

A3F

 PowerShell for

 Administrators

 Instructor Lab Help

For product evaluation only– not for distribution or commercial use.

A3F

PowerShell for Administrators

Acknowledgements

Curriculum Developers and Technical Writers:

Matthew D. Obert

Lorraine Patrick

COPYRIGHT 2007. New Horizons of Minnesota. ALL RIGHTS RESERVED. No part of this work may be reproduced, transcribed, or used in any form or by any means – graphic, electronic, or mechanical, including photocopying, recording taping, Web distribution, or information storage and retrieval systems –

without prior written permission of New Horizons of Minnesota. Screenshots used for illustrative purposes are the property of the software proprietor. This book conveys no rights in the software or other products about which it was written; all use or licensing of such software or other products is the responsibility of the user according to terms and conditions of the owner. Do not make illegal copies of books or software.

If you believe that this book, related materials, or other New Horizons of Minnesota materials are being reproduced or transmitted without permission, please call 888-236-2462.

For more information or for permission to use material from this text, please contact: New Horizons of Minnesota

4510 West 77th Street

Suite #210

Edina, MN 55435

www.newhorizonsmn.com

888-236-2462 or 952-896-6800

Any additional information about permissions may be submitted by e-mail to info@newhorizonsmn.com.

TRADEMARKS: Some of the product names and company names used in this book have been used for identification purposes only and may be trademarks or registered trademarks of their respective manufacturers and sellers.

Microsoft, Excel, PowerPoint, PowerShell, Windows, and Windows Server are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries. All other product names and services used throughout this book may be common law or registered trademarks of their respective proprietors.

DISCLAIMER: New Horizons of Minnesota reserves the right to revise this publication and make changes from time to time in its content without notice. While New Horizons of Minnesota takes great care to ensure the accuracy and quality of these materials, we cannot guarantee their accuracy, and all materials are provided without any warrantee whatsoever, including, but not limited to, the implied warrantees of merchantability or fitness for a particular purpose. The names used in the data files of this course are fictitious. Any resemblance, current or future, is purely coincidental. We do not believe we have used anyone’s name in creating this course, but if we have inadvertently, please notify us and we will change the name in the next revision of the course. New Horizons of Minnesota is an independent education solution provider. Use of screenshots, photographs of another entity’s product, or another product’s name or service in this book are for editorial purposes only. No such use should be construed to imply sponsorship or endorsement of the book by, nor any affiliation of such entity with New Horizons of Minnesota. This courseware may contain links to sites on the Internet that are owned and operated by third parties (the “External Sites.”) New Horizons of Minnesota is not responsible for the availability of, or the contact located on or through, any External Site. Please contact New Horizons of Minnesota if you have any concerns regarding such links or External Sites.

Course Version 1.0

For product evaluation only– not for distribution or commercial use.

A3F

Instructor Lab Help

Overview

For the most part, the labs attempt to tie the theory in the section to actual uses. There"s an introductory page indicating the VPCs and logon credentials needed for the exercises. Exercises will have one or more activity, each with one or more tasks. The layout of the labs is such that Tasks are in the left column, more Detailed Steps are in the right. When asking students to complete a detailed step without explicit syntax, a HINT may be included in the Tasks area.

Section 1 Labs

The “detailed steps” are explicit.

Exercise: Exploring Help

Everything here is pretty straightforward.

Exercise: Working with cmdlets

The students create a directory they will use throughout the course. They assign a Microsoft®

Windows® PowerShell™ drive to it and create an alias.

Exercise: Creating a custom profile

The students update their profile to start in their newly created PSDrive. Verify once they exit PowerShell and re-open it, their prompt is PS D:Labs>

Exercise: Retrieving Registry Data

This sends „em cruisin" through the registry, getting values in various ways. First as a series of cmdlets, then a .PS1 script, finally a single line. The .PS1 script needs to work as it is used later in the course.

Section 2 Labs

The “detailed steps” are still fairly detailed here.

Exercise: Using the Pipeline

This activity has the student using various cmdlets. There isn"t always explanation for the syntax at this point; if questioned, you can indicate it will be covered in more detail in later sections. For example, students are filtering results with „where" statements and formatting output with Format-list. By this point, they have seen these cmdlets in demos.

Exercise: Using continuation characters for command line scripts

This demonstrates ways to make a series of commands easier to read using different methods.

Exercise: Create a command line script

This time they have to think…

Activity: Create a command line script which will list only the object path, owner, and access control list for each object in the directory and any subdirectories. Output the results in a list format, not the default table format.

There isn"t much “detail” in the steps. By now, the student should be able to generate these results. There are HINTs to encourage them to use help. If they need assistance in determining properties, remind them of get-<cmdlet> | get-member –membertype properties. This syntax will generate the desired results:

get-childitem –recurse | get-acl | select-object | format-list path, owner,

accesstostring

For product evaluation only– not for distribution or commercial use.

A3F

Exercise: Working with Operators

Time to give „em a brain break. Set a variable, increment / decrement the value; simple string matching; string modification.

Section 3 Labs

This series of exercises starts with general data type testing. The second task has the student look at

[DateTime] data and manipulating it. It ends with arrays and manipulating array data.

Exercise: Working with Variables and Data Types

The third task, “Determine time elapsed for a running process”, demonstrates variables aren"t dynamically updated. In detailed step 6., the student is asked if there is a better way to retrieve the information. This works:

(get-date) - $PSStart.StartTime

Exercise: Working with Arrays

The first four tasks are fairly straightforward and detailed. The task to create an associative array is detailed with an explanation for code they haven"t previously seen. The output from the associative array may be confusing at first. Keep in mind the first line of the text file will generate two lines of output when addressed as an array member. It"s working like it should…the output will be:

$assoc will return

Name

Value

last

Dog

first

Otis

last

Dog

first

Oscar etc.

$assoc[0] will return

Name

Value

last

Dog

first

Otis

$assoc[1].first returns Oscar.

Section 4 Labs

Most of the steps are detailed in this section. There are some exercises where there is a great deal of typing which may cause them issues.

Exercise: Executing Scripts

This exercise has the student testing default execution policy. If the script runs initially (it shouldn"t), have them exit PowerShell and re-open it.

The student then uses group policy to control script execution policy. Not all students may be familiar with GPMC and may need assistance navigating. At the end of this section, the student attempts to set a more restrictive execution policy, which is overridden by group policy. They then turn off group policy and learn the more restrictive policy is now in effect.

Exercise: Self-Signing a Script

This exercise requires the MAKECERT tool from the SDK in order to generate a self-signing certificate. The student will sign the .PS1 created in the Section 1 labs.

Exercise: Prompting for Credentials

For product evaluation only– not for distribution or commercial use.

A3F

This lab adds some “bonus” information on firewall settings for remote administration. Back to GPMC to configure policy to allow the script to run from the DC and access information on the client. Then the student creates a .PS1 to connect to WMI on the client and retrieve events from the security log. While specified in the detailed steps, a potential “gotcha” is the student may not remember to key in the client name – usernames are local accounts on the client (MTL-CL1\Administrator, MTL-CL1\Student).

Section 5 Labs

Exercise: Working with foreach, if and switch

The initial steps of the first activity are merely prepping the virtual machines for the upcoming exercise in order to provide more relevant results. The objective is to connect to the client, retrieve the network card information initially. Then build on the success of retrieving the basic information. The commands for step 2:

gwmi win32_networkadapterconfiguration –computername MTL-CL1

Step 3:

foreach ($n in gwmi win32_networkadapterconfiguration –computername MTL-

CL1) { write-host $n.IPAddress }

This can be done on one line or several.

Step 4:

foreach ($n in gwmi win32_networkadapterconfiguration –computername MTL-

CL1) { write-host $n.Description $n.IPAddress }

Second Activity: Determine if the client"s IP addresses are static or dynamic. If dynamic, return the name of the DHCP Server otherwise identify the IP address is static.

The statement in Step 4 can be modified to include an if statement. Here"s a script: foreach ($n in gwmi win32_networkadapterconfiguration –computername MTL-CL1) This can be on one line

{

if ($n.DHCPEnabled –eq “True”)

{ write-host “Description: “$n.description

write-host “IPAddress: “$n.IPAddress

write-host “DHCP Server: “$n.DHCPServer

}

else

{ write-host “Description: “$n.description

write-host “IPAddress: “$n.IPAddress

write-host “Address is static”

}

}

Third Activity: Use the switch statement to select an item from a table. This isn"t as hard as most will want to make it. There are several tips in the Detailed Information block which point the student to reference information. There is a text file, YearOfThe.txt, which has the calendar years and matching animals. The resulting script is:

$a = Read-Host "Please enter the year"

$b = $a % 12

switch ($b)

 {

 0 {"Year of the Monkey."}

 1 {"Year of the Rooster."}

 2 {"Year of the Dog."}

 3 {"Year of the Pig."}

For product evaluation only– not for distribution or commercial use.

A3F

 4 {"Year of the Rat."}

 5 {"Year of the Ox."}

 6 {"Year of the Tiger."}

 7 {"Year of the Rabbit."}

 8 {"Year of the Dragon."}

 9 {"Year of the Snake."}

 10 {"Year of the Horse."}

 11 {"Year of the Goat."}

 }

Exercise: Fun with While

It"s late & I"m running out of ideas. But not-so-simple math makes a great example for while. It"s an easy statement once you slow down & read it carefully.

$v1=$v2=1; while ($v1 –le 100) { $v1; $v1,$v2 = ($v1+$v2),$v1 }

Section 6 Labs

Now the detailed steps are getting less “detailed”. The first exercise is focused on the format- cmdlets and expects the student to be able to identify the properties list without much help. The second exercise has the student generate various file types from the command they"ve been working with.

Exercise: Using the format- cmdlets

Task “Get a list of the running services”, Detailed Step 2 gives the initial format of the cmdlet.

The student may think the property list needs to be surrounded by < >. The desired result is: gwmi win32_service | fl name, pathname, startmode, state

There"s a HINT in the task column to help with the filter statement. Same task, next step desired result:

gwmi win32_service | where { $_.State –eq “stopped” } | fl name, pathname,

startmode, state

The task “Group the running services by startup type” is accomplished by changing fl to ft and appending –groupby startmode to the end of the previous command.

The statement with sort-object:

gwmi win32_service | where { $_.State –eq “stopped” } | sort-object startmode | ft name, pathname, startmode, state –groupby startmode

Bonus Points: Detailed Step 4:

where {$_.State –eq stopped –and $_.StartMode –eq “Automatic”}

Exercise: Exporting Data to files

The first task generates the initial output in table format in order for the student to be able to view the results of the script itself, eliminating remotely accessing WMI if there"s a need to troubleshoot the CSV output step. The command for this format:

get-wmiobject win32_process –computername “MTL-CL1” | ft name,

commandline, executablepath –wrap

Optionally, the –auto parameter could be added.

There are HINTs about additional cmdlets needed to include only three properties in the output file. The command for detailed step 3:

get-wmiobject win32_process –computername “MTL-CL1” | select-object name,

commandline, executablepath | export-csv ClientProc.csv

The second task states the QFEs should be retrieved from the client. The statement can be simple or more involved, depending on the amount of formatting the student chooses to do. The basic statement is:

For product evaluation only– not for distribution or commercial use.

A3F

get-wmiobject win32_QuickFixEngineering –computername “MTL-CL1” | select

CSName, FixComments, HotFixID, InstalledOn, InstalledBy, ServicePackInEffect |

ConvertTo-Html | out-file QFE.html

Alternately, the student may choose to use variable names as listed on page 112.

Section 7 Labs

The files copied in the first step will be used throughout the exercises in this section.

Exercise: Locate a pattern in a text file

Page 120 contains the table describing the quantifiers

For Detailed Step 3, there"s a HINT in the Tasks column.

$content = gc d:\labs\logs\clientlocation.log

The pattern specified returns additional strings.

Changing the pattern to:

$pattern = [regex]”SRV\w{3,}\d{2,}”

will retrieve only the server names.

Exercise: Searching log files for specific strings

There"s a HINT: in the tasks column for including subdirectories using dir. This"ll get „er done: dir D:\labs –recurse –include *.log | select-string “SRVMTL84”

There"s a HINT: in the tasks column.

dir D:\labs –recurse –include *.log | select-string “SRVMTL84” -list

There"s a HINT: in the tasks column.

dir D:\labs –recurse –include *.log | select-string “SRVMTL84” –list `

| ft filename

Presumably the concept of using the select-string cmdlet to find a match in any directory will be the answer to step 6…

Section 8 Labs

Exercise: Working with functions

Activity: Create a function to return WMI properties.

Looked easy. Took a minute to figure out why, after running the script, I didn"t see the function listed with a Dir function:. But functions are usually used within a script for the life of the script. There are troubleshooting tips included in the detailed information. Here"s the code I used, including the function call at the end of the script. And I wrote it all on one line, so this wrapped: function global:WMIProp ($name = “win32_OperatingSystem”)

{ get-wmiobject -class $($name) | get-member -membertype properties | where

{$_.name -notlike "__*"}}

 WMIProp

Activity: Modify the function to accept a WMI class name

Just need to add the parameters section to the previous script and replace the explicit class name with the variable:

function global:WMIProp ($name="Win32_operatingsystem")

{ get-wmiobject -class $($name) | get-member -membertype properties | where

{$_.name -notlike "__*"}}

For product evaluation only– not for distribution or commercial use.

A3F

Activity: Add the function to your PowerShell profile.

Hopefully this one is easy. Copy the function from the .PS1 & paste it into the profile. Detailed Info gets „em into the profile.

Optional Activity: Create a function to search PowerShell help files.

Here"s the code:

Function SearchHelp

{

param ($Pattern = $(throw “you must specify a pattern”))

select-string –list $pattern $pshome\about*.txt |

foreach {$_.filename –replace „\..*$"}

}

And this doesn"t include reading the .XML help files…if they want to go there, the following code should appear after the foreach statement.

dir $PShome*dll-help.*xml |

foreach { [xml] (get-content -read -1 $_) } |

foreach { $_.helpitems.command } |

where {$_.get_Innertext() –match $pattern} |

foreach { $_.details.name.trim() }

Section 9 Labs

Exercise: Using THROW and -ea

Activity: Use THROW for displaying guidance. Use –ea to allow a script to continue when it encounters an error.

This will give the desired results:

param (

 [string]$computername = $(Throw "Enter the name of the system to query")

)

$qfe = get-wmiobject win32_quickfixengineering -computer $computername -ea

silentlycontinue

foreach ($q in $qfe) { $q | Select * | fl description, fixcomments,

hotfixid,servicepackineffect }

 Exercise: Troubleshooting a script with Set-PSDebug

Activity: Find the problem in the script provided

The goal is to have them get to the point where they are querying the variable values which are created in this script. If the script is executed “as is”, the results indicate that Otis is 25 and is too young to vote.

The problem is how the arguments are passed to the function. By simply removing the “,” between arguments, the script works.

Broken code:

func1 $name, $age

Works:

func1 $name $age

For product evaluation only– not for distribution or commercial use.

A3F

Section 10 Labs

Exercise: Scripting Files and Folders

Activity: Create a script to move files older than 60 days to a new folder.

Recommend the student starts by hard-coding the variable values in the script in order to make it work. Additional challenges come with string manipulation to build the path (D:) and name (labs\labfiles\archives) for the new-item cmdlet.

One answer:

Set up the required information

 param (

 $startDir=$(Throw "Enter the starting directory"),

 $endDir = $(Throw "Enter the destination directory"),

 $howOld=45

)

Test to see if the destination directory exists

$pathThere = test-path $endDir

 # create the directory if needed

if (!$paththere)

{

 $driveletter = $enddir.remove(3)

 $newpath = $enddir.remove(0,3)

 new-item -path $driveletter -name $newpath -type Directory

}

then move files

 $now=Get-Date

 $files = get-childitem -path $startdir | where {($_.GetType()).name -eq "FileInfo"}

 foreach ($file in $files)

 {

 $age=($now.subtract(($file.LastWriteTime))).days

If ($age -gt $howOld) {move-item -path $file.fullname -destination $endDir}

 }

 # let me know it worked

write-host "The files from $startDir have been moved to $endDir."

get-childitem $endDir

Exercise: Scripting Registry Changes

Activity: Change the value of a registry key.

One answer:

set the path to the key you are after

 $curver = 'HKLM:\Software\Microsoft\Windows NT\CurrentVersion'

populate a variable with the available properties

$version = get-itemproperty $curver

get registered owner, organization for display purposes

For product evaluation only– not for distribution or commercial use.

A3F

$own = $version.RegisteredOwner

$org = $version.RegisteredOrganization

show what we found

write-host "Current Registered Owner: " $own

write-host "Current Registered Organization: " $org

get the new values

$newOwn = Read-Host "Enter the new registered owner"

$newOrg = Read-Host "Enter the new registered organization"

set-itemproperty -path $curver -name registeredOwner -value $newOwn

set-itemproperty -path $curver -name registeredOrganization -value $newOrg

 # show the changes

$newVer = get-itemproperty $curver

write-host "Changed Registered Owner: " $newVer.RegisteredOwner

write-host "Changed Registered Organization: " $newVer.RegisteredOrganization Exercise: Scripting Event Log Lookups

Activity: Search the event log for a specific entry.

Exercise: Scripting Active Directory

Activity: Create new objects in Active Directory.

Activity: Search for objects in Active Directory.

For product evaluation only– not for distribution or commercial use.

index-9_1.png

index-8_1.png

cover.jpeg
PowerShell for
Administrators

Instructor Lab Help

index-10_1.png

index-2_1.png

index-1_1.png

index-4_1.png

index-3_1.png

index-6_1.png

index-5_1.png

index-7_1.png

