessed and searched like a database. 

Once you have logged on to a domain that you want to search, you need only the following few lines 

to find all of the user accounts that match the user name in  $UserName. Wildcard characters are 

allowed:

 $UserName  =  "*mini*" 

 $searcher  =  New-Object  DirectoryServices.DirectorySearcher([ ADSI] "" ) $searcher.  filter  =  "(&(objectClass=user)(sAMAccountName= $UserName))" 

 $searcher.  findall()

If you haven't logged onto the domain that you want to search, get the domain object through the 

logon:

 $domain  =  New-Object  DirectoryServices.DirectoryEntry(

 "LDAP://10.10.10.1" ,  "domain\user" ,  "secret" )

 $UserName  =  "*mini*" 

 $searcher  =  New-Object  DirectoryServices.DirectorySearcher( $domain) $searcher.  filter  =  "(&(objectClass=user)(sAMAccountName= $UserName))" 

 $searcher.  findall() |  Format-Table  -wrap

The results of the search are all the objects that contain the string "mini" in their names, no matter where they're located in the domain:

 Path                                 Properties

 ----                                 ----------

 LDAP://10.10.10.1/CN=Administrator,  {samaccounttype, lastlogon, 

 CN=Users,DC=scriptinternals,         objectsid, whencreated...}

 DC=technet

The crucial part takes place in the search filter, which looks a bit strange in this example:

 $searcher.  filter  =  "(&(objectClass=user)(sAMAccountName= $UserName))" 

The filter merely compares certain properties of elements according to certain requirements. It 

checks accordingly whether the term  user turns up in the  objectClass property and whether the sAMAccountName property matches the specified user name. Both criteria are combined by the "&" 

character, so they both have to be met. This would enable you to assemble a convenient search 

function. 

Table of Contents | About PowerShell Plus

529

Sponsors | Resources | © BBS Technologies



The search function  Get-LDAPUser searches the current logon 

domain by default. If you want to log on to another domain, note 

the appropriate lines in the function and specify your logon data. 

 function  Get-LDAPUser([ string] $UserName, [ string] $Start)

{

 # Use current logon domain:

 $domain  = [ ADSI] "" 

 # OR: log on to another domain:

 #   $domain = New-Object DirectoryServices.DirectoryEntry(

 #   "LDAP://10.10.10.1","domain\user", "secret")

 If ( $start  -ne  "" )

{

 $startelement  =  $domain.  psbase.Children.Find( $start)

}

 else

{

 $startelement  =  $domain

}

 $searcher  =  New-Object  DirectoryServices.DirectorySearcher( $startelement) $searcher.  filter  =  "(&(objectClass=user)(sAMAccountName=$UserName))" 

 $Searcher.  CacheResults  =  $true

 $Searcher.  SearchScope  =  "Subtree" 

 $Searcher.  PageSize  = 1000

 $searcher.  findall()

}

 Get-LDAPUser can be used very flexibly and locates user accounts everywhere inside the domain. 

Just specify the name you're looking for or a part of it:

 # Find all users who have an "e" in their names:

 Get-LDAPUser  * e *

 # Find only users with "e" in their names that are 

 # in the "main office" OU or come under it. 

 Get-LDAPUser  * e *  "OU=main office,OU=company" 

 Get-LDAPUser gets the found user objects right back. You can subsequently process them in the 

PowerShell pipeline—just like the elements that you previously got directly from children. How does 

 Get-LDAPUser manage to search only the part of the domain you want it to? The following snippet of code is the reason:

 If ( $start  -ne  "" )

{

 $startelement  =  $domain.  psbase.Children.Find( $start)

}

 else

{

 $startelement  =  $domain

}

Table of Contents | About PowerShell Plus

530

Sponsors | Resources | © BBS Technologies



First, we checked whether the user specified the  $start second parameter. If yes,  Find() is used to access the specified container in the domain container (of the topmost level) and this is defined as 

the starting point for the search. If  $start is missing, the starting point is the topmost level of the domain, meaning that every location is searched. 

The function also specifies some options that are defined by the 

user:

 $Searcher.  CacheResults  =  $true

 $Searcher.  SearchScope  =  "Subtree" 

 $Searcher.  PageSize  = 1000

 SearchScope determines whether all child directories should also be searched 

recursively beginning from the starting point, or whether the search should 

be limited to the start directory.  PageSize specifies in which "chunk" the 

results of the domain are to be retrieved. If you reduce the  PageSize, your 

script may respond more freely, but will also require more network traffic. If 

you request more, the respective "chunk" will still include only 1,000 data 

records. 

You could now freely extend the example function by extending or modifying the search filter. Here 

are some useful examples:

Search Filter

Description

Find only user 

( & (objectCategory = person)(objectClass = User))

accounts, not 

computer accounts

Find only user 

accounts (much 

(sAMAccountType = 805306368)

quicker, but harder 

to read)

Find user accounts 

( &  amp;(objectClass = user)(sn = Weltner)

with a particular 

(givenName = Tobias))

name

( & (objectCategory = person)(objectClass = user)

Find user with dial-

(msNPAllowDialin = TRUE))

in permission

( & (objectCategory = person)(objectClass = user)

Find user who has 

(pwdLastSet = 0))

to change password 

Table of Contents | About PowerShell Plus

531

Sponsors | Resources | © BBS Technologies

at next logon

Find all computer 

( & (objectCategory = computer)( !  description =*))

accounts having no 

description

Find all user 

( & (objectCategory = person)(description =*))

accounts having no 

description

Find all elements 

( & (objectCategory = person)(objectClass = user)

created after March 

(whenCreated>  = 20050318000000.0Z))

18, 2005

Find all users whose 

account never 

( & (objectCategory = person)(objectClass = user)

expires (OR 

(|(accountExpires = 9223372036854775807)

condition, where 

(accountExpires = 0)))

only one condition 

must be met)

Find all disabled 

( & (objectClass = user)(userAccountControl:

user accounts 

1.2.840.113556.1.4.803: = 2))

(bitmask logical 

AND)

( & (objectCategory = person)(objectClass = user)

Find all users whose 

(userAccountControl:1.2.840.113556.1.4.803: = 32 password never 

))

expires

Find all users whose 

( & (objectClass = user)( !  userAccountControl:

password expires 

1.2.840.113556.1.4.803: = 65536))

(logical NOT using 

"!")

( & (objectCategory = group)( !  groupType:

Finding all 

1.2.840.113556.1.4.803: = 2147483648))

distribution groups

Finding all computer 

( & (objectCategory = Computer)( ! 

accounts that are 

userAccountControl

not domain 

:1.2.840.113556.1.4.803: = 8192))

controllers

Table of Contents | About PowerShell Plus

532

Sponsors | Resources | © BBS Technologies

Table 19.1: Examples of LDAP queries

Accessing Elements Using GUID

Elements in a domain are subject to change. The only thing that is really constant is the so-called 

GUID of an account. A GUID is assigned just one single time, namely when the object is created, 

after which it always remains the same. You can find out the GUID of an element by accessing the 

account. For example, use the practical  Get-LDAPUser function above:

 $searchuser  =  Get-LDAPUser  "Guest" 

 $useraccount  =  $searchuser.  GetDirectoryEntry()

 $useraccount.  psbase.NativeGUID

 f0ffa8b401ce5549b318c0a4641cdd4a

Because the results returned by the search include no "genuine" user objects, but only reduced 

 SearchResult objects, you must first use  GetDirectoryEntry() to get the real user object. This step is only necessary if you want to process search results. You can find the GUID of an account in 

 PSBase.NativeGUID. 

In the future, you can access precisely this account via its GUID. Then you won't have to care 

whether the location, the name, or some other property of the user accounts changes. The GUID will 

always remain constant:

 $acccount  = [ ADSI] "LDAP://<GUID=f0ffa8b401ce5549b318c0a4641cdd4a>" 

 $acccount

 distinguishedName

 -----------------

 {CN=Guest,CN=Users,DC=scriptinternals,DC=technet}

Specify the GUID when you log on if you want to log on to the domain:

 $guid  =  "<GUID=f0ffa8b401ce5549b318c0a4641cdd4a>" 

 $acccount  =  New-Object  DirectoryServices.DirectoryEntry(

 "LDAP://10.10.10.1/$guid" ,  "domain\user" ,  "secret" ) distinguishedName

 -----------------

 {CN=Guest,CN=Users,DC=scriptinternals,DC=technet}

Reading and Modifying Properties

In the last section, you learned how to access individual elements inside a domain: either directly 

through the ADSI path, the GUID, searching through directory contents, or launching a search 

across domains. 

Table of Contents | About PowerShell Plus

533

Sponsors | Resources | © BBS Technologies



The elements you get this way are full-fledged objects. You use the methods and properties of these 

elements to control them. Basically, everything applies that you read about in Chapter 6.  In the case of ADSI, there are some additional special features:

•

Twin objects: Every ADSI object actually exists twice: first, as an object PowerShell 

synthesizes and then as a raw ADSI object. You can access the underlying raw object via the 

 PSBase property of the processed object. The processed object contains all Active Directory 

attributes, including possible schema extensions. The underlying base object contains the 

.NET properties and methods you need for general management. You already saw how to 

access these two objects when you used  Children to list the contents of a container. 

•

Phantom objects: Search results of a cross-domain search look like original objects only at 

first sight. In reality, these are reduced  SearchResult objects. You can get the real ADSI 

object by using the  GetDirectoryEntry() method. You just saw how that happens in the 

section on GUIDs. 

•

Properties: All the changes you made to ADSI properties won't come into effect until you 

invoke the  SetInfo() method. 

In the following examples, we will use the  Get-LDAPUser function 

described above to access user accounts, but you can also get at 

user accounts with one of the other described approaches. 

Just What Properties Are There? 

There are theoretical and a practical approaches to establishing which properties any ADSI object 

contains. 

Practical Approach: Look

The practical approach is the simplest one: if you output the object to the console, PowerShell will 

convert all the properties it contains into text so that you not only see the properties, but also right 

away which values are assigned to the properties. In the following example, the user object is the 

result of an ADSI search, to be precise, of the above-mentioned  Get-LDAPUser function:

 $useraccount  =  Get-LDAPUser Guest

 $useraccount |  Format-List  *

 Path       : LDAP://10.10.10.1/CN=Guest,CN=Users, 

              DC=scriptinternals,DC=technet

 Properties : {samaccounttype, lastlogon, objectsid, 

              whencreated...}

The result is meager but, as you know by now, search queries only return a reduced  SearchResult 

object. You get the real user object from it by calling  GetDirectoryEntry(). Then you'll get more 

information:

 $useraccount  =  $useraccount.  GetDirectoryEntry()

Table of Contents | About PowerShell Plus

534

Sponsors | Resources | © BBS Technologies

 $useraccount |  Format-List  *

 objectClass            : {top, person, organizationalPerson, user}

 cn                     : {Guest}

 description            : {Predefined account for guest access to 

                          the computer or domain)

 distinguishedName      : {CN=Guest,CN=Users,DC=scriptinternals, 

                          DC=technet}

 instanceType           : {4}

 whenCreated            : {12.12.2005 12:31:31 PM}

 whenChanged            : {06.27.2006 09:59:59 AM}

 uSNCreated             : {System.__ComObject}

 memberOf               : {CN=Guests,CN=Builtin,DC=scriptinternals, 

                          DC=technet}

 uSNChanged             : {System.__ComObject}

 name                   : {Guest}

 objectGUID             : {240 255 168 180 1 206 85 73 179 24 192 

                          164 100 28 221 74}

 userAccountControl     : {66080}

 badPwdCount            : {0}

 codePage               : {0}

 countryCode            : {0}

 badPasswordTime        : {System.__ComObject}

 lastLogoff             : {System.__ComObject}

 lastLogon              : {System.__ComObject}

 logonHours             : {255 255 255 255 255 255 255 255 255 255 255 

                          255 255 255 255 255 255 255 255 255 255}

 pwdLastSet             : {System.__ComObject}

 primaryGroupID         : {514}

 objectSid              : {1 5 0 0 0 0 0 5 21 0 0 0 184 88 34 189 250 

                          183 7 172 165 75 78 29 245 1 0 0}

 accountExpires         : {System.__ComObject}

 logonCount             : {0}

 sAMAccountName         : {Guest}

 sAMAccountType         : {805306368}

 objectCategory         : {CN=Person,CN=Schema,CN=Configuration, 

                          DC=scriptinternals,DC=technet}

 isCriticalSystemObject : {True}

 nTSecurityDescriptor   : {System.__ComObject}

In addition, further properties are available in the underlying base object:

 $useraccount.  PSBase |  Format-List  *

 AuthenticationType : Secure

 Children           : {}

 Guid               : b4a8fff0-ce01-4955-b318-c0a4641cdd4a

 ObjectSecurity     : System.DirectoryServices.ActiveDirec

                      torySecurity

 Name               : CN=Guest

 NativeGuid         : f0ffa8b401ce5549b318c0a4641cdd4a

 NativeObject       : {}

Table of Contents | About PowerShell Plus

535

Sponsors | Resources | © BBS Technologies

 Parent             : System.DirectoryServices.Directory

                      Entry

 Password           :

 Path               : LDAP://10.10.10.1/CN=Guest,CN=Users, 

                      DC=scriptinternals,DC=technet

 Properties         : {objectClass, cn, description, disti

                      nguishedName...}

 SchemaClassName    : user

 SchemaEntry        : System.DirectoryServices.Directory

                      Entry

 UsePropertyCache   : True

 Username           : scriptinternals\Administrator

 Options            : System.DirectoryServices.Directory

                      EntryConfiguration

 Site               :

 Container          :

The difference between these two objects: the object that was returned first represents the 

respective user. The underlying base object is responsible for the ADSI object itself and, for 

example, reports where it is stored inside a domain or what is its unique GUID. The  UserName 

property, among others, does not state whom the user account represents (which in this case is 

 Guest), but who called it ( Administrator). 

Theoretical Approach: Much More Thorough

The practical approach we just saw is quick and returns a lot of information, but it is also 

incomplete. PowerShell shows only those properties in the output that actually do include a value 

right then (even if it is an empty value). In reality, many more properties are available so the tool 

you need to list them is  Get-Member:

 $useraccount |  Get-Member  -memberType  * Property

 Name                   MemberType Definition

 ----                   ---------- ----------

 accountExpires         Property   System.DirectoryServices. 

                                   PropertyValueCollection 

                                   accountExpires {get;set;}

 badPasswordTime        Property   System.DirectoryServices. 

                                   PropertyValueCollection 

                                   badPasswordTime {get;set;}

 badPwdCount            Property   System.DirectoryServices. 

                                   PropertyValueCollection 

                                   badPwdCount {get;set;}

 cn                     Property   System.DirectoryServices. 

                                   PropertyValueCollection 

                                   cn {get;set;}

 codePage               Property   System.DirectoryServices. 

                                   PropertyValueCollection 

                                   codePage {get;set;}

 countryCode            Property   System.DirectoryServices. 

                                   PropertyValueCollection 

Table of Contents | About PowerShell Plus

536

Sponsors | Resources | © BBS Technologies

                                   countryCode {get;set;}

 description            Property   System.DirectoryServices. 

                                   PropertyValueCollection 

                                   description {get;set;}

 distinguishedName      Property   System.DirectoryServices. 

                                   PropertyValueCollection 

                                   distinguishedName {get;... 

 instanceType           Property   System.DirectoryServices. 

                                   PropertyValueCollection 

                                   instanceType {get;set;}

 isCriticalSystemObject Property   System.DirectoryServices. 

                                   PropertyValueCollection 

                                   isCriticalSystemObject ... 

 lastLogoff             Property   System.DirectoryServices. 

                                   PropertyValueCollection 

                                   lastLogoff {get;set;}

 lastLogon              Property   System.DirectoryServices. 

                                   PropertyValueCollection 

                                   lastLogon {get;set;}

 logonCount             Property   System.DirectoryServices. 

                                   PropertyValueCollection 

                                   logonCount {get;set;}

 logonHours             Property   System.DirectoryServices. 

                                   PropertyValueCollection 

                                   logonHours {get;set;}

 memberOf               Property   System.DirectoryServices. 

                                   PropertyValueCollection 

                                   memberOf {get;set;}

 name                   Property   System.DirectoryServices. 

                                   PropertyValueCollection 

                                   name {get;set;}

 nTSecurityDescriptor   Property   System.DirectoryServices. 

                                   PropertyValueCollection 

                                   nTSecurityDescriptor {g... 

 objectCategory         Property   System.DirectoryServices. 

                                   PropertyValueCollection 

                                   objectCategory {get;set;}

 objectClass            Property   System.DirectoryServices. 

                                   PropertyValueCollection 

                                   objectClass {get;set;}

 objectGUID             Property   System.DirectoryServices. 

                                   PropertyValueCollection 

                                   objectGUID {get;set;}

 objectSid              Property   System.DirectoryServices. 

                                   PropertyValueCollection 

                                   objectSid {get;set;}

 primaryGroupID         Property   System.DirectoryServices. 

                                   PropertyValueCollection 

                                   primaryGroupID {get;set;}

 pwdLastSet             Property   System.DirectoryServices. 

                                   PropertyValueCollection 

                                   pwdLastSet {get;set;}

 sAMAccountName         Property   System.DirectoryServices. 

Table of Contents | About PowerShell Plus

537

Sponsors | Resources | © BBS Technologies

                                   PropertyValueCollection 

                                   sAMAccountName {get;set;}

 sAMAccountType         Property   System.DirectoryServices. 

                                   PropertyValueCollection 

                                   sAMAccountType {get;set;}

 userAccountControl     Property   System.DirectoryServices. 

                                   PropertyValueCollection 

                                   userAccountControl {get... 

 uSNChanged             Property   System.DirectoryServices. 

                                   PropertyValueCollection 

                                   uSNChanged {get;set;}

 uSNCreated             Property   System.DirectoryServices. 

                                   PropertyValueCollection 

                                   uSNCreated {get;set;}

 whenChanged            Property   System.DirectoryServices. 

                                   PropertyValueCollection 

                                   whenChanged {get;set;}

 whenCreated            Property   System.DirectoryServices. 

                                   PropertyValueCollection 

                                   whenCreated {get;set;}

In this list, you will also learn whether properties are only readable or if they can also be modified. 

Modifiable properties are designated by  {get;set;} and read-only by  {get;}. If you change a property, the modification won't come into effect until you subsequently call  SetInfo(). 

 $useraccount.  Description  =  "guest account" 

 $useraccount.  SetInfo()

Moreover,  Get-Member can supply information about the underlying  PSBase object:

 $useraccount.  PSBase |  Get-Member  -MemberType  * Property



 TypeName: System.Management.Automation.PSMemberSet

 Name               MemberType Definition

 ----               ---------- ----------

 AuthenticationType Property   System.DirectoryServices. 

                               AuthenticationTypes Authe

                               nticationType {get;set;}

 Children           Property   System.DirectoryServices. 

                               DirectoryEntries Children

                               {get;}

 Container          Property   System.ComponentModel. 

                               IContainer Container {get;}

 Guid               Property   System.Guid Guid {get;}

 Name               Property   System.String Name {get;}

 NativeGuid         Property   System.String NativeGuid 

                               {get;}

 NativeObject       Property   System.Object NativeObject 

                               {get;}

 ObjectSecurity     Property   System.DirectoryServices. 

                               ActiveDirectorySecurity 

Table of Contents | About PowerShell Plus

538

Sponsors | Resources | © BBS Technologies

                               ObjectSecurity {get;set;}

 Options            Property   System.DirectoryServices. 

                               DirectoryEntryConfiguration 

                               Options {get;}

 Parent             Property   System.DirectoryServices. 

                               DirectoryEntry Parent 

                               {get;}

 Password           Property   System.String Password 

                               {set;}

 Path               Property   System.String Path 

                               {get;set;}

 Properties         Property   System.DirectoryServices. 

                               PropertyCollection 

                               Properties {get;}

 SchemaClassName    Property   System.String SchemaClass

                               Name {get;}

 SchemaEntry        Property   System.DirectoryServices. 

                               DirectoryEntry SchemaEntry 

                               {get;}

 Site               Property   System.ComponentModel.ISite 

                               Site {get;set;}

 UsePropertyCache   Property   System.Boolean UseProperty

                               Cache {get;set;}

 Username           Property   System.String Username 

                               {get;set;}

Reading Properties

The convention is that object properties are read using a dot, just like all other objects (see Chapter 

6). So, if you want to find out what is in the  Description property of the  $useraccount object, formulate:

 $useraccount.  Description

 Predefined account for guest access

But there are also two other options and they look like this:

 $useraccount.  Get( "Description" )

 $useraccount.  psbase.InvokeGet( "Description" )

At first glance, both seem to work identically. However, differences become evident when you query 

another property:  AccountDisabled. 

 $useraccount.  AccountDisabled

 $useraccount.  Get( "AccountDisabled" )

 Exception calling "Get" with 1 Argument(s):  

 "The directory property cannot be found in the cache." 

 At line:1 Char:14

Table of Contents | About PowerShell Plus

539

Sponsors | Resources | © BBS Technologies



 + $useraccount.Get( <<<< "AccountDisabled")

 $useraccount.  psbase.InvokeGet( "AccountDisabled" )

 False

The first variant returns no information at all, the second an error message, and only the third the 

right result. What happened here? 

The object in  $useraccount is an object processed by PowerShell. All attributes (directory properties) become visible in this object as properties. However, ADSI objects can contain additional properties, 

and among these is  AccountDisabled. PowerShell doesn't take these additional properties into 

consideration. The use of a dot categorically suppresses all errors as only  Get() reports the problem: nothing was found for this element in the LDAP directory under the name  AccountDisabled. 

In fact,  AccountDisabled is located in another interface of the element as only the underlying  PSBase object, with its  InvokeGet() method, does everything correctly and returns the contents of this 

property. 

As long as you want to work on properties that are displayed when 

you use  Format-List * to output the object to the console, you 

won't have any difficulty using a dot or  Get(). For all other 

properties, you'll have to use  PSBase.InvokeGet().Use  GetEx() i If 

you want to have the contents of a property returned as an array. 

Modifying Properties

In a rudimentary case, you can modify properties like any other object: use a dot to assign a new 

value to the property. Don't forget afterwards to call  SetInfo() so that the modification is saved. 

That's a special feature of ADSI. For example, the following line adds a standard description for all 

users in the user directory if there isn't already one:

 $ldap  =  "CN=Users" 

 $domain  = [ ADSI] "" 

 $dn  =  $domain.  distinguishedName

 $users  = [ ADSI] "LDAP://$ldap,$dn" 

 $users.  PSBase.Children | 

 Where-Object {  $_.  sAMAccountType  -eq 805306368 } | 

 Where-Object {  $_.  Description.toString()  -eq  ""  } | 

 ForEach-Object {  $_.  Description  =  "Standard description" ; `

 $_.  SetInfo();  $_.  sAMAccountName  +  " was changed."  }

In fact, there are also a total of three approaches to modifying a property. That will soon become 

very important as the three ways behave differently in some respects:

 $searchuser  =  Get-LDAPUser Guest

 $useraccount  =  $searchuser.  GetDirectoryEntry()

Table of Contents | About PowerShell Plus

540

Sponsors | Resources | © BBS Technologies



 # Method 1:

 $useraccount.  Description  =  "A new description" 

 $useraccount.  SetInfo()

 # Method 2:

 $useraccount.  Put( "Description" ,  "Another new description" ) $useraccount.  SetInfo()

 # Method 3:

 $useraccount.  PSBase.InvokeSet( "Description" ,  "A third description" ) $useraccount.  SetInfo()

As long as you change the normal directory attributes of an object, all three methods will work in the 

same way. Difficulties arise when you modify properties that have special functions. For example 

among these is the  AccountDisabled property, which determines whether an account is disabled or 

not. The  Guest account is normally disabled:

 $useraccount.  AccountDisabled

The result is "nothing" because this property is—as you already know from the last section—not one of the directory attributes that PowerShell manages in this object. That's not good because 

something very peculiar will occur in PowerShell if you now try to set this property to another value:

 $useraccount.  AccountDisabled  =  $false

 $useraccount.  SetInfo()

 Exception calling "SetInfo" with 0 Argument(s):

 "The specified directory service attribute or value 

 already exists. (Exception from HRESULT: 0x8007200A)" 

 At line:1 Char:18

 + $useraccount.SetInfo( <<<< )

 $useraccount.  AccountDisabled

 False

PowerShell has summarily input to the object a new property called  AccountDisabled.  If you try to pass this object to the domain, it will resist: the  AccountDisabled property added by PowerShell does not match the  AccountDisabled domain property. This problem always occurs when you want to set 

a property of an ADSI object that hadn't previously been specified. 

To eliminate the problem, you have to first return the object to its original state so you basically 

remove the property that PowerShell added behind your back. You can do that by using  GetInfo() to 

reload the object from the domain. This shows that  GetInfo() is the opposite member of  SetInfo(): $useraccount.  GetInfo()

Once PowerShell has added an "illegal" property to the object, all 

further attempts will fail to store this object in the domain by using 

 SetInfo(). You  must call  GetInfo() or create the object again. 

Table of Contents | About PowerShell Plus

541

Sponsors | Resources | © BBS Technologies

Finally, use the third above-mentioned variant to set the property, namely not via the normal object processed by PowerShell, but via its underlying raw version:

 $useraccount.  psbase.InvokeSet( "AccountDisabled" ,  $false)

 $useraccount.  SetInfo()

Now the modification works. The lesson: the only method that can reliably and flawlessly modify 

properties is  InvokeSet() from the underlying  PSBase object. The other two methods that modify the object processed by PowerShell will only work properly with the properties that the object does 

display when you output it to the console. 

Deleting Properties

If you want to completely delete a property, you don't have to set its contents to 0 or empty text. If 

you delete a property, it will be completely removed.  PutEx() can delete properties and also supports properties that store arrays.  PutEx() requires three arguments. The first specifies what  PutEx() is supposed to do and corresponds to the values listed in Table 19.2.  The second argument is the property name that is supposed to be modified. Finally, the third argument is the value that you 

assign to the property or want to remove from it. 

Numerical Value

Meaning

1

Delete property value (property remains intact)

2

Replace property value completely

3

Add information to a property

4

Delete parts of a property

Table 19.2: PutEx() operations

To completely remove the  Description property, use  PutEx() with these parameters:

 $useraccount.  PutEx(1,  "Description" , 0)

 $useraccount.  SetInfo()

Then, the  Description property will be gone completely when you call all the properties of the object: $useraccount |  Format-List  *

 objectClass            : {top, person, organizationalPerson, 

                          user}

 cn                     : {Guest}

Table of Contents | About PowerShell Plus

542

Sponsors | Resources | © BBS Technologies



 distinguishedName      : {CN=Guest,CN=Users,DC=scriptinternals, 

                          DC=technet}

 instanceType           : {4}

 whenCreated            : {11.12.2005 12:31:31}

 whenChanged            : {17.10.2007 11:59:36}

 uSNCreated             : {System.__ComObject}

 memberOf               : {CN=Guests,CN=Builtin,DC=scriptintern

                          als,DC=technet}

 uSNChanged             : {System.__ComObject}

 name                   : {Guest}

 objectGUID             : {240 255 168 180 1 206 85 73 179 24 

                          192 164 100 28 221 74}

 userAccountControl     : {66080}

 badPwdCount            : {0}

 codePage               : {0}

 countryCode            : {0}

 badPasswordTime        : {System.__ComObject}

 lastLogoff             : {System.__ComObject}

 lastLogon              : {System.__ComObject}

 logonHours             : {255 255 255 255 255 255 255 255 255 

                          255 255 255 255 255 255 255 255 255 

                          255 255 255}

 pwdLastSet             : {System.__ComObject}

 primaryGroupID         : {514}

 objectSid              : {1 5 0 0 0 0 0 5 21 0 0 0 184 88 34 

                          189 250 183 7 172 165 75 78 29 245 1 

                          0 0}

 accountExpires         : {System.__ComObject}

 logonCount             : {0}

 sAMAccountName         : {Guest}

 sAMAccountType         : {805306368}

 objectCategory         : {CN=Person,CN=Schema,CN=Configur

                          ation,DC=scriptinternals,DC=technet}

 isCriticalSystemObject : {True}

 nTSecurityDescriptor   : {System.__ComObject}

Even Get-Member won't return to you any more indications of the 

 Description property. That's a real deficiency as you have no way 

to recognize what other properties the ADSI object may possibly 

support as long as you're using PowerShell's own resources. 

PowerShell always shows only properties that are defined. 

However, this doesn't mean that the  Description property is now gone forever. You can create a new one any time:

 $useraccount.  Description  =  "New description" 

 $useraccount.  SetInfo()

Table of Contents | About PowerShell Plus

543

Sponsors | Resources | © BBS Technologies

Interesting, isn't it? This means you could add entirely different properties that the object didn't have before:

 $useraccount.  wwwHomePage  =  "http://www.powershell.com" 

 $useraccount.  favoritefood  =  "Meatballs" 

 Cannot set the Value property for PSMemberInfo 

 object of type "System.Management.Automation.PSMethod". 

 At line:1 Char:11

 + $useraccount.L <<<< oritefood = "Meatballs" 

 $useraccount.  SetInfo()

It turns out that the user account accepts the  wwwHomePage property (and so sets the Web page of 

the user on user properties), while "favoritefood" was rejected. Only properties allowed by the 

schema can be set. 

The Schema of Domains

The directory service comes equipped with a list of permitted data called a  Schema to prevent 

meaningless garbage from getting stored in the directory service. Some information is mandatory 

and has to be specified for every object of the type, others (like a home page) are optional. The 

internal list enables you to get to the properties that you may deposit in an ADSI object. The 

 SchemaClass property will tell you which "operating manual" you need for the object:

 $useraccount.  psbase.SchemaClassName

user

Take a look under this name in the schema of the domain. The result is the schema object for user 

objects, which returns the names of all permitted properties in  SystemMayContain. 

 $schema  =  $domain.  PSBase.Children.find(

 "CN=user,CN=Schema,CN=Configuration" )

 $schema.  systemMayContain |  Sort-Object

 accountExpires

 aCSPolicyName

 adminCount

 badPasswordTime

 badPwdCount

 businessCategory

 codepage

 controlAccessRights

 dBCSPwd

 defaultClassStore

 desktopProfile

 dynamicLDAPServer

 groupMembershipSAM

 groupPriority

 groupsToIgnore

Table of Contents | About PowerShell Plus

544

Sponsors | Resources | © BBS Technologies

 homeDirectory

 homeDrive

 homePhone

 initials

 lastLogoff

 lastLogon

 lastLogonTimestamp

 lmPwdHistory

 localeID

 lockoutTime

 logonCount

 logonHours

 logonWorkstation

 mail

 manager

 maxStorage

 mobile

 msCOM-UserPartitionSetLink

 msDRM-IdentityCertificate

 msDS-Cached-Membership

 msDS-Cached-Membership-Time-Stamp

 mS-DS-CreatorSID

 msDS-Site-Affinity

 msDS-User-Account-Control-Computed

 msIIS-FTPDir

 msIIS-FTPRoot

 mSMQDigests

 mSMQDigestsMig

 mSMQSignCertificates

 mSMQSignCertificatesMig

 msNPAllowDialin

 msNPCallingStationID

 msNPSavedCallingStationID

 msRADIUSCallbackNumber

 msRADIUSFramedIPAddress

 msRADIUSFramedRoute

 msRADIUSServiceType

 msRASSavedCallbackNumber

 msRASSavedFramedIPAddress

 msRASSavedFramedRoute

 networkAddress

 ntPwdHistory

 o

 operatorCount

 otherLoginWorkstations

 pager

 preferredOU

 primaryGroupID

 profilePath

 pwdLastSet

 scriptPath

 servicePrincipalName

 terminalServer

Table of Contents | About PowerShell Plus

545

Sponsors | Resources | © BBS Technologies

 unicodePwd

 userAccountControl

 userCertificate

 userParameters

 userPrincipalName

 userSharedFolder

 userSharedFolderOther

 userWorkstations

Setting Properties Having Several Values

 PutEx() is not only the right tool for deleting properties but also for properties that have more than one value. Among these is  otherHomePhone, the list of a user's supplementary telephone contacts. 

The property can store just one telephone number or several, which is how you can reset the 

property telephone numbers:

 $useraccount.  PutEx(2,  "otherHomePhone" , @( "123" ,  "456" ,  "789" )) $useraccount.  SetInfo()

But note that this would delete any other previously entered telephone numbers. If you want to add 

a new telephone number to an existing list, proceed as follows:

 $useraccount.  PutEx(3,  "otherHomePhone" , @( "555" ))

 $useraccount.  SetInfo()

A very similar method allows you to delete selected telephone numbers on the list:

 $useraccount.  PutEx(4,  "otherHomePhone" , @( "456" ,  "789" )) $useraccount.  SetInfo()

Invoking Methods

All the objects that you've been working with up to now contain not only properties, but also 

methods. In contrast to properties, methods do not require you to call  SetInfo() when you invoke a method that modifies an object. To find out which methods an object contains, use  Get-Member to 

make them visible (see Chapter 6):

 $guest |  Get-Member  -memberType  * Method

Surprisingly, the result is something of a disappointment because the ADSI object PowerShell 

delivers contains no methods. The true functionality is in the base object, which you get by using 

 PSBase:

 $guest.  psbase |  Get-Member  -memberType  * Method

    TypeName: System.Management.Automation.PSMemberSet

 Name                      MemberType Definition

 ----                      ---------- ----------

Table of Contents | About PowerShell Plus

546

Sponsors | Resources | © BBS Technologies

 add_Disposed              Method     System.Void add_Disposed

                                      (EventHandler value)

 Close                     Method     System.Void Close()

 CommitChanges             Method     System.Void CommitChanges

                                      ()

 CopyTo                    Method     System.DirectoryServices. 

                                      DirectoryEntry CopyTo(Dir

                                      ectoryEntry newPare... 

 CreateObjRef              Method     System.Runtime.Remoting. 

                                      ObjRef CreateObjRef(Type 

                                      requestedType)

 DeleteTree                Method     System.Void DeleteTree()

 Dispose                   Method     System.Void Dispose()

 Equals                    Method     System.Boolean Equals(

                                      Object obj)

 GetHashCode               Method     System.Int32 GetHashCode

                                      ()

 GetLifetimeService        Method     System.Object GetLifetime

                                      Service()

 GetType                   Method     System.Type GetType()

 get_AuthenticationType    Method     System.DirectoryServices. 

                                      AuthenticationTypes get_

                                      AuthenticationType()

 get_Children              Method     System.DirectoryServices. 

                                      DirectoryEntries get_

                                      Children()

 get_Container             Method     System.ComponentModel. 

                                      IContainer get_Container

                                      ()

 get_Guid                  Method     System.Guid get_Guid()

 get_Name                  Method     System.String get_Name()

 get_NativeGuid            Method     System.String get_Native

                                      Guid()

 get_ObjectSecurity        Method     System.DirectoryServices. 

                                      ActiveDirectorySecurity 

                                      get_ObjectSecurity()

 get_Options               Method     System.DirectoryServices. 

                                      DirectoryEntryConfigura

                                      tion get_Options()

 get_Parent                Method     System.DirectoryServices. 

                                      DirectoryEntry get_

                                      Parent()

 get_Path                  Method     System.String get_Path()

 get_Properties            Method     System.DirectoryServices. 

                                      PropertyCollection get_

                                      Properties()

 get_SchemaClassName       Method     System.String get_Schema

                                      ClassName()

 get_SchemaEntry           Method     System.DirectoryServices. 

                                      DirectoryEntry get_

                                      SchemaEntry()

 get_Site                  Method     System.ComponentModel. 

                                      ISite get_Site()

Table of Contents | About PowerShell Plus

547

Sponsors | Resources | © BBS Technologies

 get_UsePropertyCache      Method     System.Boolean get_Use

                                      PropertyCache()

 get_Username              Method     System.String get_User

                                      name()

 InitializeLifetimeService Method     System.Object Initialize

                                      LifetimeService()

 Invoke                    Method     System.Object Invoke(

                                      String methodName, 

                                      Params Object[] args)

 InvokeGet                 Method     System.Object InvokeGet(

                                      String propertyName)

 InvokeSet                 Method     System.Void InvokeSet(

                                      String propertyName, 

                                      Params Object[] args)

 MoveTo                    Method     System.Void MoveTo(Direct

                                      oryEntry newParent), 

                                      System.Void MoveTo(Dire... 

 RefreshCache              Method     System.Void RefreshCache(), 

                                      System.Void RefreshCache(

                                      String[] propert... 

 remove_Disposed           Method     System.Void remove_Dis

                                      posed(EventHandler value)

 Rename                    Method     System.Void Rename(String 

                                      newName)

 set_AuthenticationType    Method     System.Void set_Authentic

                                      ationType(Authentication

                                      Types value)

 set_ObjectSecurity        Method     System.Void set_ObjectSec

                                      urity(ActiveDirectorySec

                                      urity value)

 set_Password              Method     System.Void set_Password

                                      (String value)

 set_Path                  Method     System.Void set_Path(

                                      String value)

 set_Site                  Method     System.Void set_Site(

                                      ISite value)

 set_UsePropertyCache      Method     System.Void set_Use

                                      PropertyCache(Boolean 

                                      value)

 set_Username              Method     System.Void set_Username(

                                      String value)

 ToString                  Method     System.String ToString()

Changing Passwords

The password of a user account is an example of information that isn't stored in a property. That's 

why you can't just read out user accounts. Instead, methods ensure the immediate generation of a 

completely confidential hash value out of the user account and that it is deposited in a secure 

location. You can use the  SetPassword() and  ChangePassword() methods to change passwords:

 $useraccount.  SetPassword( "New password" )

Table of Contents | About PowerShell Plus

548

Sponsors | Resources | © BBS Technologies



 $useraccount.  ChangePassword( "Old password" ,  "New password" ) Here, too, the deficiencies of  Get-Member become evident when it 

is used with ADSI objects because  Get-Member suppresses both 

methods instead of displaying them. You just have to "know" that 

they exist. 

 SetPassword() requires administrator privileges and simply resets the password. That can be risky 

because in the process you lose access to all your certificates outside a domain, including the crucial 

certificate for the Encrypting File System (EFS), though it's necessary when users forget their 

passwords.  ChangePassword doesn't need any higher level of permission because confirmation 

requires giving the old password. 

When you change a password, be sure that it meets the demands of the domain. Otherwise, you'll 

be rewarded with an error message like this one:

 Exception calling "SetPassword" with 1 Argument(s):

 "The password does not meet the password policy 

 requirements. Check the minimum password length, 

 password complexity and password history requirements. 

 (Exception from HRESULT: 0x800708C5)" 

 At line:1 Char:22

 + $realuser.SetPassword( <<<< "secret")

Controlling Group Memberships

Methods also set group memberships. Of course, the first thing you need is the groups in which a 

user becomes a member. That basically works just like user accounts as you could specify the ADSI 

path to a group to access the group. Alternatively, you can use a universal function that helpfully 

picks out groups for you:

 function  Get-LDAPGroup([ string] $UserName, [ string] $Start)

{

 # Use current logon domain:

 $domain  = [ ADSI] "" 

 # OR: log on to another domain:

 #   $domain = New-Object DirectoryServices.DirectoryEntry(

 #   "LDAP://10.10.10.1","domain\user", "secret")

 If ( $start  -ne  "" )

{

 $startelement  =  $domain.  psbase.Children.Find( $start)

}

 else

{

 $startelement  =  $domain

}

 $searcher  =  New-Object  DirectoryServices.DirectorySearcher( $startelement)

Table of Contents | About PowerShell Plus

549

Sponsors | Resources | © BBS Technologies



 $searcher.  filter  =  "(&(objectClass=group)(sAMAccountName=$UserName))" 

 $Searcher.  CacheResults  =  $true

 $Searcher.  SearchScope  =  "Subtree" 

 $Searcher.  PageSize  = 1000

 $searcher.  findall()

}

In Which Groups Is a User a Member? 

There are two sides to group memberships. Once you get the user account object, the  memberOf 

property will return the groups in which the user is a member:

 $guest  = ( Get-LDAPUser Guest).  GetDirectoryEntry()

 $guest.  memberOf

 CN=Guests,CN=Builtin,DC=scriptinternals,DC=technet

Which Users Are Members of a Group? 

The other way of looking at it starts out from the group: members are in the  Member property in 

group objects:

 $admin  = ( Get-LDAPGroup  "Domain Admins" ).  GetDirectoryEntry() $admin.  member

 CN=Tobias Weltner,CN=Users,DC=scriptinternals,DC=technet

 CN=Markus2,CN=Users,DC=scriptinternals,DC=technet

 CN=Belle,CN=Users,DC=scriptinternals,DC=technet

 CN=Administrator,CN=Users,DC=scriptinternals,DC=technet

Groups on their part can also be members in other groups. So, 

every group object has not only the  Member property with its 

members, but also  memberOf with the groups in which this group 

is itself a member. 

Adding Users to a Group

To add a new user to a group, you need the group object as well as (at least) the ADSI path of the 

user, who is supposed to become a member. To do this, use  Add():

 $administrators  = ( Get-LDAPGroup  "Domain Admins" ).  GetDirectoryEntry() $user  = ( Get-LDAPUser Cofi1).  GetDirectoryEntry()

 $administrators.  Add( $user.  psbase.Path)

 $administrators.  SetInfo()

Table of Contents | About PowerShell Plus

550

Sponsors | Resources | © BBS Technologies

In the example, the user Cofi1 is added to the group of  Domain Admins. It would have sufficed to specify the user's correct ADSI path to the  Add() method. But it's easier to get the user and pass the path property of the  PSBase object. 

Aside from  Add(), there are other ways to add users to groups:

 $administrators.  Member  =  $administrators.  Member  +  $user.  distinguishedName $administrators.  SetInfo()

 $administrators.  Member  +=  $user.  distinguishedName

 $administrators.  SetInfo()

Instead of  Add() use the  Remove() method to remove users from the group again. 

Creating New Objects

The containers at the beginning of this chapter also know how to handle properties and methods. 

So, if you want to create new organizational units, groups, and users, all you have to do is to decide 

where these elements should be stored inside a domain. Then, use the  Create() method of the 

respective container. 

Creating New Organizational Units

Let's begin experimenting with new organizational units that are supposed to represent the structure 

of a company. Since the first organizational unit should be created on the topmost domain level, get 

a domain object:

 $domain  = [ ADSI] "" 

Next, create a new organizational unit called "company" and under it some additional organizational units:

 $company  =  $domain.  Create( "organizationalUnit" ,  "OU=Idera" ) $company.  SetInfo()

 $sales  =  $company.  Create( "organizationalUnit" ,  "OU=Sales" ) $sales.  SetInfo()

 $marketing  =  $company.  Create( "organizationalUnit" ,  "OU=Marketing" ) $marketing.  SetInfo()

 $service  =  $company.  Create( "organizationalUnit" ,  "OU=Service" ) $service.  SetInfo()

Create New Groups

Groups can be created as easily as organizational units. You should decide again in which container 

the group is to be created and specify the name of the group. In addition, define with the  groupType 

property the type of group that you want to create, because in contrast to organizational units there 

are several different types of groups:

Table of Contents | About PowerShell Plus

551

Sponsors | Resources | © BBS Technologies



Group

Code

Global

2

Local

4

Universal

8

As security group

Add -2147483648

Table 19.3: Group Types

Security groups have their own security ID so you can assign permissions to them. Distribution 

groups organize only members, but have no security function. In the following example, a global 

security group and a global distribution group are created:

 $group_marketing  =  $marketing.  Create( "group" ,  "CN=Marketinglights" ) $group_marketing.  psbase.InvokeSet( "groupType" ,  - 2147483648  + 2) $group_marketing.  SetInfo()

 $group_newsletter  =  $company.  Create( "group" ,  "CN=Newsletter" ) $group_newsletter.  psbase.InvokeSet( "groupType" , 2)

 $group_newsletter.  SetInfo()

Creating New Users

To create a new user, proceed analogously, and first create the new user object in a container of 

your choice. Then, you can fill out the required properties and set the password using 

 SetPassword().  Using the  AccountDisabled property, enable the account. The following lines create a new user account in the previously created organization unit "Sales":

 $user  =  $sales.  Create( "User" ,  "CN=MyNewUser" ) $user.  SetInfo()

 $user.  Description  =  "My New User" 

 $user.  SetPassword( "TopSecret99" )

 $user.  psbase.InvokeSet( 'AccountDisabled' ,  $false)

 $user.  SetInfo()

Instead of  Create() use the  Delete() method to delete objects. 

Table of Contents | About PowerShell Plus

552

Sponsors | Resources | © BBS Technologies

CHAPTER 20. 

 Your Own Cmdlets and Extensions

Since PowerShell is layered on the .NET framework, you already know from Chapter 6 how you can use .NET code in PowerShell to make up for missing functions. In this chapter, we'll take up this idea 

once again. You'll learn about the options PowerShell has for creating command extensions on the 

basis of the .NET framework. You should be able to even create your own cmdlets at the end of this 

chapter. 

Topics Covered:

•

C

  ompiling Your Own .NET Expansions  

•

E

  xtension for the Clipboard  

•

In

  -Memory Compiling  

•

DL

  L Compilation  

•

B

  uilding Your Own Cmdlets  

•

H

  ow Cmdlets Are Structured  

•

S

  tep 1: Compiling the Snap-In  

•

S

  tep 2: Registering Snap-Ins  

•

S

  tep 3: Loading Snap-Ins  

•

T

  he Structure of Cmdlets  

•

T

  he Snap-In  

•

T

  he Cmdlet  

•

B

  egin, Process, End  

Compiling Your Own .NET Expansions

Many functionalities of the .NET framework are available right in PowerShell. For example, the 

following two lines suffices to set up a dialog window:

[ System.Reflection.Assembly]::`

LoadWithPartialName( "Microsoft.VisualBasic" )

[ Microsoft.VisualBasic.Interaction]::`

MsgBox( "Do you agree?" ,  "YesNoCancel,Question" ,  "Question" ) In Chapter 6,  you learned in detail about how this works and what an "assembly" is. To briefly explain what happened here, PowerShell used  LoadWithPartialName() to load a system library and 

was then able to use the classes from it to call a static method like  MsgBox(). 

That's extremely practical when there is already a system library that offers the method you're 

looking for, but for some functionality even the .NET framework doesn't have any right commands. 

For example, you have to rely on your own resources if you want to move text to the clipboard. The 

only way to get it done is to access the low-level API functions outside the .NET framework. 

Table of Contents | About PowerShell Plus

553

Sponsors | Resources | © BBS Technologies

Extension for the Clipboard

As soon as you need more than just a few lines of code or access to API functions to implement the 

kinds of extensions you want, it makes sense to write the extension directly in .NET program code. 

The following example shows how a method called  CopyToClipboard() might look in VB.NET. The 

VB.NET code is directly assigned in the form of a  Here string to the  $code variable:

 $code  = @ ' 

 Imports Microsoft.VisualBasic

 Imports System

 Namespace ClipboardAddon

   Public Class Utility

     Private Declare Function OpenClipboard Lib "user32" _

       (ByVal hwnd As Integer) As Integer

     Private Declare Function EmptyClipboard Lib "user32" _

       () As Integer

     Private Declare Function CloseClipboard Lib "user32" _

       () As Integer

     Private Declare Function SetClipboardData Lib "user32" _

       (ByVal wFormat As Integer, ByVal hMem As Integer) As Integer

     Private Declare Function GlobalAlloc Lib "kernel32" _

       (ByVal wFlags As Integer, ByVal dwBytes As Integer) As Integer

     Private Declare Function GlobalLock Lib "kernel32" _

       (ByVal hMem As Integer) As Integer

     Private Declare Function GlobalUnlock Lib "kernel32" _

       (ByVal hMem As Integer) As Integer

     Private Declare Function lstrcpy Lib "kernel32" (ByVal _

       lpString1 As Integer, ByVal lpString2 As String) As Integer

     Public Sub CopyToClipboard(ByVal text As String)

       Dim result As Boolean = False

       Dim mem As Integer = GlobalAlloc(&H42, text.Length + 1)

       Dim lockedmem As Integer = GlobalLock(mem)



       lstrcpy(lockedmem, text)

       If GlobalUnlock(mem) = 0 Then

         If OpenClipboard(0) Then

           EmptyClipboard()

           result = SetClipboardData(1, mem)

           CloseClipboard() 

         End If

       End If

     End Sub

   End Class

 End Namespace

 ' @

You have to first compile the code before PowerShell can execute it. Compilation is a translation of 

your source code into machine-readable intermediate language (IL). There are two options here. 

Table of Contents | About PowerShell Plus

554

Sponsors | Resources | © BBS Technologies



In-Memory Compiling

In a very simple case, you can task PowerShell to use  CompileAssemblyFromSource() to translate 

your source code directly in a memory. The result is a new .NET assembly. As soon as the assembly 

is compiled, PowerShell can use the methods in it as well as  CopyToClipboard() to move text to the clipboard:

 $provider  =  New-Object  Microsoft.VisualBasic.VBCodeProvider

 $params  =  New-Object  System.CodeDom.Compiler.CompilerParameters

 $params.  GenerateInMemory  =  $True

 $refs  =  "System.dll" ,  "Microsoft.VisualBasic.dll" 

 $params.  ReferencedAssemblies.AddRange( $refs)

 $results  =  $provider.  CompileAssemblyFromSource( $params,  $code) $object  =  New-Object  clipboardaddon.Utility

 $object.  CopyToClipboard( "Hi Everyone!" )

You might be asking yourself why you have to use  New-Object first 

to create a new object in order to call your  CopyToClipboard() 

method? That wasn't necessary in the first example of the 

 MsgBox() method. 

 CopyToClipboard() is created in your source code as a  dynamic method, 

which requires you to first create an instance of the class, and that's exactly 

what  New-Object does. Then the instance can call the method. 

Alternatively, methods can also be  static. For example,  MsgBox() in the first 

example is a static method. To call static methods, you need neither  New-

 Object nor any instances. Static methods are called directly through the class 

in which they are defined. 

If you would rather use  CopyToClipboard() as a static method, all you need to 

do is to make a slight change to your source code. Replace this line:

 Public Sub CopyToClipboard(ByVal text As String)

Type this line instead:

 Public Shared Sub CopyToClipboard(ByVal text As String)

Once you have compiled your source code, then you can immediately call the 

method like this:

 $provider  =  New-Object  Microsoft.VisualBasic.VBCodeProvider

 $params  =  New-Object  System.CodeDom.Compiler.CompilerParameters

 $params.  GenerateInMemory  =  $True

 $refs  =  "System.dll" ,  "Microsoft.VisualBasic.dll" 

 $params.  ReferencedAssemblies.AddRange( $refs)

 $results  =  $provider.  CompileAssemblyFromSource( $params,  $code)

[ clipboardaddon.Utility]:: CopyToClipboard( "Hi Everyone!" )

Table of Contents | About PowerShell Plus

555

Sponsors | Resources | © BBS Technologies



DLL Compilation

You'll lose your compilation in the memory as soon as you end PowerShell, which means you would 

have to do everything all over again every time you need the  CopyToClipboard() method. An often 

better approach is to compile your source code in a Dynamic Link Library (DLL), whose file can then 

be loaded whenever you need it or passed on to friends and colleagues. 

To make a DLL file from your source code, call the  vbc.exe VB.NET compiler directly:

 $code |  Out-File  sourcecode.vb

 $path  =  Resolve-Path  sourcecode.vb

 $compiler  =  "$env:windir/Microsoft.NET/Framework/v2.0.50727/vbc" 

 &$compiler  / target:library  $path

dir  sourcecode.dll

The result is the  sourcecode.dll file. If you want to put it to work, all you have left to do now is to use  LoadFrom() to load it in PowerShell:

 $path  =  Resolve-Path  sourcecode.dll

[ System.Reflection.Assembly]:: LoadFrom( $path)

 $object  =  New-Object  clipboardaddon.Utility

 $object.  CopyToClipboard( "Hi Everyone!" )

If you'd rather compile c# code, simply use the  csc.exe c# 

compiler instead of  vbc.exe. Use  LoadFrom() if you want to load 

assemblies from any DLLs again and  LoadWithPartialName() if you 

want to load system assemblies that are registered in the 

central .NET Global Assembly Cache (GAC). 

Building Your Own Cmdlets

Command extensions based on DLLs that you compile yourself are an interesting alternative, but 

somewhat unwieldy. You would have to already know exactly where to find the DLL, use  LoadFrom() 

to load it, and still have to know which method in the assembly is the right one. A further 

disadvantage is that methods from external DLLs don't support the PowerShell pipeline. 

Your command extension will work much more conveniently if you turn it into a cmdlet. Your own 

new cmdlet will behave just like cmdlets that already exist. You can put it to work inside the 

pipeline, and it won't require any unusual method invocations. 

Table of Contents | About PowerShell Plus

556

Sponsors | Resources | © BBS Technologies

How Cmdlets Are Structured

Every cmdlet represents a single command. These are wrapped as a package in the form of a snap-

in so that PowerShell can use your cmdlets. The following example makes use of your clipboard 

function above in the  Out-Clipboard cmdlet and wraps this in the  ClipboardSnapin snap-in. A little later, it will be explained just how the following source code works. First, take a look at what steps 

are necessary to make this source code into a functioning cmdlet:

 $code  = @ ' 

 Imports System

 Imports System.Configuration.Install

 Imports System.Collections.Generic

 Imports System.Text

 Imports System.ComponentModel

 Imports System.Management.Automation

 Namespace MSPressBuch.PowerShell.Cmdlets

   <RunInstaller(True)> Public Class ClipboardSnapin

     Inherits PSSnapIn

     Public Sub New()

       MyBase.New()

     End Sub

     Public Overrides ReadOnly Property Name() As String

       Get

         Return "Clipboard-Tool" 

       End Get

     End Property

     Public Overrides ReadOnly Property Vendor() As String

       Get

         Return "Dr. Tobias Weltner" 

       End Get

     End Property

     Public Overrides ReadOnly Property VendorResource() As String

       Get

         Return String.Format("{0},{1}", Name, Vendor)

       End Get

     End Property

     Public Overrides ReadOnly Property Description() As String

       Get

         Return "Copy text to clipboard" 

       End Get

     End Property

     Public Overrides ReadOnly Property _

     DescriptionResource() As String 

       Get

         Return String.Format("{0},{1}", Name, Description)

       End Get

     End Property

   End Class



   <Cmdlet(VerbsData.Out, "Clipboard")> Public Class ClipboardHelper

     Inherits Cmdlet

     Private data As String = "" 

Table of Contents | About PowerShell Plus

557

Sponsors | Resources | © BBS Technologies

     Private _Text() As String

     Private linefeed as string = "" 

     <Parameter(Mandatory:=False, _

     Position:=0, _

     ValueFromPipeline:=True, _

     HelpMessage:="Text to copy to Clipboard"), _

     ValidateNotNullOrEmpty()> _

     Public Property Text() As String()

        Get

          Return _Text

        End Get

        Set(ByVal value As String())

          _Text = value

        End Set

     End Property

     Protected Overrides Sub BeginProcessing()

       WriteDebug("Enter BeginProcessing")

       data = "" 

       MyBase.BeginProcessing()

     End Sub

     Protected Overrides Sub EndProcessing()

       WriteDebug("Enter EndProcessing")

       Utility.CopyToClipboard(data)

       MyBase.EndProcessing() 

     End Sub

     Protected Overrides Sub ProcessRecord()

       WriteDebug("Processing Record")

       Try

         For Each Line As String In _Text

           data += Line

           data += linefeed

           linefeed = (chr(13) + chr(10))

         Next

       Catch ex as Exception

         WriteDebug("Failure: " & ex.Message)

       End Try

       WriteDebug("Done Processing Record")

     End Sub

   End Class

   Public Class Utility

     Private Declare Function OpenClipboard Lib "user32" _

       (ByVal hwnd As Integer) As Integer

     Private Declare Function EmptyClipboard Lib "user32" _

       () As Integer

     Private Declare Function CloseClipboard Lib "user32" _

       () As Integer

     Private Declare Function SetClipboardData Lib "user32" _

       (ByVal wFormat As Integer, ByVal hMem As Integer) _

       As Integer

     Private Declare Function GlobalAlloc Lib "kernel32" _

       (ByVal wFlags As Integer, ByVal dwBytes As Integer) _

       As Integer

     Private Declare Function GlobalLock Lib "kernel32" _

Table of Contents | About PowerShell Plus

558

Sponsors | Resources | © BBS Technologies

       (ByVal hMem As Integer) As Integer

     Private Declare Function GlobalUnlock Lib "kernel32" _

       (ByVal hMem As Integer) As Integer

     Private Declare Function lstrcpy Lib "kernel32" _

       (ByVal lpString1 As Integer, ByVal lpString2 As _

       String) As Integer 



     Public Shared Sub CopyToClipboard(ByVal text As String)

       Dim result As Boolean = False

       Dim mem As Integer = GlobalAlloc(&H42, text.Length + 1)

       Dim lockedmem As Integer = GlobalLock(mem)

       lstrcpy(lockedmem, text)

       If GlobalUnlock(mem) = 0 Then

         If OpenClipboard(0) Then 

           EmptyClipboard()

           result = SetClipboardData(1, mem)

           CloseClipboard()

         End If

       End If

    End Sub

   End Class

 End Namespace

 ' @

Step 1: Compiling the Snap-In

As in the first examples, your source code must first be compiled. Again, use the  vbc.exe VB.NET 

compiler. However, because your cmdlet uses classes like  Cmdlet and  PSSnapIn, which PowerShell provides, the compiler has to be given a reference to the PowerShell libraries. Use the  /reference 

switch to give this reference. The simplest way to find the location of the PowerShell libraries is to 

query the  Assembly.Location property of the  PSObject type. 

 $code |  Out-File  cmdlet.vb

 $path  =  Resolve-Path  cmdlet.vb

 $compiler  =  "$env:windir/Microsoft.NET/Framework/v2.0.50727/vbc" 

 $ref  = [ PsObject].  Assembly.Location

 &$compiler  / target:library  / reference: $ref  $path

dir  cmdlet.dll

 Directory: Microsoft.PowerShell.Core\FileSystem::

 C:\Users\Tobias Weltner

 Mode                LastWriteTime     Length Name

 ----                -------------     ------ ----

 -a---        10.24.2007     12:13       8192 cmdlet.dll

If you haven't made any typing errors in  $code of your source code, you'll get the file  cmdlet.dll: your new snap-in, which includes your cmdlet. 

Table of Contents | About PowerShell Plus

559

Sponsors | Resources | © BBS Technologies



Step 2: Registering Snap-Ins

Before you can use a snap-in, it has to be registered. The  installutil.exe utility program of the .NET 

framework handles registration. Using it is roughly like using  regsvr32.exe to register COM 

components in the old COM world. It makes some registry entries so that PowerShell can find your 

snap-in later. 

Registering PowerShell snap-ins requires administrator privileges. 

The following lines implement registration:

 $path  =  Resolve-Path  cmdlet.dll

 $register  =  "$env:windir/Microsoft.NET/Framework/v2.0.50727/installutil" 

 &$register  $path

 Microsoft (R) .NET Framework Installation utility Version 

 2.0.50727.312

 Copyright (c) Microsoft Corporation. All rights reserved. 

 Running a transacted installation. 

 Beginning the Install phase of the installation. 

 See the contents of the log file for the C:\Users\

 Tobias Weltner\cmdlet.dll assembly's progress. 

 The file is located at C:\Users\Tobias Weltner\

 cmdlet.InstallLog. 

 Installing assembly 'C:\Users\Tobias Weltner\cmdlet.dll'. 

 Affected parameters are:

    logtoconsole =

    assemblypath = C:\Users\Tobias Weltner\cmdlet.dll

    logfile = C:\Users\Tobias Weltner\cmdlet.InstallLog

 The Install phase completed successfully, and the 

 Commit phase is beginning. 

 See the contents of the log file for the C:\Users\

 Tobias Weltner\cmdlet.dll assembly's progress. 

 The file is located at C:\Users\Tobias Weltner\

 cmdlet.InstallLog. 

 Installing assembly 'C:\Users\Tobias Weltner\cmdlet.dll'. 

 Affected parameters:

    logtoconsole =

    assemblypath = C:\Users\Tobias Weltner\cmdlet.dll

    logfile = C:\Users\Tobias Weltner\cmdlet.InstallLog

 The Commit phase completed successfully. 

 The transacted install has completed. 

Table of Contents | About PowerShell Plus

560

Sponsors | Resources | © BBS Technologies

Step 3: Loading Snap-Ins

You use the  Get-PSSnapin cmdlet to manage all registered snap-ins. This cmdlet allows you to find 

out which snap-ins that you are currently using:

 Get-PSSnapin

 Name        : Microsoft.PowerShell.Core

 PSVersion   : 1.0

 Description : This Windows PowerShell snap-in contains Windows 

               PowerShell management cmdlets used to manage 

               components of Windows PowerShell. 

 Name        : Microsoft.PowerShell.Host

 PSVersion   : 1.0

 Description : This Windows PowerShell snap-in contains cmdlets 

               used by the Windows PowerShell host. 

 Name        : Microsoft.PowerShell.Management

 PSVersion   : 1.0

 Description : This Windows PowerShell snap-in contains management 

               cmdlets used to manage Windows components. 

 Name        : Microsoft.PowerShell.Security

 PSVersion   : 1.0

 Description : This Windows PowerShell snap-in contains cmdlets to 

               manage Windows PowerShell security. 

 Name        : Microsoft.PowerShell.Utility

 PSVersion   : 1.0

 Description : This Windows PowerShell snap-in contains utility 

               Cmdlets used to manipulate data. 

As you see, all cmdlets come from snap-ins. Even the tightly built-in cmdlets are not at all as tightly 

built-in as it seems. When PowerShell starts, it loads them from various snap-ins. So, it might be 

that some additional snap-ins are on your system, such as to manage Microsoft Exchange or to 

perform other tasks. 

But  Get-PSSnapin not only displays snap-ins that are already loaded, but any others as well. Using the  -registered parameter instructs  Get-PSSnapin to list all registered snap-ins. Since you already registered your own snap-in, it should be in this list:

 Get-PSSnapin  -registered

 Name        : Clipboard-Tool

 PSVersion   : 1.0

 Description : Copy text to clipboard

 Name        : Pscx

 PSVersion   : 1.0

 Description : PowerShell Community Extensions (PSCX) base snapin 

               which implements a general purpose set of cmdlets. 

If you want to use a new snap-in, you have to load it using  Add-PSSnapin. You need to do it once for every PowerShell session so, if you need the snap-in often, you should get it to automatically load 

right into one of your PowerShell profile scripts (see Chapter 10). 

Table of Contents | About PowerShell Plus

561

Sponsors | Resources | © BBS Technologies

 Add-PSSnapin  Clipboard-Tool

As soon as the snap-in is loaded, all the cmdlets it contains will be available. You could call your new 

 Out-Clipboard cmdlet to move text to the clipboard:

 Out-Clipboard  -text  "Hi there" 

 Out-Clipboard  "Hi there" 

It may also be used inside the pipeline since your cmdlet supports the PowerShell pipeline. The next 

line will copy your output to the clipboard:

Dir |  Out-Clipboard

However, if you insert text from the clipboard into a program like Notepad, you may ask why just 

the file name and not the complete directory listing are displayed. 

The answer lies in the PowerShell pipeline, which, remember, transports objects. The result of  Dir  is individual objects, while  Out-Clipboard is expecting text. That's why only one object property, the name, is passed onto the clipboard. If you really want to move the entire directory listing in the form 

in which it is normally displayed in the console to the clipboard, you should first use  Out-String to convert the objects into text:

Dir |  Out-String |  Out-Clipboard

By the way, your new cmdlet also supports many other aspects of cmdlets like debugging messages. 

If you specify the  -debug parameter, your cmdlet will output all the reports that were written to your source code using  WriteDebug(). Depending on the debugging settings in  $debugpreference, you can either have your computer ask you to confirm each step or just show yellow-colored debugging 

messages. 

 Out-Clipboard Hello  -debug

 DEBUG: Enter BeginProcessing

 Confirm

 Continue action? 

 |Y| Yes  |A| Yes to All  |H| Halt Command  |S| Suspend |?| Help (default is "Y"): 

 y

 DEBUG: Processing Record

 Confirm

 Continue action? 

 |Y| Yes  |A| Yes to All  |H| Halt Command  |S| Suspend |?| Help (default is "Y"): 

 a

 DEBUG: Done Processing Record

 DEBUG: Enter EndProcessing

The Structure of Cmdlets

Now, let's look a little more closely at the source code of your cmdlet, which actually consists of 

three classes:

Table of Contents | About PowerShell Plus

562

Sponsors | Resources | © BBS Technologies

•

Snap-Ins: The first class defines the snap-in, that is, the general container for all following 

cmdlets. 

•

Cmdlet: The second class defines the Out-Clipboard cmdlet. 

•

Helper classes: Finally, the third class corresponds to clipboard functionality and is used by 

the cmdlet to copy text to the clipboard. 

The Snap-In

The snap-in enables installation of the cmdlet package using the  RunInstaller attribute. The 

 installutil registration tool can automatically enter this snap-in in the registry. 

The second task of the snap-in is to retrieve information about maker, version, and function of the 

package. The  ClipboardSnapin class is derived from the  PSSnapin prototype using  Inherit so that this information can be called for every snap-in while always using the same properties. This enables the 

class to be assigned standard properties that the class later defines more precisely using  Overrides. 

 <RunInstaller(True)> Public Class ClipboardSnapin

   Inherits PSSnapIn

   Public Sub New()

     (...)

   End Sub

   Public Overrides ReadOnly Property Name() As String

     (...)

   End Property

   Public Overrides ReadOnly Property Vendor() As String

     (...)

   End Property

   Public Overrides ReadOnly Property VendorResource() As String

     (...)

   End Property

   Public Overrides ReadOnly Property Description() As String

     (...)

   End Property

   Public Overrides ReadOnly Property DescriptionResource() As String

     (...)

   End Property

 End Class

The Cmdlet

The actual cmdlet is an additional class that is derived this time from the  Cmdlet prototype. The 

 Cmdlet attribute defines the name of the cmdlet. Only certain names are allowed as verbs because 

the names of all cmdlets obey strict naming rules. That's why the verb  out comes from the 

 VerbsData list, which sets the permitted name. In contrast, the noun part of the name can be freely selected and is specified as  Clipboard. As a result, the complete name of this cmdlet is  Out-Clipboard. 

 <Cmdlet(VerbsData.Out, "Clipboard")> Public Class ClipboardHelper

   Inherits Cmdlet

Table of Contents | About PowerShell Plus

563

Sponsors | Resources | © BBS Technologies

There follow the parameters of the cmdlet. In this case, only one parameter called  Text is set. Its position is 0, which means that if no parameter name is specified,  Out-Clipboard will bind the first specified argument to the parameter. For this reason, you may type both  Out-Clipboard -text Hello 

and  Out-Clipboard Hello. 

So that your cmdlet can also get input from the pipeline,  ValueFromPipeline is set to  True,  making it possible for you to use your cmdlet inside the pipeline:  Dir | Out-Clipboard. 

 <Parameter(Mandatory:=False, Position:=0, ValueFromPipeline:=True, _

 HelpMessage:="Text to copy to Clipboard"), ValidateNotNullOrEmpty()> _

 Public Property Text() As String()

   Get

     Return _Text

   End Get

   Set(ByVal value As String())

     _Text = value

   End Set

 End Property

Begin, Process, End

In conclusion, you should specify what will happen when your cmdlet is called. Like the functions we 

saw in Chapter 9,  three phases must be distinguished.  BeginProcessing() is called when the cmdlet is activated (initialization).  EndProcessing() is called when the cmdlet has ended its work (tidying tasks). And  ProcessRecord() is called for  every single object that is passed to the cmdlet. 

   Protected Overrides Sub BeginProcessing()

     (...)

   End Sub

   Protected Overrides Sub EndProcessing()

     (...)

   End Sub

   Protected Overrides Sub ProcessRecord()

     (...)

   End Sub

It is best for you to look at what happens in practice by calling your cmdlet using the  -debug 

parameter, which enables you to read the debugging messages that are in your source text with 

 WriteDebug() and that tell you exactly when each part was executed. 

Table of Contents | About PowerShell Plus

564

Sponsors | Resources | © BBS Technologies







 About Idera's PowerShell Plus

Architected and developed by Dr. Tobias Weltner, Idera’s PowerShell Plus is the most advanced 

Interactive Development Environment for Windows PowerShell available today. Designed to help 

administrators and developers quickly learn and master Windows PowerShell, it also dramatically 

increases the productivity of expert users.  Try PowerShell Plus free for 14-days and see how much more productive you can be! 

PowerShell Plus Interactive Console

Enables you to work interactively with 

PowerShell from a feature rich Windows 

UI. This integration makes working with 

PowerShell faster and easier to use than 

ever before! 

Advanced Script Editor

The advanced debugger and script editor 

lets you build and test complex PowerShell 

scripts, try one line PowerShell commands 

from an embedded console window, and 

sign your script with a security certificate… 

All from a single workspace! 

Comprehensive Learning Center

The Comprehensive Learning Center helps 

you experience PowerShell by example. 

Short tutorials guide you through basic 

concepts at your own pace. The 

Comprehensive Learning Center also 

includes dynamically created help topics 

from currently installed PowerShell 

CmdLets, Snap-Ins and WMI objects. 

» Try PowerShell Plus Free for 14-Days

Table of Contents | About PowerShell Plus

565

Sponsors | Resources | © BBS Technologies

 Sponsors

Idera

Idera delivers a new generation of tools for managing, administering, and securing 

Microsoft Windows Servers. Idera's products help companies ensure server 

performance and availability and reduce administrative overhead and expense. 

Idera provides solutions for SQL Server, SharePoint and PowerShell. Headquartered 

in Houston, Texas, Idera's products are sold and supported directly and via 

authorized resellers and distributors around the globe. To learn more, please 

contact Idera at +1-713.523.4433 or visit www.idera.com.  

PowerShell.com

Created by Dr. Tobias Weltner, PowerShell.com is a leading PowerShell resource to 

help increase the adoption and use of PowerShell by providing free scripts, videos 

and other learning materials, expert guidance, news, forums and libraries for 

sharing best practices. The site is designed to serve as a place for Windows 

PowerShell people to congregate, communicate, collaborate and construct new 

ideas.  www.powershell.com.   

Compellent

Compellent is a leading provider of enterprise-class network storage solutions that 

are highly scalable, feature-rich and designed to be easy to use and cost effective. 

Compellent Technologies’ principal offices are located in Eden Prairie, Minn. 

www.compellent.com/powershell.  

/n software

/n software is a leading provider of software components for Internet, security, and 

E-Business development. Founded in 1994, /n software (pronounced 'n software') is 

based in Research Triangle Park, North Carolina. You can reach the company via 

email at info@nsoftware.com,  on the World Wide Web at www.nsoftware.com or by calling US: (800) 225-4190 or International: (919) 544-7070. 

Table of Contents | About PowerShell Plus

566

Sponsors | Resources | © BBS Technologies

 Additional Resources

» PowerShell.com

» Practical PowerShell Video Series

» Latest Twitter Streams

» Concentrated Technology

» PowerShellCommunity.org

Table of Contents | About PowerShell Plus

567

Sponsors | Resources | © BBS Technologies





Document Outline


	Copyright

	About the Author

	Acknowledgments

	Mastering PowerShell

	The PowerShell Console

	Starting PowerShell

	First Steps with the Console

	Incomplete and Multi-line Entries

	Important Keyboard Shortcuts

	Deleting Incorrect Entries

	Overtype Mode

	Command History: Reusing Entered Commands

	Automatically Completing Input

	Scrolling Console Contents

	Selecting and Inserting Text

	QuickEdit Mode

	Standard Mode





	Customizing the Console

	Opening Console Properties

	Defining Options

	Specifying Fonts and Font Sizes

	Setting Window and Buffer Size

	Selecting Colors

	Directly Assigning Modifications in PowerShell

	Saving Changes





	Piping and Routing

	Piping: Outputting Information Page by Page

	Redirecting: Storing Information in Files





	Summary





	Interactive PowerShell

	PowerShell as a Calculator

	Calculating with Number Systems and Units





	Executing External Commands

	Starting the "Old" Console

	Discovering Useful Console Commands

	Security Restrictions at Program Start

	Trustworthy Subdirectories





	Cmdlets: "Genuine" PowerShell Commands

	Using Parameters

	Using Named Parameters

	Switch Parameter

	Positional Parameters

	Common Parameters





	Aliases: Giving Commands Other Names

	Resolving Aliases

	Creating Your Own Aliases

	Removing—or Permanently Retaining—an Alias

	Overwriting Alias Definitions and Deleting Them Manually





	Functions: "Expanded" Aliases

	Calling Commands with Arguments

	Creating Shortcut Commands





	Invoking Files and Scripts

	Starting Scripts

	Running Batch Files

	Running VBScript Files

	Running PowerShell Scripts





	Summary





	Variables

	Your Own Variables

	Selecting Variable Names

	Assigning and Returning Values

	Populating Several Variables with Values Simultaneously

	Exchanging the Contents of Variables

	Assigning Different Values to Several Variables

	Overview of Variables in Use

	Finding Variables

	Verify Whether a Variable Exists

	Deleting Variables

	Using Special Variable Cmdlets

	Write-Protecting Variables: Creating Constants

	Variables with Description





	"Automatic" PowerShell Variables

	Environment Variables

	Reading Particular Environment Variables

	Searching for Environment Variables

	Creating New Environment Variables

	Deleting and Modifying Environment Variables

	Permanent Modifications of Environment Variables





	Drive Variables

	Directly Accessing File Paths

	Ad-hoc Variables: Sub-Expressions





	Scope of Variables

	Automatic Restriction

	Changing Variable Visibility

	Advantage of Lifting Visibility Restrictions: Clear and Unambiguous Start Conditions

	Setting the Scope of Individual Variables





	Variable Types and "Strongly Typing" 

	Assigning Fixed Types

	The Advantages of Specialized Types





	Variable Management: Behind the Scenes

	Subsequent Modification of Variables Options

	Activating Write-Protection

	Type Specification of Variables

	Verifying and Validating Variable Contents





	Summary





	Arrays and Hash Tables

	PowerShell Commands Return Arrays

	Storing Results in Arrays

	Further Processing of Array Elements in a Pipeline

	Working with Real Objects





	Creating New Arrays

	Polymorphic Arrays

	Arrays With Only One (Or No) Element





	Addressing Array Elements

	Choosing Several Elements from an Array

	Adding Elements to an Array and Removing Them





	Using Hash Tables

	Creating a New Hash Table

	Storing Arrays in Hash Tables

	Inserting New Keys in an Existing Hash Table

	Modifying and Removing Values

	Using Hash Tables for Output Formatting





	Copying Arrays and Hash Tables

	Strongly Typed Arrays

	Summary





	The PowerShell Pipeline

	Using the PowerShell Pipeline

	Object-oriented Pipeline

	Text Not Converted Until the End

	Streaming: Real-time Processing or Not? 

	"Blocking" Pipeline Commands





	Converting Objects into Text

	Making Object Properties Visible

	Formatting Pipeline Results

	Displaying Particular Properties

	Using Wildcard Characters

	Scriptblocks and "Synthetic" Properties

	Changing Column Headings

	Optimizing Column Width

	PropertySets and Views





	Sorting and Grouping Pipeline Results

	Sort Object and Hash Tables

	Grouping Information

	Using Grouping Expressions

	Using Formatting Cmdlets to Form Groups





	Filtering Pipeline Results

	Filtering Objects Out of the Pipeline

	Selecting Object Properties

	Limiting Number of Objects

	Processing All Pipeline Results Simultaneously

	Removing Doubles





	Analyzing and Comparing Results

	Statistical Calculations

	Comparing Objects

	Comparing Before-and-After Conditions

	Detecting Changes to Objects

	Comparing File Contents

	Saving Snapshots for Later Use





	Exporting Pipeline Results

	Suppressing Results

	Changing Pipeline Formatting

	Forcing Text Display

	Excel: Exporting Objects

	HTML Outputs





	The Extended Type System (Part One)

	Rendering Text as Text and Only Text

	Your Wish Has Priority

	Known Objects and Formatting

	Unknown Objects

	Emergency Mode

	"The Case of the Vanished Column" 

	ETS Enhancement

	Planning Enhancement





	Summary





	Using Objects

	Objects = Properties + Methods

	Creating a New Object

	Adding Properties

	Adding Methods





	Properties: What an Object "Is" 

	Properties Containing Objects

	Read-Only and Read-Write Properties

	Property Types

	Listing All Properties





	Methods: What an Object "Can Do" 

	Eliminating "Internal" Methods

	Get_ and Set_ Methods

	Standard Methods





	Calling a Method

	Call Methods with Arguments

	Which Arguments are Required? 

	Low-Level Functions





	Several Method "Signatures" 

	Playing with PromptForChoice









	Working with Real-Life Objects

	Storing Results in Variables

	Using Object Properties

	PowerShell-Specific Properties

	Using Object Methods

	Different Method Types









	Using Static Methods

	Finding Interesting .NET Types

	Converting Object Types

	Using Static Type Members

	Using Dynamic Object Instance Members





	Listing Assemblies

	Finding Interesting Classes (Types)

	Looking for Methods









	Creating New Objects

	Creating New Objects with New-Object

	Using Constructors





	New Objects by Conversion

	Loading Additional Assemblies: Improved Internet Download

	Using COM Objects

	Which COM Objects Are Available? 

	How Do You Use COM Objects? 









	Summary





	Conditions

	Formulating Conditions

	Carrying Out a Comparison

	"Reversing" Comparisons

	Combining Comparisons

	Comparisons with Arrays and Collections

	Verifying Whether an Array Contains a Particular Element









	Where-Object

	Filtering Results in the Pipeline

	Formulating a Condition

	Using Alias





	If-ElseIf-Else

	Switch

	Testing Range of Values

	No Applicable Condition

	Several Applicable Conditions

	Using String Comparisons

	Case Sensitivity

	Wildcard Characters

	Regular Expressions





	Processing Several Values Simultaneously





	Summary





	Loops

	ForEach-Object

	Evaluating Pipeline Objects Separately

	Integrating Conditions

	Invoking Methods





	Foreach

	Do and While

	Continuation and Abort Conditions

	Using Variables as Continuation Criteria

	Endless Loops without Continuation Criteria





	For

	For Loops: Just Special Types of the While Loop

	Unusual Uses for the For Loop





	Switch

	Processing File Contents Line by Line





	Exiting Loops Early

	Continue: Skipping Loop Cycles

	Nested Loops and Labels





	Summary





	Functions

	Creating New Functions

	First Example: Shorthand Functions

	Second Example: Combining Several Steps

	Comfortably Entering Functions of Several Lines

	Reducing a Function to a Single Line

	Using Text Editors

	Understanding NextFreeDrive





	Processing and Modifying Functions

	Removing Functions





	Passing Arguments to Functions

	$args: Arbitrary Arguments

	Setting Parameters

	Arguments Having Predefined Default Values

	Using Strongly Typed Arguments

	Only Numbers Allowed

	Date Required





	"Switch" Parameter Is Like a Switch





	Specifying Return Values of a Function

	One or More Return Values? 

	The Return Statement

	Accessing Return Values

	Excluding Output from the Function Result

	Excluding Text Output from the Result

	Using Debugging Reports

	Suppressing Error Messages









	Inspecting Available Functions

	Prompt: A Better Prompt

	Outputting Information Text at Any Location

	Using the Windows Title Bar

	Administrator Warning





	Clear-Host: Deleting the Screen Buffer

	Predefined Functions Once Again: A:, B:, C:





	Functions, Filters and the Pipeline

	The Slow Sequential Mode: $input

	Filter: Rapid Streaming Mode

	Developing Genuine Pipeline Functions





	Summary





	Scripts

	Writing and Starting PowerShell Scripts

	Using Redirection to Create Scripts

	Creating Scripts with an Editor

	Starting Scripts

	Execution restrictions

	Invoking Scripts like Commands









	Passing Arguments to Scripts

	$args Returns All Arguments

	$args is an Array

	Accessing Separate Arguments in $args

	Using Parameters in Scripts

	Validating Parameters





	Scopes: Ranges of Validity in Scripts

	#requires: Script Requirements





	Making Scripts Understandable

	Using Functions in Scripts

	Separating Scripts into Work Scripts and Libraries

	Library Scripts Central Directory





	Creating Pipeline Scripts

	Slow Sequential Mode

	Quicker Streaming Mode

	Writing Pipeline Results





	Profile: Autostart Scripts

	Four Different Profile Scripts

	Creating Your Own Profile

	Create a Global Profile for All Users





	Digital Signatures for Your Scripts

	Finding an Appropriate Certificate

	Creating a New Certificate

	Creating Self-Signed Certificates





	Examining the Code-Signing Certificate

	Declaring a Certificate "Trusted" 

	Signing PowerShell Scripts

	Using the First Available Certificate

	Recursively Signing All PowerShell Scripts

	Selecting Certificates Using the Dialog Box





	Validating Signed PowerShell Scripts

	Manual Validation

	Automatic Validation





	Building a Miniature PKI

	Creating a Root Certificate

	Creating Staff Certificates

	Creating a Backup

	Installing Enterprise-Wide Root Certificates









	Summary





	Finding and Avoiding Errors

	"What-if" Scenarios

	Dry Runs: Simulating Operations

	Stepped Confirmation: Separate Queries

	Automatic Confirmation of Dangerous Actions









	Defining Fault tolerance

	Recognizing and Responding to Errors

	Error Status in $? 

	Using Traps

	Traps Require Unhandled Exceptions

	Using Break and Continue to Determine What Happens after an Error

	Finding Out Error Details









	Error Records: Error Details

	Error Record by Redirection

	Error Record(s) Through the -ErrorVariable Parameter

	Error Records Through $Error

	Error Record Through Traps





	Understanding Exceptions

	Handling Particular Exceptions

	Throwing Your Own Exceptions





	Catching Errors in Functions and Scripts

	Stepping Through Code: Breakpoints

	Tracing: Displaying Executed Statements

	Stepping: Executing Code Step-by-Step





	Summary





	Command Discovery and Scriptblocks

	Command Discovery

	The Call Operator "&" 

	The Call Operator Only Accepts Single Commands

	The Call Operator Executes CommandInfo Objects

	Identically Named Commands: Which is Running? 





	Using Scriptblocks

	Executing Entire Instruction Lines

	Invoke-Expression

	Pipeline: ForEach-Object

	Loops: If and For

	Functions Are Named "Scriptblocks" 





	Building Scriptblocks

	Passing Arguments to Scriptblocks

	Begin, Process, End Pipeline Blocks

	Validity of Variables









	ExecutionContext

	InvokeCommand

	Resolving Variables

	Creating Scriptblocks

	Executing Instruction Lines





	SessionState

	Managing Variables

	Managing Drives

	Path Specifications









	Summary





	Text and Regular Expressions

	Defining Text

	Special Characters in Text

	Resolving Variables

	Inserting Special Characters





	"Here-Strings": Acquiring Text of Several Lines

	Communicating with the User

	Querying User Name and Password









	Using Special Text Commands

	String Operators

	Formatting String

	Setting Numeric Formats

	Outputting Values in Tabular Form: Fixed Width





	String Object Methods

	Analyzing Methods: Split() as Example





	Using String Class Commands

	Join(): Changing Arrays to Text

	Concat(): Assembling a String Out of Several Parts









	Simple Pattern Recognition

	Regular Expressions

	Describing Patterns

	Quantifiers

	Anchors

	Recognizing IP Addresses

	Validating E-Mail Addresses





	Simultaneous Searches for Different Terms

	Case Sensitivity

	Finding Information in Text

	Searching for Several Keywords

	Forming Groups

	Further Use of Sub-Expressions

	Greedy or Lazy? Detailed or Concise Results... 

	Finding String Segments

	Replacing a String

	Using Back References

	Putting Characters First at Line Beginnings

	Removing Superfluous White Space

	Finding and Removing Doubled Words





	Summary





	XML

	XML Structure

	Loading and Processing XML Files

	Accessing Single Nodes and Modifying Data

	Using SelectNodes() to Choose Nodes

	Accessing Attributes

	Adding New Nodes





	Exploring the Extended Type System

	The XML Data of the Extended Type System

	Finding Predefined Views









	The File System

	Accessing Files and Directories

	Listing Directory Contents

	Recursively Searching the Entire File System

	Filter and Exclusion Criterion





	Getting File and Directory Contents

	Passing Files to Cmdlets, Functions, or Scripts





	Navigating the File System

	Relative and Absolute Paths

	Converting Relative Paths into Absolute Paths





	Saving Directory Locations

	Finding Special Directories

	Constructing Paths





	Working with Files and Directories

	Creating New Directories

	Creating New Files

	Creating New Drives

	Reading the Contents of Text Files

	Processing Comma-Separated Lists

	Parsing Text Contents and Extracting Information

	Reading Binary Contents

	Moving and Copying Files and Directories

	Renaming Files and Directories

	Numerous Renames

	Changing File Extensions

	Sorting Out File Names





	Deleting Files and Directories

	Deleting Directory Contents

	Deleting Directories and Their Contents









	Managing Access Permissions

	Checking Effective Security Settings

	Establishing the Identity of the Owner

	Listing Access Permissions





	Creating New Permissions

	"Cloning" Permissions

	Using SDDL to Set Permissions

	Manually Creating New Permissions













	The Registry

	"Provider": Locations Outside the File System

	Available Providers

	Creating Drives





	Searching the Registry

	Recursive Search

	Individual Registry Keys

	How PowerShell Addresses Registry Keys

	Values of Keys

	Subkey of a Key









	Creating and Deleting Keys and Values

	Deleting Keys with Contents

	Setting, Changing, and Deleting Values of Keys

	Adding New Values

	Reading Values

	Deleting Values

	Default Entry





	Example: Extending the Context Menu

	Executing and Editing PowerShell Scripts









	Permissions in the Registry

	Taking Ownership

	Setting New Access Permissions

	Removing an Access Rule

	Controlling Access to Subkeys

	Revealing Inheritance

	Controlling Your Own Inheritance









	Processes, Services, Event Logs

	Processes

	Starting Processes

	Monitoring Processes

	Filtering and Clearly Displaying Processes

	Counting Processes

	Accessing Process Objects

	Stopping Processes





	Services

	Listing Services

	Starting, Stopping, Suspending, Resuming Services





	Event Log

	Writing Entries to the Event Log









	WMI: Windows Management Instrumentation

	WMI Classes and Instances

	Instances of a Class

	Displaying All Properties

	Filtering Out PowerShell Properties

	Selecting Particular Instances

	Directly Accessing Instances

	Modifying Properties

	Viewing Class Descriptions





	Invoking WMI Methods

	Instance-Based Methods

	Listing Methods

	Static Methods

	Help with Classes and Methods





	WMI Events

	Remote Access and Namespaces

	Accessing WMI Objects on another Computer

	Namespaces: WMI Extensions





	WMI and the Extended Type System

	Converting the WMI Date Format

	Adding On a Type Converter









	User Management

	Connecting to a Domain

	Logging On Under Other User Names





	Accessing a Container

	Listing Container Contents





	Accessing Individual Users or Groups

	Using Filters and the Pipeline

	Directly Accessing Elements

	Obtaining Elements from a Container

	Searching for Elements

	Accessing Elements Using GUID





	Reading and Modifying Properties

	Just What Properties Are There? 

	Practical Approach: Look

	Theoretical Approach: Much More Thorough

	Reading Properties

	Modifying Properties

	Deleting Properties

	The Schema of Domains

	Setting Properties Having Several Values





	Invoking Methods

	Changing Passwords

	Controlling Group Memberships

	In Which Groups Is a User a Member? 

	Which Users Are Members of a Group? 

	Adding Users to a Group





	Creating New Objects

	Creating New Organizational Units

	Create New Groups

	Creating New Users









	Your Own Cmdlets and Extensions

	Compiling Your Own .NET Expansions

	Extension for the Clipboard

	In-Memory Compiling

	DLL Compilation





	Building Your Own Cmdlets

	How Cmdlets Are Structured

	Step 1: Compiling the Snap-In

	Step 2: Registering Snap-Ins

	Step 3: Loading Snap-Ins





	The Structure of Cmdlets

	The Snap-In

	The Cmdlet

	Begin, Process, End









	About Idera's PowerShell Plus

	Sponsors

	Idera

	PowerShell.com

	Compellent

	/n software





	Additional Resources




index-565_3.jpg
» TN

Geting Started

PowerSnel Plus is B mostananced e
PoverShil cvracisodey Desigosd ety
e and essopers aesy asm s
Master Wroows PowerS. 350 aamatcaly
nctessas heproducity of spet cers
Powersnal P feaures 2 pomar earach
consdle,anadance sciptedto andasbugger
0 Comprensa orscs e aring conbr
iregrtedino 3 sige rodel

- Gat sarod using nieracho Conzde
« Takes Tuicralin e Learvisn Cer

iders

[ ——— 8 wvwpowsshelcom





index-565_2.jpg





index-69_1.png





index-56_1.png





index-556_1.png





index-555_1.png





index-565_1.jpg





index-560_1.png





cover.jpeg
Start now!

Learn:

Mastering -

Interactive PowerShell

PowerShell :=:

With:

Dr. Tobias Weltner,
PowerShell MVP.

/ ¥ Presented By

AN \ g-“ ‘: ~~ i
! Idefé ‘Providers ofpbwers ell'P)ésm s | Ry ;‘i ;;.‘-r,’:?‘ﬁ’ ¢

A The most aHVa mdoyvs PoWerSheI AcHo SRR
”’%})‘J.{-\-\\yf‘ §:: L’ o ", TAL 8 8ib7 | ”‘t\’{r“‘“' L\/ .V_.A‘l‘ ~

\" “\'\






index-552_1.png





index-550_1.png





index-541_1.png





index-540_1.png





index-549_1.png





index-543_1.png





index-530_1.png





index-52_1.png





index-534_1.png





index-531_1.png





index-54_1.png





index-524_1.png





index-513_1.png





index-50_1.png





index-520_1.png





index-51_1.png





index-502_1.png





index-500_1.png
o






index-509_1.png





index-505_1.png





index-129_1.png





index-124_1.png





index-12_2.png





index-523_1.png





index-12_1.png





index-522_1.png





index-133_1.png





index-132_1.png





index-494_1.png





index-493_1.png





index-496_2.png





index-496_1.png





index-481_1.png





index-485_1.png





index-484_1.png





index-499_1.png





index-497_1.png
e o ver rep
& [ > | E e o

sootoe loacnss |
ey ot Lot
Sl B s e
Sebanl i

e, A






index-499_2.png





index-100_1.png





index-10_1.png





index-102_1.png





index-114_1.png





index-112_1.png





index-117_1.png





index-116_1.png





index-11_1.png





index-468_2.png





index-468_1.png





index-474_1.png





index-472_1.png
=
i
o
el
i

g
iy
CEL
e
i roveimtraare
T
et






index-465_1.png





index-458_1.png





index-171_1.png





index-16_2.png





index-178_1.png





index-173_1.png





index-17_1.png
B "Windows PowerShell’ Properties

Optons [ Fort | Layout | Colors

Window Preview

Screen Bffer Sze
Wit

Height

Window Size
Wit

Height

Window Poston
Lo

Top

Let system postion window






index-479_1.png





index-179_1.png





index-478_1.png
B
ol Shtene
ey

1 Srare
o Sors

et e

S
e
e ———

=
85 pwoes

o

ey
oo






index-188_1.png





index-480_2.png





index-185_1.png





index-480_1.png





index-169_1.png





index-15_1.png
B "Windows PowerShell’ Properties

Options | Font_| Layout | Colors

Cursor Size
© Smal
Medum
Large
Command History
Buffer Size: El=

Nomberof Buffers: 4 [+
Discard Old Duplcates

Edit Optons
[9] uickEdt Mode
@ Insert Mode






index-16_1.png
B "Windows PowerShell’ Properties

12 screen pixes wide
16 screen pixes igh






index-447_1.png





index-443_1.png





index-453_1.png





index-448_1.png





index-441_1.png





index-13_1.png
A P —






index-457_2.png





index-145_1.png





index-141_1.png





index-148_2.png





index-456_1.png
wone |_men__pioetamn
R

SHEIPS TV Y
7 [ as

paie

a1 Username

1 [ussrname passwordsge

0
Nommel 5
administrator A






index-148_1.png





index-455_1.png





index-152_1.png





index-457_1.png





index-14_1.png
Frae






index-456_2.png





index-136_1.png





index-135_1.png





index-139_1.png





index-137_1.png





index-419_1.png





index-413_1.png





index-424_1.png





index-423_1.png





index-1_2.png





index-1_19.png





index-1_4.png





index-440_1.png





index-1_3.png





index-433_1.png





index-1_6.png





index-1_5.png





index-1_8.png





index-428_1.png





index-1_7.png





index-426_1.png





index-200_1.png





index-432_1.png





index-1_9.png





index-42_1.png





index-1_18.png





index-34_1.png





index-355_1.png





index-350_1.png





index-1_1.jpg





index-1_11.png





index-397_1.png





index-1_10.png





index-395_1.png





index-1_13.png





index-1_12.png





index-411_1.png





index-1_15.png





index-370_1.png
Windows Powershell Credential Request JCEe]






index-1_14.png





index-357_1.png





index-1_17.png





index-393_1.png





index-1_16.png





index-374_1.png





index-193_1.png





index-18_1.png
B "Windows PowerShell’ Properties

Optons [ Font

SYSTEM <DIR> 10-01-99
SYSTEM32 <DIR, 10-01-99






index-325_1.png





index-324_1.png





index-247_1.png





index-239_1.png





index-25_1.png





index-253_1.png





index-269_2.png





index-33_1.png





index-269_1.png





index-339_1.png





index-271_1.png





index-349_1.png





index-26_1.png





index-344_1.png





index-283_1.png





index-329_2.png





index-277_1.png





index-329_1.png





index-334_1.png





index-333_1.png





index-207_1.png





index-214_1.png





index-209_1.png





index-219_1.png





index-216_1.png





index-226_1.png





index-221_1.png





index-230_1.png





index-229_1.png





index-236_1.png





index-306_1.png
Certficate

General [ etais [ Certfication Path

(9§ Certificate Information

This CA Root certificate is not trusted. To enable trust,
install this certificate in the Trusted Root Certification
Authorities store.

Tssued to: Powershel Test Certifcate
Tssued by: Powershel Test Certficate

Valid from 6/18/2008 to 12/31/203%
 You have a prva key that corespands o thi certcate,

Learn more about cerffict






index-9_1.png
ey

susocEs R s






index-303_1.png
Codesigning Certificate.

Select a certficate to sign your script

Issued to

Eponer,
=
=

Issued by

Powers.

Intended Purp.

Code Signing
Code Signing
Code Signing

Friend.

None
None
None

Expira,

12/31
/31
/31

Location

Not avai.
Not avai.
Not avai.

) (Cviewcerbcse ]






index-307_1.png
Certficate

General [ etais [ Certfication Path

@ Certificate Information

This certificate is intended for the following purpose(s):
« Ensures software came from software publisher
«Protects software from alteration after pubication
» Allissuance polcies:

Tssued to: Powershel Test 1
Tssued by: Powershel Test 1

Valid from 5/12/2008 to 12/31/2033
 You have a prva key that corespands o thi certcate,

Learn more about certficates






index-306_2.png





index-313_1.png





index-307_2.png





index-316_1.png





index-314_1.png





index-31_2.png





index-31_1.png
Eost [ pen

Openficocaton
Windows | ) o sminststor
20

Y. et Let S to Compore
(D) e W scantocvinses

B aastosene
| st @ naatoponsrpata

G e

B Compressend ema.
3] vindons\ @ ompresto poverer snd st
Pintotart i

@) oo | ndto QuieLaunch

[ eomeq oo vesons
SendTo.

cony

4 Remoue rom i et

@ vimaes] T
papets
&3 indosspbmermerveeryr——1

@ e

> Aipogiams






index-284_1.png





index-28_1.png





index-289_1.png





index-295_1.png





index-290_1.png





index-299_1.png





index-297_1.png





index-301_1.png





index-300_1.png





index-302_1.png





index-92_1.png





index-8_1.png





index-96_1.png





index-78_1.png





index-76_1.png





index-81_1.png





index-7_1.png





index-73_1.png





index-74_1.png





index-73_2.png





